BACTERIAL FACTOR AS A MEMBER OF INFECTIOUS AND INFLAMMATORY PROCESSES IN THE ORAL CAVITY



Cite item

Full Text

Abstract

Violation of the integrity of the periodontal tissues as in the mechanisms of periodontitis and peri-implantitis, is attributed to immune-mediated diseases. Opening of the TLRs and NLRs receptors enables a new way to consider the pathogenetic aspects of the mechanisms of development of these clinical entities. Interaction of microbial factor with the human body, on the basis of genetic mediation by the immune system in the development of infectious and inflammatory diseases, makes it possible for a new study and interpret the complex symbiotic relationships. The ability to "escape" the oral pathogenic mechanisms of the innate immune system, can lead to diseases in the oral and maxillofacial region.

Keywords

Full Text

Микробиологический фактор, как один из основных в инициации инфекционно-воспалительного процесса в полости рта, не может исключать своего взаимодействия с клеточным звеном врожденного и адаптивного иммунитета. Таким образом, нарушение целостности тканей пародонта как в механизмах пародонтита, так и периимплантита стоит отнести к иммуноопосредованным заболеваниям. Общность клинических проявлений данных нозологических форм может предварительно интерпретироваться схожестью или подобием в механизмах патогенеза обоих заболеваний, результатом которых является деструкция костной ткани. Открытие TLRs, NLRs и RIG рецепторов дало возможность по-новому рассматривать механизмы возникновения и развития врожденного иммунитета при контакте с различными представителями микробной флоры полости рта. Важным событием в иммунологии стало присуждение в 2011 г. Нобелевской премии Брюсу Бойтлеру, возглавлявшему иммунологическую лабораторию университета Тафтса в США, за открытие и клонирование TLR4 рецептора. TLRs- или toll-подобные рецепторы, к которым на сегодняшний день относятся 10 рецепторов, найденных у человека, расположенных как на поверхности, так и внутри клеток, необходимы для распознавания так называемых лигандов. Лигандами являются вещества, напрямую взаимодействующие с иммуноком-петентными клетками, например главным компонентом клеточной стенки грамнегативных бактерий или LPS-липополисахаридом. LPS является лигандом для TLR4, расположенного как на мембране иммуноком-петентных клеток, так и внутри них, на эндосомах. Таким образом, активация данного рецептора может происходить как на поверхности, так и внутри клетки, при попадании бактерий в цитоплазму. Необходимо отметить, что в цитоплазме иммунокомпетентных клеток, вне аппарата Гольджи, возможен синтез белка IL-1 β с помощью белкового кластера, называемого инфламмасомой. Выделяют 4 типа инфламмасом: NLRP1 (NLR содержащая 1 пирин домен, NALP1), NLRP3 (NLR содержащая 3 пирин домена, NALP3), NLRC4 (NLR содержащий каспаз-рекрутируемый домен 4, IPAF) и AIM2 (отсутствующий в меланоме) [1] (см. рисунок на вклейке). Известно, что при взаимодействии лигандов с TLRs сигнал о патогене передается на инфламмасому, что приводит к активации каспазы-1. IL-1 β и IL-18 — основные цитокины, синтезируемые в результате активации данного фермента [2]. Способность микроорганизмов "ускользать" от иммунного ответа может быть одним из факторов специфичности в развитии реакций врожденного иммунитета при взаимодействии с организмом человека. Так, например, патогенные бактерии Porphyromonas gingivalis, синтезирующие множество разновидностей липида А, действуют по-разному на одни и те же TLR2 и TLR4 рецепторы, в качестве как агонистов (активаторов), так и антагонистов (блокаторов), что 19 РОССИЙСКИЙ СТОМАТОЛОГИЧЕСКИЙ ЖУРНАЛ, №4, 2013 препятствует развитию оптимального воспалительного ответа [3]. D. Holzinger показал в своих исследованиях, что Staphylococcus aureus вызывает воспаление через NALP3, что может являться причиной усугубления воспалительного ответа в целом с точки зрения усиления выработки провоспалительных цитокинов на фоне гибели нейтрофилов [4]. Активно изучается экспрессия TLRs рецепторов при взаимодействии с Porphyromonas gingivalis. Так N. Wara-Aswapati в группе с другими исследователями показали важность активации врожденного звена иммунной системы в патогенезе заболеваний хронического периодонтита, а именно увеличение уровня mRNA TLR2, TLR9, но не TLR4 [5]. В работах H. Davanian также была показана роль экспрессии TLR2 в фибробластах десны в развитии механизма хронического периодонтита под воздействием TNFa [6]. Такая тройная защита в виде внеклеточно и вну-триклеточно расположенных TLRs, а также NLRs вроде бы должна максимально быстро распознавать и инактивировать патогенные штаммы. Но, к сожалению, как было сказано выше, в результате эволюции микробная флора, заселяющая нас, научилась приспосабливаться и выживать в условиях человеческого