Biofilm control in urological practice


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Urinary tract infections (UTIs) have long been among the most common diseases. In the structure of the general infectious morbidity, UTIs rank second after acute respiratory viral infection. Every year, researchers note an increasing number of mutations in the genomes of bacteria that cause infectious diseases, which leads to the formation of more and more aggressive forms of pathogens. Patients with infectious diseases of the urinary system have the highest risk of biofilm formation, the frequency of which is directly proportional to the length of time the urethral catheter is located and accounts for more than half of all nosocomial infections. The presence of resistant strains of pathogenic bacteria and the development of bacterial biofilms are major problems in the treatment of urinary tract infections. The increasing number of nosocomial bacterial strains in the hospital increases the postoperative bed-day, the frequency of readmission and the number of antibacterial drugs used. In light of increasing antibacterial resistance, the use of medical resources is dramatically increasing, which ultimately leads to an increase in the cost of treatment. Along with this, the selection of resistant strains brings to the fore both the rational use of antibacterial drugs and the search for alternative methods of therapy. This review of publications on the problem of bacterial biofilm formation in urological practice demonstrates updated information on the role of enzymes, probiotics, and bacteriophages in preventing biofilm formation on various medical biomaterials, such as urethral catheters.

Full Text

Restricted Access

About the authors

A. V Zaitsev

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky

Email: zaitcevandrew@mail.ru
Ph.D., MD, professor at the Department of urology Moscow, Russian Federation; Moscow, Russian Federation

A. O Vasilyev

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky; Research Institute for Healthcare Organization and Medical Management

Email: alexvasilyev@me.com
Ph.D., assistant at the Department of Urology Moscow, Russian Federation; Moscow, Russian Federation; Moscow, Russian

A. A Shiryaev

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky

Email: phd.shiryaev@gmail.com
Ph.D. student, Department of Urology Moscow, Russian Federation; Moscow, Russian Federation

Yu. A Kim

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky

Email: dockimyura@gmail.com
Ph.D. student, Department of Urology Moscow, Russian Federation; Moscow, Russian Federation

O. A Arefieva

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky; Research Institute for Healthcare Organization and Medical Management

Email: oksadoc@yandex.ru
Ph.D., assistant at the Department of urology Moscow, Russian Federation; Moscow, Russian Federation; Moscow, Russian

A. V Govorov

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky

Email: dr.govorov@gmail.com
Ph.D., MD, professor at Department of Urology Moscow, Russian Federation; Moscow, Russian Federation

D. Yu Pushkar

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital n.a. S.I. Spasokukotsky

Email: pushkardm@mail.ru
Ph.D., MD, professor, academician of RAS, Head of the Department of Urology Moscow, Russian Federation; Moscow, Russian Federation

References

  1. Venkatesan N., Perumal G., Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015; 10( 11): 1743-1750. doi: 10.2217/fmb.15.69.
  2. Chevalier M, Ranque S., Precheur I. Oral fungal-bacterial biofilm mo.els in vitro: a review. Med Mycol. 2018;56(6):653-667. doi: 10.1093/mmy/myx111.
  3. Marrie T.J., Nelligan J., Costerton J.W. A scanning an. transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation. 1982;66(6):1339-1341.
  4. Del Pozo J.L. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51-65. doi: 10.1080/14787210.2018.1417036.
  5. Hold V., Rüzicka F. Biofilmove infekce mocovych katetrü. Urinary catheter biofilm infections. Epidemiol Mikrobiol Imunol. 2008; 57(2):47-52.
  6. Перепанова Т.С. Значение инфекций, обусловленных образованием биопленок, в урологической практике. Эффективная фармакотерапия. 2013;37:18-27.
  7. Tarchouna M., Ferjani A., Ben-Selma W., et al. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection.Int J Infect Dis. 2013; 17(6):e450-3. doi: 10.1016/j.iji.2013.01.025.
  8. Lopez-Banda D.A., Carrillo-Casas E.M., Leyva-Leyva M., et al. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. Biomed Res Int. 2014;2014:959206. doi: 10.1155/2014/959206.
  9. Caldwell D.E. Cultivation and study of biofilm communities. In Lappin Scott H.M., Costerton J.W. eds, Microbial Biofilms. Cambridge: Cambridge University Press, 1995: 64-79.
  10. Brown M.R.W. The role of the envelope in resistance. In Brown MRW ed. Resistance of Pseudomonas aeruginosa. London: Wiley, 1997:71-107.
  11. Cozens R.M., Tuomanen E., Tosch W. Evaluation of the bactericidal activity of betta-lactam antibiotics upon slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother. 1986;29:797-802.
  12. Choong S., Whitfield H. Biofilms and their role in infections in urology. BJU Int. 2000;86(8):935 -941. doi: 10.1046/j.1464-410x.2000.00949.x.
  13. Trieu-Cuot P., Carlier C., Martin P., et al. Plasmi. transfer by conjugation from Escherichia coli to gram-positive bacteria. FEMS Microbiol Lett. 1987;48:289-294
  14. Costerton J.W.Introduction to biofilm.Int J Antimicrobial Agents. 1999;11:217-221.
  15. Hola V., Ruzicka F., Horka M. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol Med Microbiol. 2010;59(3):525-528. doi: 10.1111/j.1574-695X.2010.00703.x.
  16. Gunardi W.D., Karuniawati A., Umbas R., et al. Biofilm-Producing Bacteria and Risk Factors (Gender and Duration of Catheterization) Characterized as Catheter-Associated Biofilm Formation.Int J Microbiol. 2021;2021:8869275. doi: 10.1155/2021/8869275.
  17. Swidsinski A., Mendling W., Loening-Baucke V., et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol. 2008;198(1):97.e1-6. doi: 10.1016/j.ajog.2007.06.039.
  18. Tenke P., Kovacs B., Jäckel M., et al. The role of biofilm infection in urology. World J Urol. 2006;24(1): 13-20. Doi: 10. 1007/s00345-005-0050-2.
  19. Nickel J.C. Catheter-associated urinary tract infection: new perspectives on old problems. Can J Infect Control. 1991;6:38-42.
  20. Mosayyebi A., Lange D., Yann Yue Q., et al. Reducing deposition of encrustation in ureteric stents by changing the stent architecture: A microfluidic-based investigation. Biomicrofluidics. 2019; 13(1):014101. doi: 10.1063/1.5059370.
  21. Rebl H., Renner J., Kram W., et al. Prevention of Encrustation on Ureteral Stents: Which Surface Parameters Provide Guidance for the Development of Novel Stent Materials? Polymers (Basel). 2020; 12(3):558. doi: 10.3390/polym12030558.
  22. Wasfi R., Hamed S.M., Amer M.A., et al. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol. 2020;10:414. doi: 10.3389/fcimb.2020.00414.
  23. Yuan F, Huang Z, Yang T, et al. Pathogenesis of Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Urol Int. 2021;10:1-8. doi: 10.1159/000514097.
  24. Lebeaux D., Ghigo J.M., Beloin C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-543. doi: 10.1128/MMBR.00013-14.
  25. Reid G., Habash M., Vachon D., et al. Oral fluoroquinolone therapy results in drug adsorption on ureteral stents and prevention of biofilm formation.Int J Antimicrob Agents. 2001;17(4):317-319; discussion 319-320. doi: 10.1016/s0924-8579(00)00353-8.
  26. Reid G. Biofilms in infectious diseases and on medical devices.Int J Antimicrob Agents. 1999;11:223-226.
  27. Magana M., Sereti C., Ioannidis A., et al. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev. 2018;31(3):e00084-16. doi: 10.1128/CMR.00084-16.
  28. Mlynek K.D., Callahan M.T., Shimkevitch A.V., et al. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother. 2016;60(5):2639-2651. doi: 10.1128/AAC.02070-15.
  29. Ramachandra M., Mosayyebi A., Carugo D., et al. Strategies to Improve Patient Outcomes and QOL: Current Complications of the Design and Placements of Ureteric Stents. Res Rep Urol. 2020;12:303-314. doi: 10.2147/RRU.S233981.
  30. Di'ez-Aguilar M., Canton R. New microbiological aspects of Fosfomycin. Rev Esp Quimioter. 2019; 32(Suppl 1): 8-18.
  31. Sugathan S., Mandal J. An invitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J Med Microbiol. 2019;68( 12): 1699-1706. Doi: 10.1099/ jmm.0.001061.
  32. Rodn'guez-Marti'nez J., Ballesta S., Pascual A. Activity and penetration of fosfomycin, ciprofloxacin, amoxicillin/clavulanic acid and cotrimoxazole in Escherichia coli and Pseudomonas aeruginosa biofilm.Int J Antimicrob Agents. 2007;30(4):366-368. doi: 10.1016/j.ijantimicag.2007.05.005.
  33. van Mens S.P., ten Doesschate T., Kluytmans-van den Bergh MFQ, et al. Fosfomycin Etest for Enterobacteralesceae: Interobserver and interlaboratory agreement.Int J Antimicrob Agents. 2018;52:678-681. doi: 10.1016/j.ijantimicag.2018.06.014.
  34. Shi J., Mao N.F., Wang L., et al. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PLoS One. 2014;9:1-14. doi: 10.1371/journal.pone.0113133.
  35. Mihailescu R., Tafn U.F., Corvec S., et al. High activity of fosfomycin and rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(5):2547-2553. doi: 10.1128/AAC.02420-12.
  36. Tang H.J., Chen C.C., Cheng K.C., et al. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother. 2012;67(4):944-950. doi: 10.1093/jac/dkr535.
  37. Chai D., Liu X., Wang R., et al. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed Res Int. 2016;2016:6413982. doi: 10.1155/2016/6413982.
  38. Oliva A., Furustrand Tafin U., Maiolo E.M., et al. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(3):1284-1293. doi: 10.1128/AAC.02583-12.
  39. Di'ez-Aguilar M., Morosini M.I., Köksal E., et al. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother. 2017;62(1):e01650-1617. doi: 10.1128/AAC.01650-17.
  40. Anderson G.G., Kenney T.F., Macleod D.L., et al. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog Dis. 2013;67(1):39-45. doi: 10.1111/2049-632X.12015.
  41. Algburi A., Comito N., Kashtanov D., et al. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017;83(3):e02508-2516. doi: 10.1128/AEM.02508-16.
  42. de Melo Pereira G.V., Coelho B.D.O., Junior A.I.M., et al. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018;36:2060-2076. doi: 10.1016/j.biotechadv.2018.09.003.
  43. Bermudez-Brito M., Plaza-Diaz J., Munoz-Quezada S., et al. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012;61:160-174. doi: 10.1159/000342079.
  44. Fracchia L., Cavallo M., Giovanna M., et al. Biosurfactants and Bioemulsifiers Biomedical and Related Applications-Present Status and Future Potentials. Biomed. Sci. Eng. Technol. 2012:325-370. doi: 10.5772/23821.
  45. Gudina E.J., Fernandes E.C., Teixeira J.A., et al. Antimicrobial and antiadhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015;5:90960-90968. doi: 10.1039/C5RA11659G.
  46. Morais I.M.C., Cordeiro A.L., Teixeira G.S., et al. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb. Cell Factories. 2017;16:1-15. doi: 10.1186/s12934-017-0769-7.
  47. Sharma D., Saharan B.S. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol. Rep. 2016;11:27-35. doi: 10.1016/j.btre.2016.05.001.
  48. Sambanthamoorthy K., Feng X., Patel R., et al. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 2014; 14:197. doi: 10.1186/1471-2180-14-197.
  49. Okuda K., Zendo T, Sugimoto S., et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013;57(11):5572-5579. doi: 10.1128/AAC.00888-13.
  50. Barzegari A., Kheyrolahzadeh K., Hosseiniyan Khatibi S.M., et al. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect Drug Resist. 2020;13:659-672. doi: 10.2147/IDR.S232982.
  51. Al-Mathkhury H.J.F., Ali A.S., Ghafil J.A. Antagonistic effect ofbacteriocin against urinary catheter associated Pseudomonas aeruginosa biofilm. N. Am. J. Med. Sci. 2011;3:367-370. doi: 10.4297/najms.2011.3367.
  52. Shahandashti R.V., Kermanshahi R.K., Ghadam P. The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turk. J. Med. Sci. 2016;46:1188-1196. doi: 10.3906/sag-1505-51.
  53. Ray Mohapatra A., Jeevaratnam K. Inhibiting bacterial colonization on catheters: Antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. J Glob Antimicrob Resist. 2019;19:85-92. doi: 10.1016/j.jgar.2019.02.021.
  54. Liu Z., Zhang Z., Qiu L., et al. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci. 2017; 100(9):6895-6905. doi: 10.3168/jds.2016-11944.
  55. Sharma V. Harjai K., Shukla G. Effect ofbacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol. 2018;63:181-190. doi: 10.1007/s12223-017-0545-4.
  56. Kim Y., Oh S., Kim S.H. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun. 2009; 379(2):324-329. doi: 10.1016/j.bbrc.2008.12.053.
  57. Abid Y., Casillo.A, Gharsallah H., et al. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria.Int. J. Biol. Macromol. 2018;108:719-728. doi: 10.1016/j.ijbiomac.2017.10.155.
  58. Izano E.A., Wang H., Ragunath C., et al. Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J Dent Res. 2007;86:618-622. doi: 10.1177/154405910708600707.
  59. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., et al. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487. doi: 10.1126/science.295.5559.1487.
  60. Kalpana B.J., Aarthy S., Pandian S.K. Antibiofilm activity of a-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778-1794. doi: 10.1007/s12010-011-9526-2.
  61. Craigen B., Dashiff A., Kadouri D.E. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5:21-31. doi: 10.2174/18742858011050 10021.
  62. Singh V., Verma N., Banerjee B., et al. Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology. 2015;84:59-64. doi: 10.1134/S0026261715010130.
  63. Algburi A., Comito N., Kashtanov D., et al. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017;83(3):e02508-2516. doi: 10.1128/AEM.02508-16.
  64. Donelli G., Francolini I., Romoli D., et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51:2733-2740. doi: 10.1128/AAC.01249-06.
  65. Harper D.R., Parracho H.M., Walker J., et al. Bacteriophages and biofilms. Antibiotics. 2014;3:270-284. doi: 10.3390/antibiotics3030270.
  66. Shariati A., Azimi T., Ardebili A., et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran Iran. New Microbes New Infect. 2018;21:75-80. doi: 10.1016/j.nmni.2017.10.013.
  67. Fajardo A., Marti'nez-Marti'n N., Mercadillo M., et al. The neglected intrinsic resistome of bacterial pathogens. PloS ONE. 2008;3:e1619. doi: 10.1371/journal.pone.0001619.
  68. Yan J., Mao J., Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 2014;28(3):265-274. doi: 10.1007/s40259-013-0081-y.
  69. Hall A.R., De Vos D., Friman V.-P., et al. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol. 2012;78:5646-5652. doi: 10.1128/AEM.00757-12.
  70. Hanlon G.W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections.Int J Antimicrob Agents. 2007;30:118-128. doi: 10.1016/j.ijantimicag.2007.04.006.
  71. Briers Y., Schmelcher M., Loessner M.J., et al. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem Biophys Res Commun. 2009;383:187-191. doi: 10.1016/j.bbrc.2009.03.161.
  72. Hraiech S., Bregeon F., Rolain J.-M. Bacteriophage-base. therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Design Dev Ther. 2015;9:3653. doi: 10.2147/DDDT.S53123.
  73. Pei R., Lamas-Samanamud G.R. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80:5340-5348. doi: 10.1128/AEM.01434-14.
  74. Ceri H., Olson M.E., Stremick C., et al. The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999;37:1771-1776.
  75. Chegini Z., Khoshbayan A., Taati Moghadam M., et al. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. doi: 10.1186/s12941-020-00389-5.
  76. Васильев А.О., Сазонова Н.А., Мельников В.Д., и др. Опыт применения комплексного антибактериального и обезболивающего препарата на основе бактериофагов в гелевой форме у женщин, перенесших различные инструментальные и лечебнодиагностические манипуляции. Гинекология. 2020;22(3):42-48. Клиническая геронтология. 2020;26(1-2):22-28).
  77. Васильев А.О., Зайцев А.В., Ширяев А.А., и др. Бактериофаготерапия в лечении пожилых пациентов с инфекционными осложнениями нижних мочевых путей.
  78. Cadieux P., Watterson J.D., Denstedt J., et al. Potential application of polyisobutylene-polystyrene and a Lactobacillus protein to reduce the risk of device-associated urinary tract infections. Colloids Surf. B Biointerfaces. 2003;28:95-105. doi: 10.1016/S0927-7765(02)00147-9.
  79. Kim A.R., Ahn K.B., Yun C.H., et al. Lactobacillus plantarum Lipoteichoic Aci. Inhibits Oral Multispecies Biofilm. J. Endod. 2019;45:310-315. doi: 10.1016/j.joen.2018.12.007.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies