Angiogenesis features in patients with melanoma with different BRAf status

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Neoangiogenesis is an important factor in the development and progression of cancer. Neoangiogenesis in tumors is necessary for its further growth and subsequent metastasis. Intensity ofangiogenesis depends on a balance ofproangiogenic and antiangiogenic factors. One of these angiogenic factors is matrix metalloproteinase-9 (MMP-9) enzyme family endopeptidases participating in the extracellular matrix degradation and remodeling of vessels. It is known that the BRAF V600E mutation can affect the expression ofpro-angiogenic factors in tumor tissue. The purpose of this study was to investigate the microvasculature density in the tumor andperitumoral area in patients with melanoma with different BRAF-status using counting CD-31 positive stained vascular endothelial cells, as well as detection of the expression of matrix metalloprotieinase-9 in tumor cells and cells of microenvironment, followed by analysis of the relationships among these indicators. The material for the study is based on samples of tumor (n = 57) obtainedfrom patients with melanoma. The study revealed that there was a trend to increased angiogenesis in 2-fold (p < 0.05) with the BRAF-positive lentigo melanoma, compared with BRAF-negative patients lentigo melanoma. Vascularization level change was detected, depending on the primary tumor site: the level of vascularization was statistically higher in BRAF-positive patients with localized tumors on the skin of the trunk (p < 0.05), with no significant differences for other important morphologic parameters such as ulceration of the tumor, the severity of lymphocytic infiltration and tumor thickness by Breslow (p > 0.05). No statistically significant differences in the expression of MMP-9 depending on the BRAF-status in the tumor cells and stromal cells in microenvironment (p > 0.05) were detected. Nevertheless, a tendency to an increase in the expression of MMP-9 in the surrounding stroma cells (fibroblasts, lymphocytes, endothelial cells, polymorph nuclear leukocytes, regardless of BRAF-status) was shown. Despite some features of tumor angiogenesis in the skin melanoma patients with different BRAF status angiogenesis in the tumor is influenced by a variety of proangiogenic and antiangiogenic stimulation that are common patterns regardless of BRAF-status.

Full Text

Restricted Access

About the authors

Maria B. Aksenenko

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation
MD, PhD, docent, Department of Pathophysiology with a Course of a Clinical Pathophysiology, Krasnoyarsk State Medical University of prof. V.F. Voyno-Yasenetsky

T. G Ruksha

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation
Department of Pathophysiology with a course of clinical pathophysiology


  1. Miller A.J., Mihm M.C. Jr. Melanoma. N. Engl J. Med. 2006; 355(1): 51-65.
  2. Grazia G., Vegetti C., Benigni F., Penna I., Perotti V., Tassi E., et al. Synergistic antitumor activity and inhibition of angiogenesis by cotargeting of oncogenic and death receptor pathways in human melanoma. Cell Death Dis. 2014; 5: e1434.
  3. Durante C., Tallini G., Puxeddu E., Sponziello M., Moretti S., Ligorio C., et al. BRAF (V600E) mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. Eur. J. Endocrinol. 2011; 165(3): 455-63.
  4. Husain A., Hu N., Sadow P.M., Nucera C. Expression of a ngiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF (V600E). Cancer Lett. 2016; 380(2): 577-85.
  5. Авдалян А.М., Бобров И.П., Климаче В.В, Круглова Н.М., Лазарев А.Ф. Прогностическое значение исследования плотности сосудов микроциркуляторного русла в опухоли и перитуморальной зоне по данным выявления белка CD31 и количества аргирофильных белков области ядрышкового организатора (AGNOR) в эндотелии при лейкомиосаркоме тела матки. Фундаментальные исследования. 2010; 5: 12-20.
  6. Pittayapruek P., Meephansan J., Prapapan O., Komine M., Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 2016; 17(6): e868.
  7. Gu H., Feng J., Wang H., Qian Y., Yang L., Chen J., et al. Celastrus orbiculatus extract inhibits the migration and invasion of human glioblastoma cells in vitro. BMC Complement Altern. Med. 2016; 16(1): 387.
  8. Döme B., Paku S., Somlai B., Tímár J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J. Pathol. 2002; 197(3): 355-62.
  9. Durante C., Tallini G., Puxeddu E., Sponziello M., Moretti S., Ligorio C., et al. BRAF (V600E) mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. Eur. J. Endocrinol. 2011; 165(3): 455-63.
  10. Kiss J., Tímár J., Somlai B., Gilde K., Fejôs Z., Gaudi I., et al. Association of microvessel density with infiltrating cells in human cutaneous malignant melanoma. Pathol. Oncol. Res. 2007; 13(1): 21-31.
  11. Stratigos M., Matikas A., Voutsina A., Mavroudis D., Georgoulias V. Targeting angiogenesis in small cell lung cancer. Transl. Lung Cancer Res. 2016; 5(4): 389-400.
  12. Iizuka S., Ishimaru N., Kudo Y. Matrix metalloproteinases: the gene expression signatures of head and neck cancer progression. Cancers (Basel). 2014; 6(1): 396-415.
  13. Donnem T., Hu J., Ferguson M., Adighibe O., Snell C., Harris A.L., et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2013; 2(4): 427-36.
  14. Kachgal S., Carrion B., Janson I.A., Putnam A.J. Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP. J. Cell Physiol. 2012; 227(11): 3546-55.
  15. Landskron G., De la Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014; 2014: 149185. doi: 10.1155/2014/149185.
  16. Bergers G., Brekken R., McMahon G., Vu T.H., Itoh T., Tamaki K., et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000; 2(10): 737-44.
  17. Wels J., Kaplan R.N., Rafii S., Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008; 22(5): 559-74.
  18. Singla D., Wang J. Fibroblast growth factor-9 activates c-Kit progenitor cells and enhances angiogenesis in the infracted diabetic heart. Oxid. Med. Cell. Longev. 2016; 2016: 5810908. doi: 10.1155/2016/5810908.
  19. Lin H., Pan J.C., Zhang F.M., Huang B., Chen X., Zhuang J.T., et al. Matrix metalloproteinase-9 is required for vasculogenic mimicry by clear cell renal carcinoma cells. Urol. Oncol. 2015; 33(4): 168.e9-16. doi: 10.1016/j.urolonc.2014.12.007.



Abstract - 30

PDF (Russian) - 2


Article Metrics

Metrics Loading ...



Copyright (c) 2017 Aksenenko M.B., Ruksha T.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies