Havчные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

Битва вокруг «пищевой зависимости»

R.H. Lustig^{1,2}

¹Department of Pediatrics, University of California San Francisco, Сан-Франциско, штат Калифорния, США

²Institute for Health Policy Studies, University of California San Francisco, Сан-Франциско, штат Калифорния, США

RNJATOHHA

Несмотря на десятилетия исследований в области питания, ожирения и сахарного диабета, а также на растущую распространенность и тяжесть практически всех хронических метаболических нарушений, научное сообщество всё ещё не может прийти к консенсусу относительно существования и достоверности феномена «пищевой зависимости». Противники этой концепции приводят множество аргументов: 1) еда необходима для выживания (или «свежий» лозунг «пища — это лекарство»); 2) стигматизация людей с ожирением как «психически больных» недопустима: 3) людям с ожирением следует придерживаться принципа «личной ответственности»; 4) имеющиеся данные фрагментарны и недостаточно убедительны; 5) это корреляция, а не причинно-следственная связь; 6) все одинаково подвержены риску, но не все зависимы; 7) отсутствие «абстиненции»; 8) это не «пищевая зависимость», а «зависимость от процесса употребления пищи». И хотя все эти аргументы справедливы, с каждым годом в здравоохранении направляется всё больше средств на лечение заболеваний, связанных с нарушением питания. В то время как различные употребляемые вещества, (например, никотин, кокаин¹, героин², алкоголь), несомненно, вызывают зависимость, утверждение о том, что отдельные компоненты пищи (например, сахар и кофеин) или собственно пища (например, ультрапереработанные продукты питания) соответствуют тем же критериям, некоторые учёные считают преувеличением. Количество симпозиумов по пищевой зависимости растёт, а дискуссии в научных журналах не прекращаются. Определение зависимости включает в себя множество критериев: демографические данные органов здравоохранения, биохимические маркеры, данные визуализационных методик, результаты доклинических и клинических исследований, а также экономические факторы. Ни один из этих критериев не оказался достаточно убедительным для достижения консенсуса. Тем не менее важнейшим условием научного признания остаётся описание механизма. В этой статье рассмотрены: история разногласий; данные о продуктах питания, обладающих наибольшим аддиктивным потенциалом; два механизма патогенеза пищевой зависимости и их связь с наиболее вероятными «виновниками» подобной зависимости; роль пищевой промышленности в распространении ложных представлений. Всё это служит основой для формирования рационального выхода из сложившейся ситуации.

Настоящая статья является русскоязычным переводом оригинальной публикации "food addiction". Front Psychiatry. 2025:16:1621742. [Lustig RH. battle over doi: 10.3389/fpsyt.2025.1621742] под редакцией проф. Э.Э. Звартау и К.В.Азизовой.

Ключевые слова: пищевая зависимость; сахар; инсулин; дофамин; лептин; пищевая промышленность; ультрапереработанные пищевые продукты.

КАК ЦИТИРОВАТЬ:

Lustig RH. Битва вокруг «пищевой зависимости» // Психофармакология и биологическая наркология. 2025. Т. 16, № 3. С. XX–XX. DOI: 10.17816/phbn691855 EDN: HFODQE

© Эко-Вектор, 2025

Статья доступна по лицензии СС BY-NC-ND 4.0 International

Рукопись получена: 01.09.2025 Рукопись одобрена: 01.10.2025

Опубликована online:

¹ вещество запрещено на территории РФ.

² вещество запрещено на территории РФ.

Havчные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

The battle over "food addiction". Translation to Russian

Robert H. Lustig^{1,2}

¹Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States

²Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA, **United States**

ABSTRACT

Despite decades of nutrition, obesity, and diabetes research, and worsening prevalences and severities of virtually every chronic metabolic disease, the scientific community remains divided over the existence and veracity of the concept of food addiction. There are numerous rationalizations — 1) you need food to survive, (of which "Food is Medicine" is the latest mantra); 2) people with obesity should not be stigmatized as "mentally ill"; 3) people with obesity should instead adhere to "personal responsibility"; 4) the data are incomplete and not strong enough; 5) it's correlation but not causation; 6) everyone is exposed, but not everyone is addicted; 7) there is no "withdrawal" phenotype; and 8) it's not "food addiction" but "eating addiction". All are in play, yet more health care dollars are diverted to the treatment of food-related disease every year. While various ingestible chemicals (e.g. nicotine, cocaine, heroin, alcohol) are clearly addictive, it appears to be a stretch by some scientists to argue that individual substances found in food (e.g. sugar, caffeine), or the food itself (e.g. ultraprocessed food), rise to meet the same criteria. Symposia on food addiction proliferate and journal debates continue. The definition of addiction consists of numerous criteria, including public health demographics, biochemistry, imaging, animal trials, clinical trials, and economics. None of these have proven to be "slam dunks" to align a general consensus. But paramount for scientific acceptance is the delineation of mechanism. This article will review the history of the controversy, the data on which foods are most likely to be addictive, the two mechanisms involved in the pathogenesis of food addiction and relate it to the most likely culprits, and the role of the food industry in promulgating false narratives, in order to provide a rational way forward from this debate.

This article is the reprint with Russian translation of the original that can be observed here: Lustig RH. battle over "food addiction". Front Psychiatry. 2025;16:1621742. doi: 10.3389/fpsyt.2025.1621742

TO CITE THIS ARTICLE:

Lustig RH. The battle over "food addiction". Psychopharmacology and Addiction Biology. 2025; 16(3):XX–XX. DOI: 10.17816/phbn691855 EDN: HFODQE

© Eco-Vector, 2025

Article can be used under the CC BY-NC-ND 4.0 International License

Received: 01.09.2025 Accepted: 01.10.2025 Published online:

Hаучные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

ВВЕДЕНИЕ

В настоящее время на неинфекционные заболевания в США приходится 72% смертельных исходов [1] и 75% затрат в сфере здравоохранения [2]. Ключевая роль диеты западного образца в развитии такого рода пандемий неоспорима — этот факт признали даже компании, производящие газированные напитки [3]. Во всех странах, перенимающих западный тип питания, наблюдается рост распространённости одних и тех же заболеваний и увеличение связанных с ними расходов. И возникает вопрос, что с этим делать? Прежде всего, следует разобраться, в чём причина — в количестве или в качестве продуктов? Это отнюдь не праздный вопрос. Количество зависит от потребителя, то есть относится к зоне личной ответственности, тогда как качество определяют производители и это уже зона ответственности системы здравоохранения. Но что, если качество влияет на количество? В таком случае каждую из этих позиций можно считать состоятельной. Очевидно, что еда, доставляющая наслаждение, действительно «непреодолимо вкусная», и большинство людей просто не могут перестать её есть. Почему? Потому что им нравится? Или, потому что они хотят? Или потому, что такая еда стала необходимостью для организма? В научной среде этот спор, похоже, зашёл в тупик после появления концепции «пищевой зависимости», согласно которой определённые пищевые продукты действуют на мозг как наркотики, когда биохимически обусловленное влечение к потреблению сильнее сдерживающих когнитивных сигналов мозга [4].

Поделюсь личным мнением — я действительно считаю, что определённые вещества в пище вызывают зависимость. Я пришёл к этому выводу постепенно, опираясь на собственные исследования и данные других учёных. После открытия лептина в 1994 году мне казалось, что развитие ожирения можно объяснить нарушением гомеостаза энергетического обмена, однако к 2009 году я понял, что эта теория, к сожалению, несостоятельна. С тех пор наука не стояла на месте. Я являюсь членом рабочей группы Международной консенсусной конференции по вопросам пищевой зависимости (International Food Addiction Consensus Conference, IFACC). Цель нашей работы — убедить Всемирную организацию здравоохранения (World Health Organization) и Американскую психиатрическую ассоциацию (American Psychiatric Association) включить концепцию «пищевой зависимости» в классификаторы психических заболеваний. Поэтому я решил написать эту статью, не претендуя при этом на беспристрастность, поскольку я сам полностью уверовал в эту концепцию. Тем не менее, я постараюсь подробно изложить аргументы своих оппонентов в этом затянувшемся споре.

В ходе исследований удалось установить, что продукты, которые мы обычно встречаем в природе, не вызывают зависимости. Скорее очистка и смешивание определённых веществ и ингредиентов, а также удаление клетчатки усиливают способность некоторых видов пищи вызывать пристрастие. Благодаря этим данным научное сообщество признало неточность теории общей «пищевой зависимости» и взяло на вооружение концепцию «зависимости от ультрапереработанных продуктов». Однако критики по-прежнему не смолкают.

ИСТОРИЯ СПОРА О «ПИЩЕВОЙ ЗАВИСИМОСТИ»

Первое упоминание концепции «пищевой зависимости» относится к 1956 году, когда американский врач и исследователь Терон Рэндольф (Theront Randolph) вскользь обозначил её при описании алкогольной зависимости [5]. Это неудивительно, поскольку биохимические процессы, способность вызывать удовольствие и социальные аспекты употребления сахара и алкоголя практически идентичны [6]. Однако концепция «пищевой зависимости» изначально не была принята психиатрами и даже сегодня вызывает большой скептицизм. Например, в «Диагностическом и статистическом руководстве по психическим расстройствам» IV издания (Diagnostic and Statistical Manual of Mental Disorders, DSM-IV), опубликованном в 1993 году, указано, что обязательными диагностическими критериями «расстройства вследствие употребления психоактивных веществ» являются формирование толерантности и абстинентный синдром. Однако ни один ингредиент, содержащийся в пище (за исключением кофеина и этанола), не вызывает явных признаков абстиненции. По мере того, как проблемы в сфере здравоохранения, связанные с зависимостью, становились всё более серьёзными, её определение естественным образом расширялось. Некоторые исследователи утверждали, что определёные компоненты

Психофармакология и биологическая наркология / Psychopharmacology and Addiction Biology Научные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

переработанных пищевых продуктов, в частности «фастфуда», вызывают зависимость, подобную зависимости от никотина, алкоголя, кокаина и героина [7]. В «Диагностическом и статистическом руководстве по психическим расстройствам» V издания (DSM-5), опубликованном в 2013 году, классификация синдрома зависимости была пересмотрена. В частности, были добавлены «поведенческие зависимости», не имеющие биохимического компонента абстинентного синдрома (например, расстройства вследствие пристрастия к азартным играм, компьютерным играм, социальным сетям, порнографии). Таким образом, в DSM-5 [8] содержится пересмотренный набор критериев, который включает «психическую зависимость» и в большей степени соответствует концепции пищевой зависимости. К таким критериям относятся:

- 1. Непреодолимая тяга к объекту зависимости (веществу или действию);
- 2. Продолжение употребления (поведения), приводящее к невыполнению основных обязанностей (на работе, в учебном заведении, дома);
- 3. Продолжение употребления (поведения) в ситуациях, связанных с физической опасностью (например, при управлении транспортным средством);
- 4. Продолжение употребления (поведения), несмотря на проблемы в социальных и межличностных отношениях, которые возникают или усугубляются вследствие употребления (поведения);
- 5. Употребление в большем объёме (более интенсивное/вовлеченное поведение) и в течение более длительного времени, чем предполагалось;
- 6. Попытки прекратить или контролировать употребление (поведение);
- 7. Трата времени на поиск возможности употребления (реализации поведения) или восстановление после такого употребления (поведения);
- 8. Нарушение повседневной деятельности вследствие употребления (поведения);
- 9. Продолжение употребления (поведения), несмотря на пагубные последствия.

Следующий научный прорыв в этой области произошёл в 2008 году благодаря работе Николь Авены (Nicole Avena) в лаборатории Барта Хобеля (Bart Hoebel) в Принстонском университете. В ходе экспериментов на животных было установлено, что сахар удовлетворяет четырём критериям, характеризующим зависимость: переедание, абстинентный синдром, патологическое влечение и перекрёстная сенсибилизация к другим аддиктивным веществам [9]. Это простимулировало активную научную деятельность в данной области в 2009—2010 гг. в разгар эпидемии ожирения, когда психиатр из Университета Флориды Марк Голд (Mark Gold) заявил о себе, выпустив две монографии, посвящённые пищевой зависимости [10, 11]. Однако вместо признания автор получил негативную оценку коллег. Группа под руководством психиатра из Кембриджа Пола Флетчера (Paul Fletcher) прямо оспорила предложенную модель зависимости при ожирении [12], аргументируя свою позицию тем, что еда не может вызывать патологического влечения, поскольку она необходима для выживания. Как следствие, между Николь Авена и кембриджской группой разгорелась дискуссия, точку в которой поставить так и не удалось [13, 14].

В 2009 году Эшли Гирхардт (Ashley Gearhardt) и Келли Браун (Kelly Brown) из Йельского университета выдвинули предположение о формировании аддикции при западном типе питания [15], что приводит к избыточному потреблению пищи. Йельская шкала пищевой зависимости (Yale Food Addiction Scale, YFAS) идентифицирует определённые продукты питания как обладающие аддиктивными свойствами [16]. Данные, полученные при применении шкалы YFAS у детей, также указывают на распространённость пищевой зависимости, особенно среди молодых людей с ожирением [17]. Несмотря на всеобщее признание феномена толерантности к ультрапереработанным продуктам (УПП) у человека, вопрос о существовании синдрома отмены остаётся открытым и вызывает оживлённые споры. Данные о синдроме отмены носят отрывочный и несистематизированный характер [18], однако учёные разработали шкалу, позволяющую оценивать тяжесть синдрома отмены УПП (Highly Processed Food Withdrawal Scale, ProWS) как у взрослых [19], так и у детей [20]. Несмотря на то, что эмпирические данные о синдроме отмены сахара у человека представляются достаточными [21], их подтверждение остаётся одним из научных приоритетов. Для выполнения этой задачи группа учёных Калифорнийского университета

² вещество запрещено на территории РФ.

-

¹ вещество запрещено на территории РФ.

Психофармакология и биологическая наркология / Psychopharmacology and Addiction Biology Havчные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

Сан-Франциско (University of California, San Francisco, UCSF), в которую входит автор, антагонист опиоидных рецепторов налтрексон в качестве индикатора использовала «вознаграждения» и обнаружила феномен, названный «влечением к вознаграждающему приему пищи» (Reward Eating Drive, RED). Этот феномен объясняет поведение людей с ожирением, для которых, по всей видимости, характерна чрезмерная реакция на гедонистические пищевые стимулы [22, 23]. Более того, в ходе экспериментов с использованием функциональной магнитнорезонансной томографии (фМРТ) другие исследователи установили, что за восприятие сладкого вкуса как привлекательного или непривлекательного ответственна префронтальная кора [24]. Согласно представленным данным, налтрексон влияет на эндогенный фон опиоидных пептидов, опосредующих указанные влечения, что подтверждает концепцию пищевой зависимости.

Однако эпидемиологические данные и сведения о механизме действия не убедили скептиков. Группа европейских ученых под названием NeuroFAST не принимает концепцию пищевой зависимости [25] и называет пагубное влечение к «гипервкусной» еде «зависимостью от процесса употребления пищи» (food eating addiction) [26], подчеркивая, что это явление определяется поведением, а не самими пищевыми продуктами. Несмотря на внешнее сходство понятий, различие нельзя назвать семантическим: если это «пищевая зависимость», то ответственность за такого рода расстройства несёт пищевая промышленность, а если это «зависимость от процесса употребления пищи», то виноваты потребители. Исследователи из группы NeuroFAST утверждают, что даже если некоторые продукты и активируют систему вознаграждения в мозге, они не вызывают зависимости, а те, которые вызывают, не рассматриваются как пища. В частности, эта группа учёных заявляет: «В настоящее время нет доказательств того, что конкретные продукты, ингредиенты или пищевые добавки вызывают у человека биохимическую зависимость (единственным известным на данный момент исключением считается кофеин, который посредством определённых механизмов может вызывать привыкание). Подчеркнём, что мы не относим алкогольные напитки к продуктам питания, несмотря на то что один грамм этанола имеет энергетическую ценность, равную 7 ккал» [27].

В группе NeuroFAST считают, что кофеин обладает аддиктивным потенциалом, но не считают его фактором, вызывающим пищевую зависимость. Алкалоиды ксантина естественным образом присутствуют во многих продуктах питания, однако Управление США по контролю качества пищевых продуктов и лекарственных средств (Food and Drug Administration, FDA) классифицирует кофеин как пищевую добавку. Кофеин также является лекарственным средством — он применяется у недоношенных новорождённых с недоразвитием нервной системы, поскольку, связываясь с аденозиновыми рецепторами, стимулирует центральную нервную систему (ЦНС) и предотвращает центральное апноэ сна. Эксперты группы NeuroFAST также согласны с тем, что алкоголь вызывает зависимость, но и для него делают исключение. Натуральные дрожжи постоянно ферментируют фрукты, способствуя их созреванию, пока они находятся на стебле растений [28]. Однако в группе NeuroFAST считают, что очищенный алкоголь не относится к продуктам питания, а скорее принадлежит к лекарственным средствам (так, до внедрения токолитиков его применяли у женщин для предотвращения преждевременных родов).

Эксперты ещё одной европейской группы, связанной с рынком пищевой промышленности, проанализировали влияние определённых продуктов на предмет «зависимости от потребления пищи» в когорте студентов университета. В этом исследовании увеличение массы тела считали показателем пищевой зависимости. Авторы пришли к заключению, что жиры и сахара одинаково влияют на набор массы тела [29]. Однако увеличение массы тела нельзя считать надёжным критерием пищевой зависимости, поскольку у некоторых подростков, страдающих этим расстройством, масса тела остаётся нормальной [30]. Другая возможная причина отказа признать пищевую зависимость психическим заболеванием заключается в фенотипическом сходстве с компульсивным перееданием [31]. Многие клиницисты, не согласные с концепцией пишевой зависимости, специализируются в области расстройств пищевого поведения. Однако методы, применяемые при этих двух состояниях, существенно различаются: при пищевой зависимости требуется отказ от определённых продуктов, тогда как при расстройстве пищевого поведения пациенту не нужно ограничивать употребление каких-либо конкретных составляющих рациона. Следовательно, здесь критически важна дифференциальная диагностика, поскольку от точности диагноза зависит выбор лечения.

Hayчные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

В 2021 году Эшли Герхардт (Ashley Gearhardt) и Йоханнес Хебебранд (Johannes Hebebrand) из группы NeuroFAST обсуждали концепцию пищевой зависимости в журнале American Journal of Clinical Nutrition [32, 33]. Однако оппоненты так и не пришли к общему мнению. Хебебранд заявил: «Доказательств того, что определённые продукты способствуют формированию аддиктивного пищевого поведения, не существует». Другими словами, ни один продукт питания не вызывает специфической зависимости. В свою очередь Герхардт привёл следующий аргумент: «Ультрапереработанные продукты — это сложные вещества, полученные с помощью методов инженерии, путём сочетания более насыщенных ингредиентов (например, рафинированных углеводов, жиров) и добавок (например, соли) с целью неестественного усиления сигналов вознаграждения в головном мозге». Иными словами, биохимическая зависимость возникает не в результате употребления отдельных соединений, а скорее при ультрапереработке определённых ингредиентов в новую форму.

СХОДСТВО МЕЖДУ ПИЩЕВОЙ ЗАВИСИМОСТЬЮ И ЗАВИСИМОСТЬЮ ОТ ПСИХОАКТИВНЫХ ВЕЩЕСТВ

Нора Волков (Nora Volkow) описала сходство нейробиологии пищевой зависимости и зависимости от психоактивных веществ, что послужило основой для признания этой концепции [34]. Сигнальный путь, связанный с получением удовольствия от употребления вкусной пищи и психоактивных веществ, проходит от вентральной области покрышки (Ventral Tegmental Area, VTA) до прилежащего ядра (Nucleus Accumbens, NAc). Считается, что эта система вознаграждения сформировалась в ходе эволюции для подкрепления поведения, направленного на продолжение рода, — полового поведения и отношения к пище [35]. В исследованиях пищевой зависимости основное внимание уделяется перекрывающимся нейронным системам, способным подкреплять употребление как психоактивных веществ, так и пищи [36]. Передача нервных импульсов в мезолимбическом дофаминовом пути между VTA и NAc считается центральным звеном системы вознаграждения как для пищевого поведения, так и для злоупотребления психоактивными веществами. Стимуляция дофаминовых нейронов в NAc подкрепляет как приём пищи, так и употребление психоактивных веществ [37] и алкоголя [38]. Подкрепляющий эффект дофамина связан со стимуляцией дофаминовых D₂-рецепторов. Считается, что передача сигнала в дофаминергических проводящих путях играет двойственную роль в контроле питания: с одной стороны, она ингибирует нормальное питание через действие на гипоталамус, а с другой усиливает удовольствие от употребления пищи посредством влияния на NAc (подробное описание этих механизмов приведено ниже).

ЗАВИСИМОСТЬ ОТ УЛЬТРАПЕРЕРАБОТАННЫХ ПРОДУКТОВ ПИТАНИЯ

Если и существует категория продуктов питания, которая с наибольшей вероятностью вызывает аддиктивное поведение, то это ультрапереработанные пищевые продукты. Определение УПП остаётся спорным. Карлос Монтейро (Carlos Monteiro) из Университета Сан-Паулу разработал классификацию NOVA, которая позволяет разделить продукты питания по степени переработки, а не по содержанию питательных веществ [39, 40]. NOVA включает четыре класса, которые можно проиллюстрировать на примере яблока: NOVA 1 — непереработанные продукты, например яблоко, сорванное с дерева; NOVA 2 — переработанные пищевые ингредиенты, например яблочные дольки; NOVA 3 — умеренно переработанные продукты, например яблочное пюре; NOVA 4 — ультрапереработанные продукты, например яблочный пирог из кафе быстрого питания. Многочисленные исследования подтвердили эпидемиологическое значение употребления продуктов питания, относящихся к 4-му классу NOVA [41-44]. Однако до сих пор ведутся споры о точности системы NOVA при оценке токсичности подобных продуктов, поскольку некоторые виды переработки либо полезны (например, использование йодированной соли в составе хлеба), либо не изучены (например, добавление аскорбиновой кислоты в качестве антиоксиданта в квашеную капусту). Более того, результаты метаанализа данных об общей смертности и употреблении продуктов разных категорий по классификации NOVA свидетельствуют о том, что только подслащённые сахаром напитки и ультрапереработанные мясные продукты в наибольшей степени способствуют развитию заболеваний [45].

Hаучные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

Тем не менее, по мнению Эшли Герхардта, ультрапереработка служит основанием и механизмом для объяснения зависимости от УПП, поскольку такие продукты содержат комбинации ингредиентов с аддиктивным потенциалом, которые утратили свою основу из клетчатки [46]. Как смешивание пищевых ингредиентов, так и увеличение скорости их усвоения могут способствовать получению комбинации, которая вызывает зависимость и приводит к высокому содержанию соответствующих веществ в крови (например, как в случае безалкогольных напитков), тогда как сами по себе отдельные компоненты из природных источников могут не вызывать привыкания (например, сахарный тростник) [47].

ВЫЗЫВАЕТ ЛИ ФАСТФУД ЗАВИСИМОСТЬ?

Если еда содержит вещества, обладающие аддиктивным потенциалом, или если обработка компонентов пищи приводит к зависимости, то наиболее ярко это будет проявляться при употреблении блюд быстрого питания — фастфуда. Фастфуд содержит четыре компонента, способность которых вызывать удовольствие подробно изучена — это соль, жир, кофеин и сахар [48].

Соль

Потребление соли человеком традиционно считается приобретённой привычкой [49], а не зависимостью. Предпочтение солёной пищи, вероятно, формируется в раннем детстве. У младенцев в возрасте от четырёх до шести месяцев предпочтения, связанные с содержанием соли, формируются в соответствии с концентрацией натрия в грудном молоке или воде, используемой для приготовления смеси, а также в продуктах питания [50]. Предпочтение солёной пищи связано с потреблением большего количества калорий, поскольку высококалорийные блюда фастфуда содержат относительно много соли [57], что отчасти объясняется использованием её в качестве консерванта для увеличения срока годности. Например, результаты исследования с участием подростков из Кореи указывают на связь между частым употреблением фастфуда и предпочтением более солёных вариантов традиционных блюд [51]. В другом исследовании, включавшем 27 пациентов с синдромом отмены опиатов (преимущественно оксикодона), наблюдали статистически значимое увеличение потребления фастфуда и повышение массы тела в течение 60 дней [52], что свидетельствует о «переносе» зависимости. С другой стороны, результаты исследований подтверждают, что человек может изменить свои предпочтения и потреблять менее солёные продукты питания. Это было установлено в исследованиях с участием подростков, из школьного меню которых исключили солёную пиццу, а также у взрослых пациентов с артериальной гипертензией, которым предложили придерживаться диеты с низким содержанием натрия в течение 8-12 недель [49]. Кроме того, хорошо известно, что при низком содержании натрия потребление соли строго регулируется организмом. Например, у пациентов с сольтеряющей формой врождённой гиперплазии надпочечников, которая сопровождается недостаточной выработкой минералокортикоида альдостерона, всегда наблюдается синдром потери соли, что существенно влияет на потребление хлорида натрия такими пациентами [53] пока им не будет назначена необходимая доза флудрокортизона. Представление о том, что уровень потребления натрия человеком является «физиологической константой», использовалось в качестве основного аргумента для критики недавних усилий Министерства здравоохранения Великобритании по резкому сокращению потребления натрия [54]. Тем не менее, правительство страны провело секретную массовую кампанию по снижению потребления соли населением на 30%, после чего частота развития артериальной гипертензии и инсультов уменьшилась на 40% без каких-либо признаков синдрома отмены [55].

Жир

Высокое содержание жира в фастфуде критически важно для достижения вкусовых качеств, которые активируют систему вознаграждения в мозге. Возможно, в популяции существует фенотип, характеризующийся предпочтением продуктов питания с высоким содержанием жира и слабым чувством насыщения после их употребления, что может служить фактором риска развития ожирения [56]. Однако так называемые «продукты с высоким содержанием жира», которые часто нравятся людям, почти всегда богаты углеводами (например, картофельные чипсы, пицца или печенье). Действительно, добавление сахара существенно усиливает предпочтение жирной пищи у

Havчные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

лиц с нормальной массой тела, при этом предел роста такого предпочтения по мере увеличения содержания жира не выявлен [57]. Таким образом, сочетание высокого содержания жира и сахара, вероятно, стимулирует аддиктивное переедание более интенсивно, чем только высокое содержание жира. Однако способность жирной пищи активировать систему вознаграждения, по-видимому, строго зависит от одновременного потребления углеводов, так как низкоуглеводные высокожировые (Low-carbohydrate High-fat LCHF) [58] и кетогенные диеты [59] неизменно вызывают уменьшение потребления калорий, значительное снижение массы тела и разрешение метаболического синдрома.

Некоторые учёные считают, что пищевой жир сам по себе обладает аддиктивными свойствами. Для проведения дифференциального анализа с использованием фМРТ оценивали влияние потребления жиров и сахара как по отдельности, так и вместе (с учётом количества калорий) на активность мозга [60]. Употребление молочных коктейлей с высоким содержанием жира повышало активность мозга в хвостатом ядре и зонах соматосенсорной коры (постцентральной извилине, гиппокампе, нижней лобной извилине), отвечающих за обработку сигналов из ротовой полости и формирование вкусовых ощущений. В то же время сахар увеличивал активность в островковой доле, простирающейся до скорлупы мозга, Роландовой борозде и таламусе (зоны восприятия вкусовых ощущений) и усиливал «вознаграждение». Кроме того, по мере увеличения содержания сахара активность в этих зонах становилась более интенсивной, тогда как увеличение содержания жира не изменяло амплитуду сигналов. Другими словами, жир усиливает эффект сахара, но именно сахар активирует систему вознаграждения.

Кофеин

Кофеин можно назвать «моделью психоактивного вещества», вызывающего зависимость у человека [61], поскольку он удовлетворяет критериям DSM-IV и DSM-5 в отношении толерантности, физической абстиненции и психической зависимости у детей [62], подростков [63] и взрослых [64]. В период абстиненции наблюдаются головная боль [64], утомляемость и снижение работоспособности [62]. В то время как подростки и дети получают кофеин из безалкогольных напитков и горячего шоколада, взрослые получают большую часть кофеина из кофе и чая [65]. Энергетическая ценность безалкогольных напитков составляет в среднем 239 калорий, кроме того, они содержат большое количество сахара [66]. Производители безалкогольных напитков указывают на кофеин в качестве ароматизатора, но при слепом сравнении только 8% лиц, часто употребляющих газированные напитки, могут определить разницу между колой с кофеином и колой без кофеина [67]. Таким образом, функция кофеина в газированных напитках, вероятнее всего, заключается в усилении привлекательности напитка и без того очень приятного (с высоким содержанием сахара) для потребителя. У лиц, зависимых от кофеина, эти напитки могут служить поводом для посещения ресторанов быстрого питания и покупки фастфуда [68].

АРГУМЕНТЫ ПРОТИВ САХАРА

Теперь давайте обсудим роль сахара. Результаты систематического обзора литературы свидетельствуют о том, что ультрапереработанные продукты обладают самым высоким аддиктивным потенциалом из-за добавленного в них сахара [4]. Среди компонентов пищевых продуктов, за исключением кофеина, сахар имеет самый высокий балл по шкале YFAS [46]. Пищевой сахар состоит из двух молекул (глюкозы и фруктозы), входящих в его состав практически в равном соотношении. Несмотря на эквивалентную калорийность (4,1 ккал/г), фруктоза и глюкоза метаболизируются по-разному. В отличие от глюкозы, фруктоза не подавляет выработку гормона грелина в желудке [69], что способствует сохранению сигналов голода. Результаты сравнения двух моносахаридов указывают на более высокий риск переедания при употреблении фруктозы по сравнению с глюкозой [70]. Следовательно, можно предположить, что именно молекула фруктозы служит компонентом, который вызывает как реакцию вознаграждения, так и зависимость. Через указанные механизмы фруктоза способствует перееданию независимо от энергетических потребностей организма [71]. Добавленный сахар (и особенно фруктоза, входящая в его состав) активирует систему вознаграждения в мозге, что в крайних случаях приводит к зависимости [48]. Возможно, именно поэтому 58% добавленного сахара, потребляемого европейцами, содержится в ультрапереработанных продуктах питания [72].

Hаучные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

Хотя глюкоза и фруктоза являются наиболее распространёнными моносахаридами, их метаболизм в организме и головном мозге существенно различается. Глюкоза даёт нам энергию для жизни. Она настолько важна, что если не поступает в организм с пищей, печень вырабатывает её самостоятельно (этот процесс называется глюконеогенезом). Фруктоза, напротив, хотя и служит источником энергии, в остальном утратила свою основную функцию. Среди эукариот нет ни одного организма, в котором происходили бы биохимические реакции, требующие обязательного участия фруктозы. Наше исследование показало, что, когда фруктоза поступает в организм в количестве, превышающем способность печени метаболизировать её в цикле трикарбоновых кислот, остаток превращается в жир, который накапливается в печени. Это способствует развитию инсулинорезистентности и, как следствие, неинфекционных заболеваний [73–75]. Добавление безалкогольного сладкого напитка к фастфуду увеличивает содержание сахара в 10 раз. Согласно результатам многофакторного анализа продаж фастфуда, изменения индекса массы тела коррелируют только с потреблением безалкогольных газированных сладких напитков и не связаны с продуктами, содержащими животные жиры [76].

ИССЛЕДОВАНИЯ НА ЖИВОТНЫХ

Несмотря на то, что концепция существования зависимости от сахара у человека остаётся спорной [32, 33], критерии такой зависимости чётко прослеживаются у грызунов [77]. Пероральное введение сахарозы стимулирует экспрессию гена раннего ответа *c-Fos* в вентральной области покрышки (VTA), что свидетельствует об активации системы вознаграждения [78]. Более того, инфузия сахарозы непосредственно в прилежащее ядро (NAc) снижает активность дофаминовых и µ-опиоидных рецепторов, подобно морфину [79], а результаты исследований с использованием фМРТ указывают на формирование устойчивых нейронных путей аддикции [80]. Введение сахарозы грызунам вызывает изменения поведения, характерные для зависимости, то есть переедание, абстиненцию, непреодолимое влечение и перекрёстную сенсибилизацию к другим психоактивным веществам [9]. В одном часто цитируемом исследовании на крысах интенсивность сигналов вознаграждения при употреблении сладкого превзошла тот же показатель при употреблении кокаина [81]. Согласно недавним наблюдениям М. Міпère и соавт. [82], даже когда животные находятся в состоянии насыщения сахароза увеличивает у них концентрацию β-эндорфина в таламусе и снижает концентрацию альфа-меланоцитстимулирующего гормона в дугообразном ядре (Arcuate nucleus), что инициирует чрезмерное потребление калорий [82].

Визуализирующие исследования

Исследования у человека с использованием метода фМРТ продемонстрировали, что глюкоза и фруктоза действуют в разных зонах мозга и их эффекты также различаются. Джонатан Пюрнелл (Jonathan Purnell) первым исследовал эту дихотомию путём внутривенного введения каждого из двух сахаров и измерения в головном мозге сигнала, зависящего от уровня оксигенации крови (Blood oxygenation level-dependent, BOLD). Глюкоза повышала активность зон коры, отвечающих за исполнительные функции, тогда как фруктоза подавляла сигнал, поступающий из этих зон [83]. Кэтрин Пейдж (Katherine Page) пошла ещё дальше и использовала напиток с глюкозой или фруктозой. Она обнаружила, что после приёма глюкозы регионарный мозговой кровоток снизился в гипоталамусе, таламусе, островковой доле, передней поясной коре и полосатом теле (зонах, отвечающих за аппетит и «вознаграждение»), тогда как после приёма фруктозы регионарный мозговой кровоток снижался в таламусе, гиппокампе, задней поясной коре, веретенообразной извилине И зрительной коре [84]. Беттина Вёльнерханссен (BettinaWölnerhanssen) продемонстрировала, что, в отличие от глюкозы, после употребления фруктозы отсутствует чувство насыщения или наполненности желудка, а результаты фМРТ указывают на активность лимбической системы (миндалевидного тела, гиппокампа, орбитофронтальной коры) [85]. Результаты исследований Ани Ястребофф (Ania Jastreboff) свидетельствуют о том, что эффект приёма фруктозы на дофаминовую активацию прилежащего ядра существенно снижен у молодых людей с ожирением [86]. Согласно данным других исследований, потребление фруктозы также сопровождается отсутствием чувства насыщения или наполненности желудка по сравнению с потреблением глюкозы. Наконец, было проведено исследование, в котором оценивалось влияния потребления жира и сахара как по отдельности, так

¹ вещество запрещено на территории РФ.

Havчные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

и вместе (с учётом количества калорий) на показатели фМРТ [60]. Молочные коктейли с высоким содержанием жира повышали активность мозга в хвостатом ядре и зонах соматосенсорной коры, отвечающих за обработку сигналов из ротовой полости (постцентральной извилине, гиппокампе, нижней лобной извилине). В то же время сахар увеличивал активность в островковой доле, простирающейся до скорлупы мозга, Роландовой борозде и таламусе (зоны восприятия вкусовых ощущений). Более того, увеличение содержания сахара усиливало активность в этих зонах, однако увеличение содержания жира не влияло на уровень их активации. Другими словами, жир усиливает эффект сахара, но именно сахар активирует нейронные пути вознаграждения и вкусовых ощущений. Тем не менее результаты недавних исследований указывают на отсутствие устойчивой связи между содержанием сахара в молочных коктейлях и дофаминовой реакцией мозга [87].

Клинические исследования

Ранее сахар использовали для достижения обезболивающего эффекта при иссечении крайней плоти у новорождённых [88], что указывает на связь между содержанием сахара и эндогенным опиоидным фоном. Действительно, по словам людей, которые сами признают, что страдают пищевой зависимостью, отказ от сахара сопровождается «раздражительностью», «тремором», «тревогой» и «депрессией» [18] — симптомами, которые характерны для синдрома отмены опиатов. В других исследованиях сахар применяли для лечения психической зависимости [89]. Непреодолимое влечение к сахару может существенно варьировать в зависимости от возраста, фазы менструального цикла и времени суток [90]. «Перенос зависимости» с алкоголя на сахар можно наблюдать на любом собрании «Анонимных алкоголиков», где в качестве заменителей всегда присутствуют энергетики, шоколадные брауни и пирожные.

Экономические исследования

Аддиктивный потенциал сахара заметен даже в области экономики. Например, спрос на кофе неэластичен, то есть повышение цены не приводит к значительному снижению потребления. Когда в 2014 году цены на кофе резко подскочили из-за сокращения поставок, продажи сети Starbuck's нисколько не изменились благодаря способности напитка вызывать удовольствие [91]. Среди потребительских товаров безалкогольные напитки занимают второе место по неэластичности спроса, уступая только фастфуду [92]. В Мексике, когда из-за введённого налога цены на газированные напитки повысились на 10%, их потребление снизилось всего на 7,6%, что свидетельствует о наличии биохимической потребности, которая поддерживает повышенное потребление. Аналогичное снижение спроса было отмечено через 5 лет после введения налога на газированные напитки в Сан-Франциско [93].

ДВА МЕХАНИЗМА ЗАВИСИМОСТИ ОТ САХАРА

НЕПРЯМОЙ ПУТЬ ЗАВИСИМОСТИ – ИНГИБИРОВАНИЕ СИГНАЛИНГА ЛЕПТИНА

Хроническое потребление фруктозы приводит к de novo липогенезу в печени, что сопровождается ее жировой дистрофией [94] и гипертриглицеридемией [95]. Триглицериды, содержащиеся в сыворотке крови, блокируют способность лептина проникать через гематоэнцефалический барьер [96], что препятствует его связыванию с рецепторами лептина в VTA и подавлению передачи сигнала в дофаминергических мезолимбических проводящих путях у грызунов [97] и человека [98], тем самым усиливая «вознаграждение». Однако хроническая дофаминовая стимуляция снижает активность дофаминовых D₂-рецепторов [99], способствуя развитию толерантности и синдрома отмены [100].

По имеющимся данным, хроническая гиперинсулинемия вызывает формирование резистентности к лептину, хотя этот вопрос до сих пор остаётся предметом дискуссий [101]. Концентрации инсулина и лептина служат важными сигналами для ЦНС о долгосрочном энергетическом гомеостазе в периферических тканях. Оба гормона секретируются в периоды, когда запасы энергии в организме достаточны, их рецепторы локализуются в одних и тех же нейронах вентромедиального ядра гипоталамуса и VTA [102] и оба имеют схожие анорексигенные эффекты при быстром введении в спинномозговую жидкость. Однако их хроническое воздействие приводит к другому физиологическому результату.

Havчные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

Под действием высоких концентраций инсулина in vitro нейроны, экспрессирующие проопиомеланокортин, перестают реагировать на введение лептина, что приводит к развитию резистентности к лептину [100]. Для пострецепторных путей передачи сигнала от инсулинового рецептора и рецептора лептина характерны три уровня пересечения, которые в случае активации ингибируют сигнальный путь лептина через субстрат инсулинового рецептора 2 (Insulin Receptor Substrate 2, IRS-2) [103], тирозиновую протеинфосфатазу-1В (Protein Tyrosine Phosphatase 1B, PTP-1В) [104] и фосфоинозитол-3-киназу (Phosphoinositide 3-Kinase, PI3K) [105]. Кроме того, инсулин индуцирует экспрессию супрессора цитокинового сигнала 3 (Suppressor of Cytokine Signaling-3, SOCS3) [106], который ингибирует сигнальный путь лептина; у мышей с нокаутом SOCS3 повышается чувствительность лептину [107]. Таким образом, периферическая К инсулинорезистентность и гиперинсулинемия могут изменять активность сигналинга в ЦНС, что способствует дальнейшему увеличению массы тела [108].

Несмотря на то, что инсулин и лептин связываются с разными рецепторами в нейронах вентромедиального ядра гипоталамуса и VTA, они активируют один и тот же сигнальный каскад — субстрат инсулинового рецептора 2 (IRS2) / фосфатидилинозитол-3-киназу (PI3K) [109], а следовательно, гиперинсулинемия может препятствовать передаче сигналов лептина. Кроме того, транспорт лептина через гематоэнцефалический барьер нарушается при гипертриглицеридемии, которая развивается при голодании и в случае инсулинорезистентности, ассоциированной с ожирением [96]. Поскольку сигнальный путь лептина позволяет мозгу получать информацию о запасе жиров, резистентность к лептину в вентромедиальном ядре гипоталамуса активирует «сигнальный путь голодания» и способствует увеличению потребления калорий. Одновременно с этим резистентность к лептину в VTA активирует «сигнальный путь удовольствия», что усиливает «вознаграждение» при приёме пиши. У большинства лиц с ожирением отмечается хроническая гиперинсулинемия с нарушением регуляции сигнального пути лептина, что приводит к «голоданию мозга» [105]. Это состояние препятствует формированию отрицательной обратной связи, которая в нормальных физиологических условиях подавляет потребление пищи [110]. Таким образом, ожирение можно считать следствием хронической гиперинсулинемии, которая препятствует передаче сигналов лептина в вентромедиальном ядре гипоталамуса или VTA, либо в обеих структурах одновременно [111]. В итоге система инсулин-лептин парадоксальным образом формирует петлю положительной обратной связи или «порочный круг» при ожирении [109]. Влечение к еде и аппетит усиливаются, а масса тела увеличивается, несмотря на избыток запасов энергии в периферических тканях.

ПРЯМОЙ МЕХАНИЗМ ЗАВИСИМОСТИ — СТИМУЛЯЦИЯ ВЫСВОБОЖДЕНИЯ ДОФАМИНА В ВЕНТРАЛЬНОЙ ОБЛАСТИ ПОКРЫШКИ (VTA)

Сигнальный путь, связанный с чувством удовольствия, который обеспечивает «вознаграждение» при приёме пищи (не связанном с потребностью в энергии), начинается в VTA и заканчивается в прилежащем ядре. Передача нервных импульсов в дофаминергических путях, идущих от VTA к NAc, опосредует «вознаграждающие» свойства пищи [112], особенно в условиях [113]. Вкусовая привлекательность доступной пищи ещё больше нарушает физиологические сигналы насыщения и мотивирует человека к потреблению энергии независимо от энергетических потребностей [114]. Компульсивное потребление пищи представляет собой рефлекторную реакцию на стимуляцию этого сигнального пути вознаграждения, подтверждается увеличением потребления пищи после микроинъекции морфина в NAc [115].

После употребления сладких продуктов в NAc происходит мобилизация опиоидов и дофамина, в результате чего в этой области формируются устойчивые сигнальные пути аддикции, которые можно идентифицировать с помощью фМРТ [80]. И наоборот, применение лекарственных препаратов, которые блокируют D₂-рецепторы (например, антипсихотических средств), связано с более высоким риском развития ожирения [116]. При моделировании зависимости у грызунов усиление аддиктивного поведения и реакции удовольствия, опосредованной «вознаграждением» от приёма пищи, измеренное по уровню высвобождения дофамина и активации дофаминовых рецепторов, выражено сильнее после периода ограничения питания [117].

У лиц с ожирением количество дофаминовых D2-рецепторов обратно пропорционально индексу массы тела, что указывает на наличие толерантности и усиливает потребность в постоянном приёме пищи для обеспечения избыточной стимуляции угнетённых нейронных сетей.

Hаучные обзоры / Reviews DOI: https://doi.org/10.17816/phbn691855

У молодых людей с ожирением эффект приёма фруктозы на дофаминовую активацию в NAc существенно ослаблен, что дополнительно подтверждает подавление дофаминовых рецепторов [86], которое считается нейроанатомической коррелятом толерантности.

Фруктоза также оказывает прямое влияние на увеличение потребления калорий. Усиление вкусовой привлекательности пищи за счёт добавления сахарозы ослабляет физиологические сигналы насыщения и служит мотивацией для потребления пищи независимо от энергетических потребностей [114, 118]. Например, инфузия сахарозы непосредственно в NAc снижает количество Д, рецепторов и μ-опиоидных рецепторов, подобно действию морфина [79]. Как сладкие, так и жирные продукты мобилизуют опиоиды и дофамин в NAc и способствуют формированию в этой области устойчивых сигнальных путей патологического влечения, которые можно выявить с помощью фМРТ [80, 115]. Кроме того, в моделях на животных периодическое введение сахара в течение 3 недель может вызывать изменения поведения, характерные для зависимости, то есть переедание, абстиненцию и тревогу, патологическое влечение и перекрёстную сенсибилизацию к другим психоактивным веществам [9]. Результаты нейрофармакологических исследований свидетельствуют о снижении количества D₂-рецепторов в NAc, что согласуется с формированием путей вознаграждения и изменениями поведения, типичными для зависимости. Несмотря на обилие разрозненных свидетельств существования «сахарной зависимости» у человека, пока не ясно, отражает ли этот «порочный круг» потребления фруктозы, простую привычку или полноценную зависимость.

РОЛЬ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

Сахар добавляют в пищу в виде сахарозы, кукурузного сиропа с высоким содержанием фруктозы, мёда, кленового сиропа или сиропа агавы. Предполагается, что каждый из этих продуктов содержит равное количество глюкозы и фруктозы, однако в последнее время по этому поводу возникает всё больше вопросов, так как анализ газированных напитков, продающихся в магазинах Лос-Анджелеса, показал, что содержание фруктозы в них достигает 65% [119]. Эта разница может иметь значение, поскольку фруктоза вызывает более выраженную реакцию вознаграждения, чем глюкоза. Вопрос заключается в том, увеличивают ли производители содержание фруктозы намеренно, чтобы стимулировать чрезмерное потребление. Аналогичные тенденции наблюдались и в табачной промышленности, представители которой намеренно манипулировали содержанием никотина в сигаретах, чтобы поддерживать потребление и превратить как можно больше людей в «активных курильщиков» [120]. Пищевая промышленность прибегает к аналогичным уловкам, в результате чего доля калорий в УПП, приходящихся на добавленный сахар, увеличилась до 58%. Согласно результатам анализа, недавно проведённого Терой Фаццино (Tera Fazzino), в период с 1965 по 2002 год табачные компании приобретали предприятия пищевой промышленности, чтобы применить аналогичную стратегию для увеличения содержания сахара в определённых продуктах и придания им исключительной вкусовой привлекательности с целью повышения потребления и, соответственно, продаж [121]. Интересно, что в развивающихся странах компания Nestlé увеличила содержание сахара в смесях для детей младшего возраста без каких-либо объяснений [122]. Такие примеры свидетельствуют о том, что представители пищевой промышленности знают, что делают, когда добавляют в продукты сахар и делают это в собственных интересах, а не ради общего блага. В то же время эти компании не стесняются оперировать такими понятиями, как «государство-няня» и «личная ответственность», чтобы снять с себя вину за использование «сахарной зависимости» для стимулирования продаж и, в конечном итоге, за эпидемию хронических заболеваний [123].

СБЛИЖЕНИЕ ПОЗИЦИЙ В ОТНОШЕНИИ «ПИЩЕВОЙ ЗАВИСИМОСТИ» И «ЗАВИСИМОСТИ ОТ ПРОЦЕССА УПОТРЕБЛЕНИЯ ПИЩИ»

Согласно результатам систематических обзоров литературы, ультрапереработанные продукты питания обладают самым высоким аддиктивным потенциалом из-за содержания добавленного сахара. Несмотря на то, что сам по себе сахар не удовлетворяет критериям классической толерантности и синдрома отмены, указанным в DSM-IV, он очевидно соответствует требованиям DSM-5 — толерантности и зависимости (то есть употребление несмотря на

Психофармакология и биологическая наркология / Psychopharmacology and Addiction Biology Научные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

понимание и признание пагубных последствий). Тем не менее «пищевая зависимость» как нозологическая форма отсутствует в DSM-5.

Как же примирить эти две противоположные гипотезы о «пищевой зависимости» и «зависимости от процесса употребления пищи»? Похоже, что из всех пищевых ингредиентов, широко применяемых в составе УПП, сахар и кофеин обладают аддиктивным потенциалом. Но, если сахар является «пищей», необходимой для выживания, как он может вызывать зависимость? Листья коки считают в Боливии лекарственным средством, но кокаин²¹ — наркотик. Мак снотворный относили к лекарственным средствам, но морфин — тоже наркотик. Кофеин содержится в кофе (который многие люди воспринимают как целебный напиток), но концентрированный кофеин (например, в средствах для похудения) — это наркотик. В древности сахар был пряностью. В эру промышленной революции он стал добавкой. Теперь он очищен и перешёл в класс «наркотиков». Очищенная сахароза — это то же соединение, которое содержится во фруктах, но без клетчатки и в кристаллизованной форме, что позволяет достичь большей степени чистоты. Процесс очистки превратил сахар из «пищи» в «наркотик», подобно алкоголю и кофеину [33]. Подобно этим вызывающим зависимость веществам, сахар считается пищевой добавкой, а пищевые добавки — это наркотик. Кроме того, сахар входит в состав 74% продуктов питания [124], потому что гиганты рынка знают, что, когда они его добавляют, мы покупаем больше.

Группа NeuroFAST задаётся вопросом, как еда может вызывать привыкание, если она необходима для выживания. Ответ заключается в том, что часть продуктов не относится к категории «необходимых». Нам нужны незаменимые питательные вещества, которые организм не может синтезировать из других нутриентов, но есть только четыре класса соединений, которые действительно «незаменимы»: незаменимые аминокислоты (9 из 20 входящих в состав белков); незаменимые жирные кислоты (такие как омега-3 и линолевая кислота); витамины и биологически активные вещества; минералы. Ни одна из этих групп незаменимых питательных веществ не вызывает даже лёгкой зависимости. Среди веществ, содержащихся в пище и вызывающих удовольствие, только алкоголь, кофеин и сахар обладают аддиктивным потенциалом. Но это пищевые добавки, а не продукты питания.

Как же примирить противоречивые концепции о «пищевой зависимости» и «зависимости от процесса употребления пищи»? На самом деле обе стороны говорят о «зависимости от пищевых добавок», которые усиливают эффекты друг друга, что способствует увеличению потребления. Когда в пищу добавляются вещества, которые организм не способен усвоить, мы болеем. Алкоголь всегда был пищевой добавкой; кофеин в концентрации выше 0,02% (например, в напитках типа колы) также классифицируется как пищевая добавка. В ходе исследований было установлено, что, поскольку биохимическая потребность в сахаре отсутствует, он тоже является пищевой добавкой, которая способствует формированию зависимости, чрезмерному потреблению и развитию неинфекционных заболеваний.

РЕЗЮМЕ И ВОЗМОЖНЫЕ РЕШЕНИЯ

УПП вызывают зависимость, поскольку содержат сахар (который является пищевой добавкой), и эта зависимость усугубляется добавлением соли и жира, которые усиливают значимость и привлекательность сахара. Поэтому борьба с пищевой зависимостью сводится к вопросу «что такое пища?». Словарь Уэбстера (Webster's Dictionary) определяет «пищу» как «субстрат, способствующий росту организма или выработке в нём энергии». Фруктоза не участвует ни в одном из этих процессов и фактически препятствует как росту, так и выработке энергии [125]. Поэтому сахар не соответствует определению «пищи». Скорее его следует отнести к пищевым добавкам, как кофеин и алкоголь (мы даже называем его «добавленным сахаром»), которые также входят в состав пищи и также вызывают зависимость. Следовательно, обе стороны этого конфликта могли бы объединиться вокруг концепции зависимости от пищевых добавок, воплощением которой служат УПП [47].

Предполагаю, что яростная полемика на эту тему будет продолжаться до тех пор, пока стороны не придут к общему мнению и пока в этом будут замешаны деньги. Используя материалы

.

¹ вещество запрещено на территории РФ.

Психофармакология и биологическая наркология / Psychopharmacology and Addiction Biology Havчные обзоры / Reviews

DOI: https://doi.org/10.17816/phbn691855

библиотеки отраслевых документов Калифорнийского университета Сан-Франциско³, мои коллеги установили, что представители пищевой промышленности уже много лет знают, что сахар, а значит и УПП, токсичны и вызывают зависимость [126]. Тем не менее они продолжают бороться в судах и апеллируют к общественному мнению, выступая против «государства-няни» и требуя «личной ответственности» [123]. Однако наука всё быстрее приближает нас к истине и её общему признанию. Надеюсь, что результаты исследований с применением позитронно-эмиссионной томографии (ПЭТ), направленных на оценку активности дофаминовых рецепторов в ответ на употребление определённых пищевых компонентов и обнаружение связи между этой активностью и системной абстиненцией, дополнят данные о механизмах действия таких пищевых компонентов и подтвердят аддиктивный потенциал УПП. Хотя, конечно, некоторым критикам и этого будет мало. Взаимодополняющий характер научных данных в отношении всех четырёх упомянутых аспектов, безусловно, подкрепляет концепцию зависимости от УПП как отдельной нозологической формы. Мы ожидаем, что Американская психиатрическая ассоциация и Всемирная организация здравоохранения в скором времени включат «зависимость от ультрапереработанных продуктов питания» в DSM-6 и Международную классификацию болезней 11-го пересмотра соответственно, присвоив ей отдельный диагностический код, чтобы страховые компании возмещали расходы на лечение, а мы, наконец, смогли бы поставить точку в этом споре и перейти от дискуссий к сложной работе по исправлению ситуации в пищевой промышленности на благо человечества.

ДОПОЛНИТЕЛЬНО

Вклад авторов. Robert H. Lustig — определение концепции, работа с данными, написание черновика рукописи, пересмотр и редактирование рукописи.

Источники финансирования. Автор декларирует отсутствие финансирования при проведении исследования и/или публикации статьи.

Заявление о конфликте интересов. Автор заявляет, что исследование было проведено в отсутствие каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Генеративный искусственный интеллект. Автор заявляет, что при создании настоящей статьи технологии генеративного искусственного интеллекта не использовались.

Замещающий текст (alt text), представленный в статье рядом с рисунками, был сгенерирован издательством Frontiers с помощью технологии искусственного интеллекта. Издательство предприняло все возможные меры для обеспечения точности данных, включая проверку авторами там, где это было возможно. Если у вас есть замечания, пожалуйста, свяжитесь с издательством.

Примечание издателя. Все утверждения, изложенные в этой статье, являются исключительно мнением авторов и не обязательно отражают позицию аффилированных организаций, издателя, редакторов и рецензентов. Издатель не гарантирует достоверности и не подтверждает никаких положений в отношении любого продукта, который может оцениваться в настоящей статье, или заявлений, сделанных его производителем.

СПИСОК ЛИТЕРАТУРЫ

- GBD 2016 causes of death collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151-1210. doi: 10.1016/S0140-6736(17)32152-9 EDN: YHYECL
- Vreman RA, Goodell AJ, Rodriguez LA, et al. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ Open. 2017;7(8):e0103543. doi: 10.1136/bmjopen-2016-013543 EDN: YFMVVM
- Barlow P, Serôdio P, Ruskin G, et al. Science organisations and Coca-Cola's 'war' with the public health community: insights from an internal industry document. J Epidemiol Community Health. 2018;72(9):761-763. doi: 10.1136/jech-2017-210375
- Gordon EL, Ariel-Donges AH, Bauman V, Merlo LJ. What is the evidence for "food addiction?" A systematic review. *Nutrients*. 2018;10(4):477. doi: 10.3390/nu10040477
- Randolph TG. The descriptive features of food addiction. Addictive eating and drinking. Q J Stud Alcohol. 1956;17(2):198-224. doi: 10.15288/qjsa.1956.17.198

³ UCSF Industry Documents Library. Available at: https://www.industrydocuments.ucsf.edu/home/

Научные обзоры / Reviews

- 6. Lustig RH. Fructose: metabolic, hedonic, and societal parallels with ethanol. *J Am Diet Assoc*. 2010;110(9):1307–1321. doi: 10.1016/j.jada.2010.06.008
- 7. Fortuna JL. The obesity epidemic and food addiction: clinical similarities to drug dependence. *J Psychoactive Drugs*. 2012;44(1):56–63. doi: 10.1080/02791072.2012.662092
- 8. American Psychiatric Association. *Diagnostic and statistical manual of mental disorders: DSM-5*. Washington: American Psychiatric Association Publishing; 2013. doi: 10.1176/appi.books.9780890425596
- 9. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. *Neurosci Biobehav Rev.* 2008;32(1):20–39. doi: 10.1016/j.neubiorev.2007.04.019
- 10. Gearhardt AN, Corbin WR, Brownell KD. Food addiction: An examination of the diagnostic criteria for dependence. *J Addict Med.* 2009;3(1):1–7. doi: 10.1097/ADM.0b013e318193c993
- 11. Blumenthal DM, Gold MS. Neurobiology of food addiction. *Curr Opin Clin Nutr Metab Care*. 2010;13(4):359–365. doi: 10.1097/MCO.0b013e32833ad4d4
- 12. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? *Nat Rev Neurosci*. 2012;13(4):279–286. doi: 10.1038/nrn3212
- 13. Avena NM, Gearhardt AN, Gold MS, et al. Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. *Nat Rev Neurosci.* 2012;13(7):514. doi: 10.1038/nrn3212-c1
- 14. Ziauddeen H, Farooqi IS, Fletcher PC. Food addiction: is there a baby in the bathwater? *Nat Rev Neurosci*. 2012;13:514. doi: 10.1038/nrn3212-c2
- 15. Gearhardt AN, Grilo CM, DiLeone RJ, et al. Can food be addictive? Public health and policy implications. *Addiction*. 2011;106(7):1208–1212. doi: 10.1111/j.1360-0443.2010.03301.x
- 16. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. *Appetite*. 2009;52(2):430–436. doi: 10.1016/j.appet.2008.12.003
- 17. Gearhardt AN, Roberto CA, Seamans MJ, et al. Preliminary validation of the Yale Food Addiction Scale for children. *Eat Behav.* 2013;14(4):508–512. doi: 10.1016/j.eatbeh.2013.07.002
- 18. Ifland JR, Preuss HG, Marcus MT, et al. Refined food addiction: a classic substance use disorder. *Med Hypotheses*. 2009;72(5):518–526. doi: 10.1016/j.mehy.2008.11.035 EDN: MHEBCD
- 19. Schulte EM, Smeal JK, Lewis J, Gearhardt AN. Development of the highly processed food withdrawal scale. *Appetite*. 2018;131:148–154. doi: 10.1016/j.appet.2018.09.013
- 20. Parnarouskis L, Schulte EM, Lumeng JC, Gearhardt AN. Development of the highly processed food withdrawal scale for children. *Appetite*. 2020;147:104553. doi: 10.1016/j.appet.2019.104553 EDN: <u>HIEFPK</u>
- 21. Parnarouskis L, Leventhal AM, Ferguson SG, Gearhardt AN. Withdrawal: A key consideration in evaluating whether highly processed foods are addictive. *Obes Rev.* 2022;23(11):e13507. doi: 10.1111/obr.13507 EDN: WOVHXY
- 22. Mason AE, Laraia B, Daubenmier J, et al. Putting the brakes on the "drive to eat": Pilot effects of naltrexone and reward-based eating on food cravings among obese women. *Eat Behav.* 2015;19:53–56. doi: 10.1016/j.eatbeh.2015.06.008
- 23. Epel ES, Tomiyama AJ, Mason AE, et al. The reward-based eating drive scale: a self-report index of reward-based eating. *PloS One*. 2014;9(6):e101350. doi: 10.1371/journal.pone.0101350
- 24. Rudenga KJ, Small DM. Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding. *Chem Senses*. 2013;38(7):585–594. doi: 10.1093/chemse/bjt029 EDN: YBJXKJ
- 25. Albayrak O, Wölfle SM, Hebebrand J. Does food addiction exist? A phenomenological discussion based on the psychiatric classification of substance-related disorders and addiction. *Obes Facts.* 2012;5(2):165–179. doi: 10.1159/000338310
- 26. Hebebrand J, Albayrak O, Adan R, et al. "Eating addiction", rather than "food addiction", better captures addictive-like eating behavior. *Neurosci Biobehav Rev.* 2014;47:295–306. doi: 10.1016/j.neubiorev.2014.08.016
- 27. NeuroFAST consensus opinion on food addiction. 2014. Available at: http://www.neurofast.eu/consensus Accessed: September 24, 2020.
- 28. Pesis E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. *Postharvest Biology and Technology*. 2005;37(1):1–19. doi: 10.1016/j.postharvbio.2005.03.001
- 29. Markus CR, Rogers PJ, Brouns F, Schepers R. Eating dependence and weight gain; no human evidence for a 'sugar-addiction' model of overweight. *Appetite*. 2017;114:64–72. doi: 10.1016/j.appet.2017.03.024
- 30. Taş Torun Y, İçen S, Gül H, Döğer E. A cross-sectional study on the correlates of food addiction symptoms in adolescents seeking treatment for obesity: eating attitudes and gender differences. *J Addict Dis.* 2022;40(3):326–335. doi: 10.1080/10550887.2021.1990638 EDN: GIKUYX
- 31. Radin RM, Dileo R, Lustig RH, Epel ES. Biology of appetite, weight, and overeating: Metabolic, psychological, and behavioral influences and clinical directions. In: Schneiderman N, Smith TW, Anderson NB, et al., editors. *APA Handbook of Health Psychology*. Washington: American Psychological Association; 2025. P:367–386. doi: 10.1037/0000394-017
- 32. Hebebrand J, Gearhardt AN. The concept of "food addiction" helps inform the understanding of overeating and obesity: NO. *Am J Clin Nutr.* 2021;113(2):268–273. doi: 10.1093/ajcn/nqaa344 EDN: WMHGGW

Научные обзоры / Reviews

- 33. Gearhardt AN, Hebebrand J. The concept of "food addiction" helps inform the understanding of overeating and obesity: YES. *Am J Clin Nutr*. 2021;113(2):263–267. doi: 10.1093/ajcn/nqaa343 EDN: TOSNYJ
- 34. Lindgren E, Gray K, Miller G, et al. Food addiction: A common neurobiological mechanism with drug abuse. *Front Biosci (Landmark Ed)*. 2018;23(5):811–836. doi: 10.2741/4618
- 35. Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. *J Nutr*. 2009;139(3):629–632. doi: 10.3945/jn.108.097618
- 36. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. *Philos Trans R Soc Lond B Biol Sci.* 2008;363(1507):3191–3200. doi: 10.1098/rstb.2008.0107
- 37. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. *Behav Pharmacol*. 2002;13(5–6):355–366. doi: 10.1097/00008877-200209000-00008
- 38. Boileau I, Assaad JM, Pihl RO, et al. Alcohol promotes dopamine release in the human nucleus accumbens. *Synapse*. 2003;49(4):226–231. doi: 10.1002/syn.10226
- 39. Monteiro CA. Nutrition and health. The issue is not food, nor nutrients, so much as processing. *Public Health Nutr.* 2009;12(5):729–731. doi: 10.1017/S1368980009005291
- 40. Moubarac JC, Parra DC, Cannon G, Monteiro CA. Food classification systems based on food processing: Significance and implications for policies and actions. A systematic literature review and assessment. *Curr Obes Rep.* 2014;3(2):256–272. doi: 10.1007/s13679-014-0092-0 EDN: ZBWZHX
- 41. Marrón-Ponce JA, Flores M, Cediel G, et al. Associations between consumption of ultra-processed foods and intake of nutrients related to chronic non-communicable diseases in Mexico. *J Acad Nutr Diet*. 2019;119(11):1852–1865. doi: 10.1016/j.jand.2019.04.020
- 42. Fiolet T, Srour B, Sellem L, et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. *BMJ*. 2018;360:k322. doi: 10.1136/bmj.k322
- 43. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). *BMJ*. 2019;365:11451. doi: 10.1136/bmj.11451
- 44. Srour B, Fezeu LK, Kesse-Guyot E, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the nutriNet-santéProspective cohort. *JAMA Intern Med.* 2020;180(2):283–291. doi: 10.1001/jamainternmed.2019.5942 EDN: DZFYFT
- 45. Taneri PE, Wehrli F, Roa-Díaz ZM, et al. Association between ultra-processed food intake and all-cause mortality: A systematic review and meta-analysis. *Am J Epidemiol*. 2022;191(7):1323–1335. doi: 10.1093/aje/kwac039 EDN: XVVFFM
- 46. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. *PloS One*. 2015;10(2):e0117959. doi: 10.1371/journal.pone.0117959
- 47. Chazelas E, Druesne-Pecollo N, Esseddik Y, et al. Exposure to food additive mixtures in 106,000 French adults from the NutriNet- Santé cohort. *Sci Rep.* 2021;11(1):19680. doi: 10.1038/s41598-021-98496-6 EDN: CTRFZM
- 48. Garber AK, Lustig RH. Is fast food addictive? *Curr Drug Abuse Rev.* 2011;4(3):146–162. doi: 10.2174/1874473711104030146
- 49. Mattes RD. The taste for salt in humans. Am J Clin Nutr. 1997;65(suppl 2):692S–697S. doi: 10.1093/ajcn/65.2.692S
- 50. Harris G, Booth DA. Infants' preference for salt in food: Its dependence upon recent dietary experience. *Journal of Reproductive and Infant Psychology*. 1987;5(2):94–104. doi: 10.1080/02646838708403479
- 51. Kim GH, Lee HM. Frequent consumption of certain fast foods may be associated with an enhanced preference for salt taste. *J Hum Nutr Diet*. 2009;22(5):475–480. doi: 10.1111/j.1365-277X.2009.00984.x
- 52. Cocores JA, Gold MS. The salted food addiction hypothesis may explain overeating and the obesity epidemic. *Med Hypotheses*. 2009;73:892–899. doi: 10.1016/j.mehy.2009.06.049
- 53. Kochli A, Tenenbaum-Rakover Y, Leshem M. Increased salt appetite in patients with congenital adrenal hyperplasia 21-hydroxylase deficiency. *Am J Physiol Regul Integr Comp Physiol*. 2005;288(6):R1673–R1681. doi: 10.1152/ajpregu.00713.2004
- 54. McCarron DA, Geerling JC, Kazaks AG, Stern JS. Can dietary sodium intake be modified by public policy? *Clin J Am Soc Nephrol*. 2009;4(11):1878–1882. doi: 10.2215/ CJN.04660709 EDN: GTGJMU
- 55. He FJ, Pombo-Rodrigues S, Macgregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. *BMJ Open.* 2014;4:e004549. doi: 10.1136/bmjopen-2013-004549 EDN: <u>SPJIYZ</u>
- 56. Blundell JE, Stubbs RJ, Golding C, et al. Resistance and susceptibility to weight gain: individual variability in response to a high- fat diet. *Physiol Behav*. 2005;86:614–622. doi: 10.1016/j.physbeh.2005.08.052
- 57. Drewnowski A, Greewood MR. Cream and sugar: human preferences for high- fat foods. *Physiol Behav*. 1983;30:629–633. doi: 10.1016/0031-9384(83)90232-9
- 58. Hu T, Mills KT, Yao L, et al. Effects of low- carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. *Am J Epidemiol*. 2012;176(suppl 7):S44–54. doi: 10.1093/aje/kws264

Научные обзоры / Reviews

- 59. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. *Eur J Clin Nutr.* 2013;67(8):789–796. doi: 10.1038/ejcn.2013.116
- 60. Stice E, Burger KS, Yokum S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. *Am J Clin Nutr*. 2013;98(6):1377–1384. doi: 10.3945/ajcn.113.069443
- 61. Griffiths RR, Chausmer AL. Caffeine as a model drug of dependence: recent developments in understanding caffeine withdrawal, the caffeine dependence syndrome, and caffeine negative reinforcement. *Nihon Shinkei Seishin Yakurigaku Zasshi*. 2000;20(5):223–231.
- 62. Bernstein GA, Carroll ME, Dean NW, et al. Caffeine withdrawal in normal school-age children. *J Am Acad Child Adolesc Psychiatry*. 1998;37(8):858–865. doi: 10.1097/00004583-199808000-00016 EDN: GYCADJ
- 63. Bernstein GA, Carroll ME, Thuras PD, et al. Caffeine dependence in teenagers. *Drug Alcohol Depend*. 2002;66(1):1–6. doi: 10.1016/S0376-8716(01)00181-8
- 64. Couturier EG, Laman DM, van Duijn MA, van Duijn H. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities. *Cephalalgia*. 1997;17(3):188–190. doi: 10.1046/j.1468-2982.1997.1703188.x
- 65. Nawrot P, Jordan S, Eastwood J, et al. Effects of caffeine on human health. *Food Addit Contam.* 2003;20(1):1–30. doi: 10.1080/0265203021000007840
- 66. Huang C, Dumanovsky T, Silver LD, et al. Calories from beverages purchased at 2 major coffee chains in New York City, 2007. *Prev Chronic Dis.* 2009;6(4):A118.
- 67. Griffiths RR, Vernotica EM. Is caffeine a flavoring agent in cola soft drinks? *Arch Fam Med*. 2000;9(8):727–734. doi: 10.1001/archfami.9.8.727
- 68. Dumanovsky T, Nonas CA, Huang CY, et al. What people buy from fast-food restaurants: caloric content and menu item selection, New York City 2007. *Obesity (Silver Spring)*. 2009;17(7):1369–1374. doi: 10.1038/oby.2009.90
- 69. Teff KL, Elliott SS, Tschop M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. *J Clin Endocrinol Metab*. 2004;89(6):2963–2972. doi: 10.1210/jc.2003-031855
- 70. Rorabaugh JM, Stratford JM, Zahniser NR. Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. *Neuroscience*. 2015;301:213–220. doi: 10.1016/j.neuroscience.2015.06.015
- 71. Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. *Regul Pept.* 2008;150(1–3):26–32. doi: 10.1016/j.regpep.2008.06.008
- 72. Monteiro CA, Moubarac JC, Levy RB, et al. Household availability of ultra-processed foods and obesity in nineteen European countries. *Public Health Nutr.* 2018;21(1):18–26. doi: 10.1017/S1368980017001379
- 73. Lustig RH, Mulligan K, Noworolski SM, et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. *Obesity (Silver Spring)*. 2016;24(2):453–460. doi: 10.1002/oby.21371
- 74. Gugliucci A, Lustig RH, Caccavello R, et al. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. *Atherosclerosis*. 2016;253:171–177. doi: 10.1016/j.atherosclerosis.2016.06.048
- 75. Schwarz JM, Noworolski SM, Erkin-Cakmak A, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. *Gastroenterology*. 2017;153(3):743–752. doi: 10.1053/j.gastro.2017.05.043
- 76. De Vogli R, Kouvonen A, Gimeno D. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis. *Bull World Health Organ*. 2014;92(2):99–107A. doi: 10.2471/BLT.13.120287
- 77. Wiss DA, Criscitelli K, Gold M, Avena N. Preclinical evidence for the addiction potential of highly palatable foods: Current developments related to maternal influence. *Appetite*. 2017;115:19–27. doi: 10.1016/j.appet.2016.12.019 EDN: <u>KTOSNN</u>
- 78. Dela Cruz JA, Coke T, Bodnar RJ. Simultaneous detection of c-Fos activation from mesolimbic and mesocortical dopamine reward sites following naive sugar and fat ingestion in rats. *J Vis Exp.* 2016;(114):53897. doi: 10.3791/53897
- 79. Spangler R, Wittkowski KM, Goddard NL, et al. Opiate-like effects of sugar on gene expression in reward areas of the rat brain. *Brain Res Mol Brain Res*. 2004;124(2):134–142. doi: 10.1016/j.molbrainres.2004.02.013
- 80. Pelchat ML, Johnson A, Chan R, et al. Images of desire: food-craving activation during fMRI. *Neuroimage*. 2004;23(4):1486–1493. doi: 10.1016/j.neuroimage.2004.08.023
- 81. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. *PloS One*. 2007;2(8):e698. doi: 10.1371/journal.pone.0000698
- 82. Minère M, Wilhelms H, Kuzmanovic B, et al. Thalamic opioids from POMC satiety neurons switch on sugar appetite. *Science*. 2025;387(6735):750–758. doi: 10.1126/science.adp1510
- 83. Purnell JQ, Klopfenstein BA, Stevens AA, et al. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans. *Diabetes Obes Metab.* 2011;13(3):229–234. doi: 10.1111/j.1463-1326.2010.01340.x EDN: OAOMAT

Научные обзоры / Reviews

- 84. Page KA, Chan O, Arora J, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. *JAMA*. 2013;309(1):63–70. doi: 10.1001/jama.2012.116975
- 85. Wölnerhanssen BK, Meyer-Gerspach AC, Schmidt A, et al. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: A pilot study. *PloS One*. 2015;10(6):e0130280. doi: 10.1371/journal.pone.0130280
- 86. Jastreboff AM, Sinha R, Arora J, et al. Altered brain response to drinking glucose and fructose in obese adolescents. *Diabetes*. 2016;65(7):1929–1939. doi: 10.2337/db15-1216
- 87. Darcey VL, Guo J, Chi M, Chung ST, et al. Brain dopamine responses to ultra-processed milkshakes are highly variable and not significantly related to adiposity in humans. *Cell Metab.* 2025;37(3):616–628.e5. doi: 10.1016/j.cmet.2025.02.002
- 88. Stevens B, Yamada J, Ohlsson A, et al. Sucrose for analgesia in newborn infants undergoing painful procedures. *Cochrane Database Syst Rev.* 2016;7(7):CD001069. doi: 10.1002/14651858.CD001069.pub5
- 89. Corsica JA, Spring BJ. Carbohydrate craving: a double-blind, placebo-controlled test of the self-medication hypothesis. *Eat Behav*. 2008;9(4):447–454. doi: 10.1016/j.eatbeh.2008.07.004
- 90. Benton D. The plausibility of sugar addiction and its role in obesity and eating disorders. *Clin Nutr.* 2010;29(3):288–303. doi: 10.1016/j.clnu.2009.12.001
- 91. Chayka K. Why coffee shortages won't change the price of your Frappucino [Internet]. Pacific Standard; 2014. Available at: https://psmag.com/economics/coffee- shortages-wont-change-price-frappuccino-87107.
- 92. Andreyeva T, Long MW, Brownell KD. The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food. *Am J Public Health*. 2010;100(2):216–222. doi: 10.2105/AJPH.2008.151415
- 93. Kaplan S, White JS, Madsen KA, et al. Evaluation of changes in prices and purchases following implementation of sugar- sweetened beverage taxes across the US. *JAMA Health Forum*. 2024;5(1):e234737. doi: 10.1001/jamahealthforum.2023.4737 EDN: <u>LUNTCW</u>
- 94. Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. *Dig Dis Sci.* 2016;61(5):1282–1293. doi: 10.1007/s10620-016-4054-0 EDN: PTESJD
- 95. Teff KL, Grudziak J, Townsend RR, et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. *J Clin Endocrinol Metab*. 2009;94(5):1562–1569. doi: 10.1210/jc.2008-2192
- 96. Banks WA, Coon AB, Robinson SM, et al. Triglycerides induce leptin resistance at the blood-brain barrier. *Diabetes*. 2004;53(5):1253–1260. doi: 10.2337/diabetes.53.5.1253
- 97. Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. *Neuron*. 2006;51(6):801–810. doi: 10.1016/j.neuron.2006.08.023
- 98. Jastreboff AM, Sinha R, Lacadie C, et al. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels. *Diabetes Care*. 2013;36(2):394–402. doi: 10.2337/dc12-1112
- 99. Nader MA, Czoty PW, Gould RW, Riddick NV. Review. Positron emission tomography imaging studies of dopamine receptors in primate models of addiction. *Philos Trans R Soc Lond B Biol Sci.* 2008;363(1507):3223–3232. doi: 10.1098/rstb.2008.0092
- 100. Hill JW, Williams KW, Ye C, et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. *J Clin Invest*. 2008;118(5):1796–1805. doi: 10.1172/JCI32964 EDN: MLPNXF
- 101. Münzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. *Nat Neurosci*. 2005;8(5):566–570. doi: 10.1038/nn1454
- 102. Figlewicz DP, Evans SB, Murphy J, et al. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/ SN) of the rat. *Brain Res.* 2003;964(1):107–115. doi: 10.1016/S0006-8993(02)04087-8 EDN: BDQMRZ
- 103. Lin X, Taguchi A, Park S, et al. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. *J Clin Invest*. 2004;114(7):908–916. doi: 10.1172/JCI22217
- 104. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, et al. PTP1B regulates leptin signal transduction in vivo. *Dev Cell*. 2002;2(4):489–495. doi: 10.1016/S1534-5807(02)00148-X
- 105. Lustig RH. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. *Nat Clin Pract Endo Metab*. 2006;2(8):447–458. doi: 10.1038/ncpendmet0220
- 106. Emanuelli B, Peraldi P, Filloux C, et al. SOCS-3 is an insulin-induced negative regulator of insulin signaling. *J Biol Chem.* 2000;275(21):15985–15991. doi: 10.1074/jbc.275.21.15985
- 107. Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet- induced obesity. *Nat Med*. 2004;10(7):739–743. doi: 10.1038/nm1071
- 108. Mietus-Snyder ML, Lustig RH. Childhood obesity: adrift in the 'limbic triangle'. *Ann Rev Med*. 2008;59:147–162. doi: 10.1146/annurev.med.59.103106.105628
- 109. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. *Front Neuroendocrinol.* 2003;24(1):1–10. doi: 10.1016/S0091-3022(02)00105-X
- 110. Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior. *Science*. 2007;317(5843):1355. doi: 10.1126/science.1144599

Научные обзоры / Reviews

- 111. Yu YH. Making sense of metabolic obesity and hedonic obesity. *J Diabetes*. 2017;9(7):656–666. doi: 10.1111/1753-0407.12529
- 112. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. *J Neurosci*. 2002;22(9):3306–3311. doi: 10.1523/JNEUROSCI.22-09-03306.2002
- 113. Dallman MF, Pecoraro NC, la Fleur SE. Chronic stress and comfort foods: self- medication and abdominal obesity. *Brain Behav Immun*. 2005;19(4):275–280. doi: 10.1016/j.bbi.2004.11.004
- 114. Erlanson-Albertsson C. How palatable food disrupts appetite regulation. *Basic Clin Pharmacol Toxicol*. 2005;97(2):61–73. doi: 10.1111/j.1742-7843.2005.pto_179.x
- 115. Kelley AE, Bakshi VP, Haber SN, et al. Opioid modulation of taste hedonics within the ventral striatum. *Physiol Behav*. 2002;76(3):365–377. doi: 10.1016/S0031-9384(02)00751-5
- 116. Volkow ND, Wise RA. How can drug addiction help us understand obesity? *Nat Neurosci*. 2005;8(5):555–560. doi: 10.1038/nn1452
- 117. Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. *Neuroscience*. 2003;119(4):1157–1167. doi: 10.1016/S0306-4522(03)00227-6 EDN: <u>BJFUWR</u>
- 118. Pelchat ML. Of human bondage: food craving, obsession, compulsion, and addiction. *Physiol Behav*. 2002;76(3):347–352. doi: 10.1016/S0031-9384(02)00757-6
- 119. Ventura EE, Davis JN, Goran MI. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. *Obesity*. 2011;19(4):868–874. doi: 10.1038/oby2010.255
 - 120. Small v. Lorillard Tobacco Co., 720 N.E.2d 892, 94 N.Y.2d 43, 698 N.Y.S.2d 615 (N.Y. 1999).
- 121. Fazzino TL, Jun D, Chollet-Hinton L, Bjorlie K. US tobacco companies selectively disseminated hyperpalatable foods into the US food system: Empirical evidence and current implications. *Addiction*. 2024;119(1):62–71. doi: 10.1111/add.16332 EDN: SCKHMV
- 122. Public Eye. Sugar: for Nestlé, not all babies are equal [Internet]. Public Eye. 17 April 2024. Available at: https://www.publiceye.ch/en/media-corner/press-releases/ detail/sugar-for-nestle-not-all-babies-are-equal Accessed: April 29, 2024.
- 123. Lustig RH. "Nine Gluttony and sloth? Personal responsibility versus the true cause of obesity". In: Robert N, Schiebinger P, Schiebinger L, editors. *Ignorance unmasked: Essays in the new science of agnotology*. Stanford: Stanford University Press; 2025. P:133–146. doi: 10.1515/9781503643963-010
- 124. Ng SW, Slining MM, Popkin BM. Use of caloric and noncaloric sweeteners in US consumer packaged foods 2005-2009. *J Acad Nutr Diet*. 2012;112(11):1828–34.e1–6 doi: 10.1016/j.jand.2012.07.009
- 125. Lustig RH. Ultraprocessed food: addictive, toxic, and ready for regulation. *Nutrients*. 2020;12(11):3401. doi: 10.3390/nu12113401 EDN: TWQXXV
- 126. Nguyen KH, Glantz SA, Palmer CN, Schmidt LA. Transferring racial/ethnic marketing strategies from tobacco to food corporations: Philip Morris and Kraft General Foods. *Am J Public Health*. 2020;110(3):329–336. doi: 10.2105/AJPH.2019.305482 EDN: FMTXHX