ДИНАМИКА МОРФОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ ЦНС ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ МОДЕЛЕЙ РАССЕЯННОГО СКЛЕРОЗА РАЗНОГО ПОЛА

Предтеченская Е.В., Сорокина И.В., Айдагулова С.В., Гузев А.К.

Новосибирский национальный исследовательский государственный университет, Лаборатория фармакологических исследований НИОХ СО РАН, Новосибирск

Цель исследования: оценить динамику морфологических изменений ЦНС у экспериментальных животных разного пола с длительной купризоновой интоксикацией.

Материалы и методы. В опыте использовались самцы и самки мышей линии С57BL/6 (по 20 особей) нативные животные сходных характеристик. Купризоновая модель создавалась по известному протоколу. Длительность эксперимента — 12 нед. Первой точкой отсчета стало исследование на пике демиелинизации — 6 нед. Вторая точка отсчета — 12 нед. от начала купризоновой диеты.

Проведено гистологическое исследование образцов мозолистого тела с помощью трансмиссионной электронной микроскопии ультратонких срезов. На 37 и 84 дни воздействия купризона половина животных из каждой группы была выведена из эксперимента методом декапитации.

Изучение ультратонких срезов и получение электронограмм проводились при увеличении в 5000, 12000 30000 раз с помощью просвечивающего электронного микроскопа JEM 1400 (Jeol, Япония) с цифровой камерой Veleta (EMSIS, Германия) и программным обеспечением iTEM (Jeol, Япония). При анализе электронограмм отсчитано по 300 аксонов в каждой группе.

Результаты гистологического исследования.

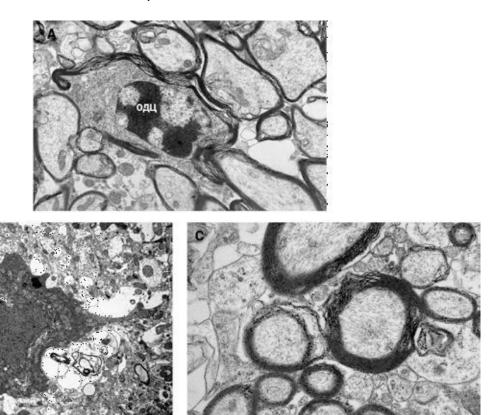
Самки: первая точка – пик демиелинизации (6 недель)

группе самок сформированы выраженные диффузные нарушения ультраструктуры миелина, олигодендроцитов и менее значительные признаки аксонопатии. Возле олигодендроцитов (ОДЦ), имеющих умеренные выраженные нарушения ультраструктурной организации цитоплазмы, наблюдается отек межклеточного мат-рикса и значительная деградация миелина вплоть до его полного отсутствия. Ряд ОДЦ демонстрирует полный распад с образованием конденсированных структур высокой электронной плотности, в окружении разрушенных ОДЦ наблюдается грубая демиелинизация с минимальной прослойкой миелина вокруг нормальных аксонов. Сохраненные в небольшом количестве миелинизированные аксоны сопровождаются неравномерным расслоением миелиновой оболочки и появлением мегамитохондрий в аксонах.

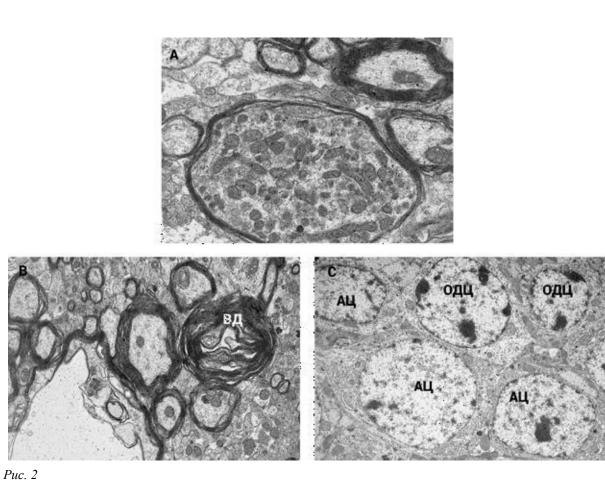
Самки: вторая точка – хроническая демиелинизация (12 недель)

группе самок с купризоновой интоксикацией сохраняются множественные участки клеточной гибели с наиболее выраженной демиелинизацией и валлеровой дегенерацией аксонов в данных зонах. Клеточные структуры проявляют признаки полного разрушения или явления конденсации органелл, что также свидетель-ствует о тяжелых дистрофических нарушениях, приводящих в дальнейшем к гибели. Наряду с этими дегенера-тивными нарушениями прослеживаются множественные участки с отсутствием патологических изменений или незначительными признаками отслойки миелина, а также интактные аксоны с тонкой миелиновой оболочкой, что можно расценивать как очаги спонтанной ремиелинизации. Аксоны без демиелинизации или с минимальными проявлениями соседствуют с полностью демиелинизированными или дегенерировавшими по валлерову типу ак-сонами, а также с участками, демонстрирующими признаки постепенного восстановления миелиновой оболочки (рис. 1).

Таким образом, у самок наибольшие морфологические изменения связаны с острейшей диффузной демиелинизацией, зарегистрированной на 6 нед. купризоновой диеты, в то время как на 12 нед. заметны признаки спонтанной ремиелинизации.


Самцы: первая точка – пик демиелинизации (6 неделя)

Исследование в группе самцов с купризоновой интоксикацией на 6 неделе демонстрирует выраженные явления демиелинизации с явным нарушением ультраструктуры большого количества аксонов и участками валлеровой дегенерации. ОДЦ полиморфны, многие клетки со свободными рибосомами, что отражает повышение внутриклеточной регенерации. Аксоны, окружающие ОДЦ с подобными нарушениями, имеют более выраженные признаки повреждения миелина и аксонопатию.


Самцы: вторая точка – хроническая демиелинизация (12 недель)

Эта стадия купризоновой интоксикации у самцов смещает морфологическую картину в сторону тяже-лых ультраструктурных поражений аксонов (аксонопатии) с множеством мелких митохондрий. Встречаются как слабо измененные миелиновые оболочки аксонов, так и аксоны в состоянии валлеровой дегенерации. Наиболее демонстративно для этой группы значительное увеличение количества астроцитов в мозолистом теле, что мож-но расценивать как распространенный астроглиоз. Астроциты часто располагаются рядом с сохранными олигодендроцитами (рис. 2).

Для всех групп животных был проведен морфометрический анализ (табл. 1).

Puc. 1

научные Статьи

Таблица 1

Количество демиелинизированных аксонов в поле зрения (ув. 5000)			
Самки		Самцы	
Интактный контроль	$2,33\pm0,43$	Интактный контроль	2,64±0,84
Купризон, 6 недель	59,46±2,84	Купризон, 6 недель	48,96±3,96
Купризон, 12 недель	18,71±2,10	Купризон, 12 недель	41,15±3,02
ŀ	Соличество аксональн	ых дегенераций в поле зрения	
Самки		Самцы	
Интактный контроль	$0,32\pm0,09$	Интактный контроль	0,29±0,11
Купризон, 6 недель	0,52±0,15	Купризон, 6 недель	$0,13\pm0,07$
Купризон, 12 недель	2,19±0,28	Купризон, 12 недель	1,08±0,20

Таким образом, длительная купризоновая интоксикация у самок демонстрирует тяжелую демиелиниза-цию в острой стадии с умеренными признаками аксонопатии, а также восстановление структуры ОДЦ и миелина (спонтанная ремиелинизация) к 12 неделе. У самцов признаки валлеровой дегенерации с поражением миелина и аксонов прослеживаются как в остром периоде, так и на этапе хронической демиелинизации, однако наиболее заметным является процесс диффузного астроглиоза, что дает основание говорить как о классической нейродеге-нерации, так и об аккомпанирующем ненейрональном дегенеративном процессе.

Литература

Hibbits N. Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. / N. Hibbits, J. Yo-shino, T. Q. Le, and R. C. Armstrong // ASN Neuro. -2012.-vol.4-Ne6.-P.393-408.

Hibbits N. Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination." / N. Hibbits, R. Pannu, T. J. Wu, and R. C. Armstrong // ASN Neuro. - 2009. – vol. 1. – №3. – P 153–164

Armstrong R. C. Endogenous Cell Repair of Chronic Demyelination" / R. C. Armstrong, T. Q. Le, N. C. Flint, A. C. Vana, and Y.-X. Zhou // J. Neuropathol. Exp. Neurol. −2006. −vol.65. −№3. −P.245−256.

Skripuletz T. Cortical Demyelination Is Prominent in the Murine Cuprizone Model and Is Strain-Dependent / T. Skripuletz et al. // Am. J. Pathol. -2008.-vol.172-N24. -P.1053-1061.

Kramann N. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling / N. Kramann, L. Menken, L. Hayardeny, U.-K. Hanisch, and W. Brьck, Neurol. // Neuroimmunol. Neuroinflammation. − 2016. − vol.3. − №3. P.e233.

Bruck W. Reduced astrocytic NF-kB activation by laquinimod protects from cuprizone-induced demyelination / W. Brъck et al. // Acta Neuropathol. -2012.-vol.124.-Ne3.-P.411-424.

7, Bando Y. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis / Y. Bando et al. // Neurochem. Int. – 2015. – vol.81. – P.16–27.