организма. Такие приспособленческие свойства микроорганизмов закрепились на генетическом уровне, поэтому все сложнее становится борьба с патогенными штаммами, вызывающими хронические инфекционно-воспалительные процессы как в пародонте, так и в области установленных дентальных имплантатов. Генетическая предрасположенность к формированию адекватного по силе врожденного иммунного ответа на антигенные детерминанты все чаще становится определяющим фактором исхода лечения того или иного заболевания. Например, известно, что предрасположенность к сепсису в ходе иммунного ответа к инфекции находится под строгим генетическим контролем [7]. Отсюда возникают вопросы: какие генетические аспекты врожденного и адаптивного иммунного ответа могут быть ключевыми звеньями в развитии как пародонтита, так и периимплантита, в чем их схожесть и различие? Каковы сигнальные пути в развитии данных патологий? Какие клетки иммунной системы принимают участие в прогрессировании резорбции костной ткани в области как собственных зубов, так и дентальных имплантатов? И еще многие другие вопросы можно поднимать для решения столь сложной задачи, как поиск основного патогенетического звена в возникновении данных инфекционно-воспалительных заболеваний. Возвращаясь к теме развития врожденного иммунного ответа после контакта с TLRs и активации инфламмасомы, необходимо сказать о возникновении внутрицитозольных сигнальных путей, результатом которых является синтез транскрипционных факторов и апрегуляция генов в ядрах клеток, что ведет за собой синтез провоспалительных и противовоспалительных цитокинов [8]. Направленность в превалирующем синтезе того или иного цитокина может указывать на развитие адаптивного иммунного отве та, возникающего как результат взаимодействия антигенных детерминант с клетками иммунной системы. Так, например, синергизм в работе IL-18 и IL-23 может приводить к развитию Th-17 из-за усиления синтеза IL-17 [2]. Классическое представление о том, что приобретенный иммунитет приходит на смену врожденного при его недостаточной эффективности, несовместимо с современным пониманием механизмов инициации приобретенного иммунного ответа. В действительности резидентные тканевые дендритные клетки (ДК) функционируют в качестве "сенсоров" инвазии патогенов, после контакта с которыми они созревают и мигрируют в лимфоузлы, где активируют наивные Т-клетки [9]. Сегодня адаптивный иммунный ответ характеризуется четырьмя хорошо изученными направлениями дифференцировки T-лимфоцитов: Th1, Th2, Th17, Th-reg-иммунологическая толерантность, исходя из наличия у каждого из них известного транскрипционного фактора. Открытие Th17 полностью изменило концепцию о существовании только двух направлений в диффе-ренцировке T-лимфоцитов [10, 11]. Теперь иммунорегуляция, защита хозяина от бактерий и грибов и патогенез аутоиммунных заболеваний стали рассматриваться совершенно иначе. Необходимо отметить, что Th17-лимфоциты играют огромную роль во внеклеточном иммунном ответе, а также в патогенезе аутоиммунных заболеваний. В них выделяют такие субпопуляции, как IL-17A, IL-17F. В последнее время было выявлено, что данный тип клеток индуцирует пролиферацию костно-мозговых мезенхимальных стволовых клеток человека. Стоит отметить, что IL-17 не только ускоряет пролиферацию стволовых клеток, но и вызывает их миграцию, увеличивает их подвижность и вызывает дифферен-цировку остеобластов [12]. Открытие T-reg лимфоцитов, истинных иммуносупрессоров, дало основание говорить о том, что данный вид иммунного ответа может являться завершающим звеном в развитии инфекционно-воспалительных процессов. Не исключено его участие и в репаративном остеогенезе. Синтез TGF-β является продуктом данного вида иммунного ответа. Известно, что в присутствии TGF-β и IL-6 некоторые популяции Th17-клеток экспрессируют IL-10 наряду с IL-17. IL-10 является противовоспалительным цитокином, который помогает контролировать Th1- и Th2-зависимые процессы [13]. В своих работах Mucida с соавт. показали, что ре-тиноидная кислота (RA) может модулировать диффе-ренцировку T- клеток между Th17- и Treg-популяцией, стимулируя развитие Treg-лимфоцитов и уходя тем самым от дифференцировки в Th17 направлении [14]. Важно обратить внимание на то, что сегодня пародонтит рассматривается с позиции формирования Th17 адаптивного иммунного ответа как реакции иммунной системы на Porphyromonas gingivalis [15]. Таким образом, изучение иммунологических параметров врожденного и адаптивного иммунитета совместно с генетической опосредованностью к распознаванию микробного фактора и возможности его 20 ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ элиминации в качестве патогенетического звена инфекционно-воспалительных заболеваний может открыть новые представления о механизмах возникновения как пародонтита, так и периимплантита.
×

About the authors

V. V Labis

E. A Bazik'an

Moscow state medical and dental University of A. I. Evdokimov

Email: prof.bazikian@gmail.com
Department of propaedeutic dentistry 127473, Moscow

I. G Kozlov

References

  1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010; 140: 821— 32.
  2. Lamkanfi M. Emerging inflammasome effector mechanisms. Nature Rev. Immunology. 2011; 11: 213—20.
  3. Гариб Ф.Ю. Взаимодействие патогенов с врожденным иммунитетом. М.: Издательство Московского университета; 2013.
  4. Holzinger D. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 2012.
  5. Wara-Aswapati N. et al. Induction of Toll-like Receptor Expression by Porphyromonas Gingivalis. J. Periodontal. 2012; 24.
  6. Davanian H. et al. Signaling pathways involved in the regulation of TNFa-induced toll-like receptor 2 expression in human gingival fibroblasts. Cytokine. 2012; 57 (3): 406—16.
  7. Russel J.A. Management of sepsis. N. Engl. J. Med. 355: 1699—713.
  8. Medzitov R.M. et al. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388: 394—7.
  9. Фрейдлин И.С. Взаимосвязи врожденного и приобретенного иммунитета при инфекциях (Ревизия классических догм). Инфекция и иммунитет. 2011; 1 (3): 199—206.
  10. Кетлинский С.А. Th-17 — новая линия дифференцировки T-хелперов: обзор данных. Цитокины и воспаление. 2009; 8 (2): 3—15.
  11. Кологривова И.В. и др. Молекулярные аспекты функционирования T- хелперов 17-го типа. Бюллетень сибирской медицины. 2011; 4: 93—9.
  12. Huang H. et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal steem cells: implications for bone remodeling. Cell Death Differentation. 2009; 16: 1332—43.
  13. McGeachy M.J. et al. TGF-b and IL-6 drive the production of IL-17 and IL-10 by T-cells and restrain T(H)-17 mediated pathology. Nat. Immunol. 2007; 8: 1390—7.
  14. Mucida D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinol acid. Science. 2007; 317: 256—60.
  15. Moutsopoulos N.M. et al. Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis. J. Autoimmun. 2012; 39 (4): 294—303.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies