To choose the use of 2d or 3d images in rehabilitation: review

Cover Page


Cite item

Abstract

Different properties of displays, features of visual perception of three-dimensional images and other conditions, probably affect the effectiveness of motor rehabilitation when using a visual feedback channel and virtual reality technology. A brief review presents the latest publications on a choice of 2D or 3D displays. It is concluded that the presence of many features not only creates difficulties in comparing the effects of using various equipment, but also provides the potential for targeted display selection for a particular rehabilitation task.

About the authors

O. V. Kubryak

P.K. Anokhin Research Institute of Normal Physiology

Email: e.kriklenko@nphys.ru
Russian Federation, Moscow

Elena Aleksandrovna Kriklenko

P.K. Anokhin Research Institute of Normal Physiology

Author for correspondence.
Email: e.kriklenko@nphys.ru

Laboratory of physiology of human functional states

Russian Federation, Moscow

References

  1. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015; 61(3): 117–24. DOI: 10.1016/j. jphys.2015.05.017.
  2. Kubryak O.V., Panova E.N. The definition of the term of «virtual reality» in the context of medical rehabilitation. Fizioterapiya, Bal’neologiya i Reabilitatsiya (Russian Journal of the Physical Therapy, Balneotherapy and Rehabilitation). 2017; 16(2): 70–2. doi: 10.18821/1681-3456-2017-16-2-70-72. (In Russ.)
  3. Lledó L.D., Díez J.A., Bertomeu-Motos A. et al. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 2016; 8: 205. doi: 10.3389/fnagi.2016.00205.
  4. Kim S.H., Suh Y.W., Yun C. et al. Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.
  5. Thomas J.S., France C.R., Applegate M.E. et al. Effects of visual display on joint excursions used to play virtual dodgeball. JMIR Serious Games. 2016; 4(2): e16. doi: 10.2196/games.6476.
  6. Riecke B.E., Jordan J.D. Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection). Front. Psychol. 2015; 6: 713. doi: 10.3389/fpsyg.2015.00713.
  7. Barr C.J., McLoughlin J.V., van den Berg M.E. et al. Visual field dependence is associated with reduced postural sway, dizziness and falls in older people attending a falls clinic. J. Nutr. Health Aging. 2016; 20(6): 671–6. doi: 10.1007/s12603-015-0681-y
  8. Roettl J., Terlutter R. The same video game in 2D, 3D or virtual reality – How does technology impact game evaluation and brand placements? PLoS One. 2018; 13(7): e0200724. doi: 10.1371/journal. pone.0200724.
  9. Palmisano S., Riecke B.E. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS One. 2018; 13(5): e0195886. doi: 10.1371/journal.pone.0195886.
  10. Keshavarz B., Speck M., Haycock B., Berti S. Effect of different display types on vection and its interaction with motion direction and field dependence. i-Perception. 2017; 8(3): 2041669517707768. doi: 10.1177/2041669517707768.
  11. Yeom H.J., Kim H.J., Kim S.B. et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Opt. Express. 2015; 23(25): 32025–34. doi: 10.1364/OE.23.032025.
  12. Yang F., Gu H., Li M. et al. The impact on human visual performance when viewing 2-D and 3-D movies. Technol. Health Care. 2018; 26(S1): 79–86. doi: 10.3233/THC-174206.
  13. Zeri F., Livi S. Visual discomfort while watching stereoscopic threedimensional movies at the cinema. Ophthalmic Physiol. Opt. 2015; 35(3): 271–82. doi: 10.1111/opo.12194.
  14. Read J.C., Bohr I. User experience while viewing stereoscopic 3D television. Ergonomics. 2014; 57(8): 1140–53. DOI: 10.1080/ 00140139.2014.914581.
  15. Read J.C., Simonotto J., Bohr I. et al. Balance and coordination after viewing stereoscopic 3D television. R. Soc. Open Sci. 2015; 2(7): 140522. doi: 10.1098/rsos.140522.
  16. Read J.C., Godfrey A., Bohr I. et al. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight. Ergonomics. 2016; 59(8): 1073–88. doi: 10.1080/00140139. 2015.1114682.
  17. Kim S.H., Suh Y.W., Yun C. et al Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.
  18. Zanier E.R., Zoerle T., Di Lernia D., Riva G. Virtual reality for traumatic brain injury. Front. Neurol. 2018; 9: 345. doi: 10.3389/fneur. 2018.00345.
  19. Aida J., Chau B., Dunn J. Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation. 2018; 42(4): 441–8. doi: 10.3233/NRE-172361.
  20. Laver K.E., Lange B., George S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017; 11: CD008349. doi: 10.1002/14651858.CD008349.pub4.
  21. Grokhovsky S.S., Kubryak O.V. Towards the question of «dose» motor rehabilitation after stroke: review. Fizioterapiya, Bal’neologiya i Reabilitatsiya (Russian Journal of the Physical Therapy, Balneotherapy and Rehabilitation). 2018. 17(2): 66–71. doi: 10.18821/16813456-2018-17-2-66-71. (In Russ.)
  22. Ferreira Dos Santos L., Christ O., Mate K. et al. Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng. Online. 2016; 15(Suppl 3): 144. DOI: 10.1186/ s12938-016-0289-4.
  23. de Rooij I.J., van de Port I.G., Meijer J.G. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys. Ther. 2016; 96(12): 1905–18. doi: 10.2522/ptj.20160054.
  24. Chen L., Lo W.L., Mao Y.R. et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed. Res. Int. 2016; 2016: 7309272. doi: 10.1155/2016/7309272.
  25. Iruthayarajah J., McIntyre A., Cotoi A. et al. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017; 24(1): 68–79. doi: 10.1080/10749357.2016.1192361.
  26. Booth V., Masud T., Connell L., Bath-Hextall F. The effectiveness of virtual reality interventions in improving balance in adults with impaired balance compared with standard or no treatment: a systematic review and meta-analysis. Clin. Rehabil. 2014; 28(5): 419–31. doi: 10.1177/0269215513509389.
  27. Dascal J., Reid M., IsHak W.W. et al. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov. Clin. Neurosci. 2017; 14(1–2): 14–21. PMID: 28386517.
  28. Silva J.N.A., Southworth M., Raptis C., Silva J. Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl. Sci. 2018; 3(3): 420–430. DOI: 10.1016/j. jacbts.2017.11.009.
  29. Palermo L., Nori R., Piccardi L. et al. Refractive errors affect the vividness of visual mental images. PLoS One. 2013; 8(6): e65161. doi: 10.1371/journal.pone.0065161.
  30. Boccia M., Piccardi L., Palermo L. et al. A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum. Brain Mapp. 2015; 36(3): 945– 58. doi: 10.1002/hbm.22678.

Copyright (c) 2018 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies