The investigation of total anti-oxidant capacity and its’ correlation with immunosuppressive drug blood levels after kidney transplantation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Background: Throughout the course of transplantation oxidative stress is a major mediator of adverse outcome. The major objective of this investigation is to measure the total antioxidant capacity (T-AOC) and its’ correlation with immunosuppressive drug levels after kidney transplantation.

Methods: Thirty-five kidney transplanted recipients and thirty-five healthy subjects that matched for age were entered in this study. The obtained data were analyzed using the Statistical Package (SPSS Inc, Chicago, IL, USA). The significance level was set at P<0.05.

Results: In healthy controls, the mean±SD for T-AOC was 91.9±16.6 (U/ml), that was significantly higher when compared to mean value of 27.3±24.1 (U/ml), kidney transplanted recipients (P≤0.01). The mean value of tacrolimus levels was 13.7±5.3 (ng/ml). Correlation between tacrolimus trough levels and TAOC was 0.19 (P≤0.14). There were not any significant differences regarding age in cases and controls (P≤42).

Conclusion: The outcomes of this study suggested that within the limited sample size TAOC in kidney transplanted recipient was lower than controls. Further studies associated with TAOC and clinical outcome after kidney transplantation recommended.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

Tolou-Ghamari Zahra

Isfahan University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: toloeghamari@pharm.mui.ac.ir

Nutrition and Food Security Research Center, Deputy of Research and Technology

Иран, Isfahan

Tadayon Farhad

Isfahan University of Medical Sciences

Email: toloeghamari@pharm.mui.ac.ir

Department of Urology, Faculty of Medicine

Иран, Isfahan

Әдебиет тізімі

  1. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019 Jun;34(6):975-991. doi: 10.1007/s00467-018-4005-4.
  2. Tabriziani H, Lipkowitz MS, Vuong N. Chronic kidney disease, kidney transplantation and oxidative stress: a new look to successful kidney transplantation. Clin Kidney J. 2018 Feb;11(1):130–135. doi: 10.1093/ckj/sfx091.
  3. Dennis JM, Witting PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients. 2017 Jul; 9(7): 718. doi: 10.3390/nu9070718.
  4. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012 Apr; 2(2):1303-53.
  5. Fonseca I, Reguengo H, Almeida M, Dias L, Martins LS, Pedroso S, Santos J, Lobato L, Henriques AS, Mendonça D. Oxidative stress in kidney transplantation: malondialdehyde is an early predictive marker of graft dysfunction. Transplantation. 2014 May 27;97(10):1058-65. doi: 10.1097/01. TP.0000438626.91095.50.
  6. Nafar M, Zahra Sahraei, Jamshid Salamzadeh, Shiva Samavat, Nosartolah D Vaziri. Oxidative stress in kidney transplantation: causes, consequences, and potential treatment. Iran J Kidney Dis. 2011 Nov; 5(6):357-72.
  7. Chrzanowska M, Kamińska J, Głyda M, Duda G, Makowska E. Antioxidant capacity in renal transplant patients. Pharmazie. 2010 May;65(5):363–66.
  8. Perrea DN, Moulakakis KG, Poulakou MV, Vlachos IS, Papachristodoulou A, Kostakis AI. Correlation between oxidative stress and immunosuppressive therapy in renal transplant recipients with an uneventful postoperative course and stable renal function. Int Urol Nephrol. 2006;38(2):343-8. doi: 10.1007/s11255-006-0054-x.
  9. Mazdak H, Tolou Ghamari Z, Gholampour M. Bladder cancer: total antioxidant capacity and pharmacotherapy with vitamin-E. Int Urol Nephrol. 2020. Jul;52(7):1255-1260. doi: 10.1007/s11255-020-02411-3.
  10. Tolou-Ghamari Z, Mortazavi M, Palizban AA, Najafi MR. The investigation of correlation between Iminoral concentration and neurotoxic levels after kidney transplantation. Adv Biomed Res. 2015; 4: 59.
  11. Tadayon F, Shariati A, Tolou-Ghamari Z. Type of vascular anastomosis and early outcome after kidney transplantation. Urologiia. 2021 Jun;3:75–81.
  12. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15:71.
  13. Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal. 2018; 29(13):1237–1272
  14. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015; 23(14):1144–1170.
  15. Terzi F, Ciftci MK. Protective effect of silymarin on tacrolimus-induced kidney and liver toxicity. BMC Complement Med Ther. 2022 Dec 13;22(1):331. doi: 10.1186/s12906-022-03803-x.
  16. Vandewiele S, Herman J, van den Heuvel L, Knops N. A longitudinal study of long-term renal outcome after pediatric liver transplantation in relation to CNI exposure. Pediatr Transplant. 2023 Dec 27: e14677. doi: 10.1111/petr.14677.
  17. Stefanović NZ, Cvetković TP, Jevtović-Stoimenov TM, Zvezdanović-Čelebić LV, Stojanović DR, Ignjatović AM, Živković ND, Veličković-Radovanović RM. Potential role of tacrolimus in erythrocytes’ antioxidative capacity in long-term period after renal transplantation. Eur J Pharm Sci. 2015 Apr 5; 70:132-9. doi: 10.1016/j.ejps.2015.01.013.
  18. Stumpf J, Budde K, Witzke O, Sommerer C, Vogel T, Schenker P, Woitas RP, Opgenoorth M, Trips E, Schrezenmeier E, Hugo C; German S&L Study. Fixed low dose versus concentration-controlled initial tacrolimus dosing with reduced target levels in the course after kidney transplantation: results from a prospective randomized controlled non-inferiority trial (Slow & Low study). EClinicalMedicine. 2023 Dec 22; 67:102381. doi: 10.1016/j.eclinm.2023.102381.
  19. Joncquel M, Labasque J, Demaret J, Bout MA, Hamroun A, Hennart B, Tronchon M, Defevre M, Kim I, Kerckhove A, George L, Gilleron M, Dessein AF, Zerimech F, Grzych G. Targeted Metabolomics Analysis Suggests That Tacrolimus Alters Protection against Oxidative Stress. Antioxidants (Basel). 2023 Jul 12;12(7):1412. doi: 10.3390/antiox12071412.
  20. Deng S, Jin T, Zhang L, Bu H, Zhang P. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1. Mol Med Rep. 2016 Nov;14(5):4124-4134. doi: 10.3892/mmr.2016.5735.
  21. Kidokoro K, Satoh M, Nagasu H, Sakuta T, Kuwabara A, Yorimitsu D, Nishi Y, Tomita N, Sasaki T, Kashihara N. Tacrolimus induces glomerular injury via endothelial dysfunction caused by reactive oxygen species and inflammatory change. Kidney Blood Press Res. 2012;35(6):549-57. doi: 10.1159/000339494.
  22. Chrzanowska M, Kamińska J, Głyda M, Duda G, Makowska E. Antioxidant capacity in renal transplant patients. Pharmazie. 2010 May;65(5):363-6. PMID: 20503930.
  23. Długosz A, Srednicka D, Boratyński J. Wpływ takrolimusu na stres oksydacyjny i procesy wolnorodnikowe [The influence of tacrolimus on oxidative stress and free-radical processes]. Postepy Hig Med Dosw (Online). 2007 Aug 21;61:466-71. Polish. PMID: 17786133.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Analyzed values of T-AOC in kidney transplant recipients and control group

Жүктеу (47KB)
3. Fig. 2. Distribution of Tacrolimus CO and TAOC in kidney transplanted recipients

Жүктеу (171KB)
4. Fig. 3. The Correlation between Tacrolimus TAOC and Tacrolimus C0 in Kidney Transplanted Recipients (n=35)

Жүктеу (57KB)

© Bionika Media, 2024