TISSUE ENGINEERING OF URINARY BLADDER USING ACELLULAR MATRIX


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Introduction. Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. Aim of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Materials and methods Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Results and discussion Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Conclusion Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Glybochko

Sechenov First Moscow State Medical University, Research Institute for Uronephrology and Human Reproductive Health

Email: rectorat@mma.ru
Academician of the RAS, Dr.Med.Sci., Prof., Rector; Director Moscow, Russia

Yu. Olefir

Scientific Center on Expertise of Medical Application Products of Minzdrav of Russia

Email: olefir@expmed.ru
Dr.Med.Sci., Director General Moscow, Russia

Yu. Alyaev

Sechenov First Moscow State Medical University, Research Institute for Uronephrology and Human Reproductive Health

Email: ugalyaev@mail.ru
Corr.-Member of the RAS, Dr.Med.Sci., Professor, Head of Department of Urology; Chairman of the Russian Society of Urology Moscow, Russia

D. Butnaru

Institute for Regenerative medicine

Email: butnaru_dv@mail.ru
PhD, Director Moscow, Russia

E. Bezrukov

Sechenov First Moscow State Medical University, Research Institute for Uronephrology and Human Reproductive Health

Email: cabezrukov@rambler.ru
Dr.Med.Sci., Prof. at the Department of Urology Moscow, Russia

A. Chaplenko

Scientific Center on Expertise of Medical Application Products of Minzdrav of Russia

Email: a.a.chaplenko@yandex.ru
Expert at the Laboratory of Biomedical Cell Products Moscow, Russia

T. Zharikova

Sechenov First Moscow State Medical University, Research Institute for Uronephrology and Human Reproductive Health

Email: tanyushaz@mail.ru
Researcher Moscow, Russia

Әдебиет тізімі

  1. Kramer-Schultheiss K.S., Schultheiss D. From wound healing to modern tissue engineering of the skin. A historical review on early techniques of cell and tissue culture. Hautarzt. 2002;53( 11):751-760. Doi: 10.1007/ s00105-002-0445-6. PubMed PMID: 12402139.
  2. Atala A. Recent developments in tissue engineering and regenerative medicine. Curr Opin Pediatr. 2006; 18(2): 167-71. doi: 10.1097/01. mop.0000193294.94646.be. PubMed PMID: 16601497.
  3. Gucciardo L., De Koninck P., Verfaillie C., Lories R., Deprest J. Perception and knowledge about stem cell and tissue engineering research: a survey amongst researchers and medical practitioners in perinatology. Stem cell reviews. 2014;10(4):447-54. doi: 10.1007/s12015-014-9506-3. PubMed PMID: 24647632.
  4. Neuhof H., Wolf H., Rohtermundt R., Michnacs H. Effect of plasma substitute solutions on oxygen uptake in hemorrhagic shock (animal experiments). Bibliotheca haematologica. 1971;37:313-319.
  5. Gleeson M.J., Griffith D.P. The use of alloplastic biomaterials in bladder substitution. The Journal of urology. 1992;148(5):1377-1382.
  6. Probst M., Piechota H.J., Hohenfellner M., Gleason C.A., Tanagho E.A. Neurostimulation for bladder evacuation: is sacral root stimulation a substitute for microstimulation? British journal of urology. 1997;79(4):554-566.
  7. Fujita K. The use of resin-sprayed thin paper for urinary bladder regeneration. Investigative urology. 1978;15(5):355-357.
  8. Rohrmann D., Albrecht D., Hannappel J., Gerlach R., Schwarzkopp G., Lutzeyer W. Alloplastic replacement of the urinary bladder. The Journal of urology. 1996;156(6):2094-2097.
  9. McDougal W.S. Metabolic complications of urinary intestinal diversion. The Journal of urology. 1992;147(5):1199-1208.
  10. Soergel T.M., Cain M.P., Misseri R., Gardner T.A., Koch M.O., Rink R.C. Transitional cell carcinoma of the bladder following augmentation cystoplasty for the neuropathic bladder. The Journal of urology. 2004;172(4):1649-1651.
  11. Atala A. Tissue engineering of human bladder. British medical bulletin. 2011;97:81-104. doi: 10.1093/bmb/ldr003.
  12. Piechota H.J., Gleason C.A., Dahms S.E., Dahiya R., Nunes L.S., Lue T.F., Tanagho E.A. Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder. Urological research. 1999;27(3):206-213.
  13. Kanematsu A., Yamamoto S., Noguchi T., Ozeki M., Tabata Y., Ogawa O. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. The Journal of urology. 2003;170(4):1633-8. doi: 10.1097/01.ju.0000084021.51099.8a.
  14. Kropp B.P., Cheng E.Y., Lin H.K., Zhang Y. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. The Journal of urology. 2004;172(4):1710-1713.
  15. Nuininga J.E., van Moerkerk H., Hanssen A., Hulsbergen C.A., Oosterwijk-Wakka J., Oosterwijk E., de Gier R.P., Schalken J.A., van Kuppevelt T.H., Feitz W.F. A rabbit model to tissue engineer the bladder. Biomaterials. 2004;25(9):1657-1661.
  16. Cartwright L., Farhat W.A., Sherman C., Chen J., Babyn P., Yeger H., Cheng H.L. Dynamic contrast-enhanced MRI to quantify VEGF-enhanced tissue-engineered bladder graft neovascularization: pilot study. J Biomed Mater Res A. 2006;77(2):390-5. doi: 10.1002/jbm.a.30648.
  17. Obara T., Matsuura S., Narita S., Satoh S., Tsuchiya N., Habuchi T. Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat. Urology. 2006;68(4):892-7. doi: 10.1016/j. urology.2006.04.030.
  18. Hattori K., Joraku A., Miyagawa T., Kawai K., Oyasu R., Akaza H. Bladder reconstruction using a collagen patch prefabricated within the omentum. International Journal of Urology. 2006; 13(5):529-37. doi: 10.1111/j.1442-2042.2006.01351.x.
  19. Cheng H.L., Wallis C., Shou Z., Farhat W.A. Quantifying angiogenesis in VEGF-enhanced tissue-engineered bladder constructs by dynamic contrast-enhanced MRI using contrast agents of different molecular weights. J Magn Reson Imaging. 2007;25( 1): 137-45. doi: 10.1002/ jmri.20787.
  20. Iijima K., Igawa Y., Imamura T., Moriizumi T., Nikaido T., Konishi I., Nishizawa O. Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue engineering. 2007;13(3):513-24. doi: 10.1089/ten.2006.0170.
  21. Urakami S., Shiina H., Enokida H., Kawamoto K., Kikuno N., Fandel T., Vejdani K., Nunes L., Igawa M., Tanagho E.A., Dahiya R. Functional improvement in spinal cord injury-induced neurogenic bladder by bladder augmentation using bladder acellular matrix graft in the rat. World journal of urology. 2007;25(2):207-13. doi: 10.1007/s00345-006-0142-7.
  22. Yu D.S., Lee C.F., Chen H.I., Chang S.Y. Bladder wall grafting in rats using salt-modified and collagen-coated polycaprolactone scaffolds: preliminary report. International journal of urology : official journal of the Japanese Urological Association. 2007; 14(10):939-944. doi: 10.1111/j.1442-2042.2007.01871.x.
  23. Kikuno N., Kawamoto K., Hirata H., Vejdani K., Kawakami K., Fandel T., Nunes L., Urakami S., Shiina H., Igawa M., Tanagho E., Dahiya R. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration ofbladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder. BJU international. 2009;103(10):1424-8. doi: 10.1111/j.1464-410X.2008.08129.x.
  24. Roth C.C., Bell C.H., Woodson B., Schultz A.D., Palmer B.W., Frimberger D., Fung K.M., Lin H.K., Kropp B.P. Temporal differentiation and maturation of regenerated rat urothelium. BJU international. 2009;103(6):836-41. doi: 10.1111/j.1464-410X.2008.08231.x.
  25. Chen W., Shi C., Yi S., Chen B., Zhang W., Fang Z., Wei Z., Jiang S., Sun X., Hou X., Xiao Z., Ye G., Dai J. Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor. The Journal of urology. 2010;183(6):2432-9. doi: 10.1016/j.juro.2010.02.042.
  26. Evren S., Loai Y., Antoon R., Islam S., Yeger H., Moore K., Wong K., Gorczynski R., Farhat W.A. Urinary bladder tissue engineering using natural scaffolds in a porcine model: role of Toll-like receptors and impact of biomimetic molecules. Cells, tissues, organs. 2010;192(4):250-61. doi: 10.1159/000317332.
  27. Loai Y., Yeger H., Coz C., Antoon R., Islam S.S., Moore K., Farhat W.A. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. Journal of biomedical materials research Part A. 2010;94(4):1205-15. doi: 10.1002/jbm.a.32777.
  28. Lu M., Zhou G., Liu W., Wang Z., Zhu Y., Yu B., Zhang W., Cao Y. Remodeling of buccal mucosa by bladder microenvironment. Urology. 2010;75(6):1514.e7-14. doi: 10.1016/j.urology.2009.12.060.
  29. Ashley R.A., Roth C.C., Palmer B.W., Kibar Y., Routh J.C., Fung K.M., Frimberger D., Lin H.K., Kropp B.P. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU International. 2010; 105( 10): 1462-1468. Doi: 10.1111/j. 1464-410X.2009.08965.x.
  30. Eberli D., Atala A., Yoo J.J. One and four layer acellular bladder matrix for fascial tissue reconstruction. Journal of materials science Materials in medicine. 2011;22(3):741-51. doi: 10.1007/s10856-011-4242-6.
  31. Gomez P. 3rd1, Gil E.S., Lovett M.L., Rockwood D.N., Di Vizio D., Kaplan D.L., Adam R.M., Estrada C.R. Jr., Mauney J.R. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials. 2011;32(30):7562-70. doi: 10.1016/j.biomaterials. 2011.06.067.
  32. Roth C.C., Mondalek F.G., Kibar Y., Ashley R.A., Bell C.H., Califano J.A., Madihally S.V., Frimberger D., Lin H.K., Kropp B.P. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU international. 2011;108(1):148-1455. doi: 10.1111/j.1464-410X.2010.09757.x.
  33. Zhu W.D., Xu Y.M., Feng C., Fu Q., Song L.J. Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe - Ausgabe A. 2011;50(11):1420-5. doi: 10.1007/s00120-011-2627-2.
  34. Domingos A.L.A., Garcia S.B., de Bessa J., Cassini M.F., Molina C.A.F., Junior S.T. Expression of VEGF and collagen using a latex biomembrane as bladder replacement in rabbits. International Braz J Urol. 2012;38(4): 536-543. doi: 10.1590/S1677-55382012000400014.
  35. Shakhssalim N., Dehghan M.M., Moghadasali R., Soltani M.H., Shabani I., Soleimani M. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation. Urology J. 2012;9(1):410-419.
  36. Thangappan R., Eandi J.A., Modi J., Kurzrock E.A. Epithelium-free bladder wall graft: Epithelial ingrowth and regeneration-clinical implications for partial cystectomy. J Urology. 2012;187(4): 1450-1457. Doi: 10.1016/j. juro.2011.12.014.
  37. Tu D.D., Seth A., Gil E.S., Kaplan D.L., Mauney J.R., Estrada Jr C.R. Evaluation of biomaterials for bladder augmentation using cystometric analyses in various rodent models. Journal of visualized experiments : JoVE. 2012;66.
  38. Del Gaudio C., Vianello A., Bellezza G., Maulà V., Sidoni A., Zucchi A., Bianco A., Porena M. Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomedical materials (Bristol, England). 2013;8(4):045013. doi: 10.1088/1748-6041/8/4/045013.
  39. Roelofs L.A., Kortmann B.B., Oosterwijk E., Eggink A.J., Tiemessen D.M., Crevels A.J., Wijnen R.M., Daamen W.F., van Kuppevelt T.H., Geutjes P.J., Feitz W.F. Tissue engineering of diseased bladder using a collagen scaffold in a bladder exstrophy model. BJU international. 2014;114(3):447-457.
  40. Zhou L., Yang B., Sun C., Qiu X., Sun Z., Chen Y., Zhang Y., Dai Y. Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model. Tissue engineering Part A. 2013; 19(1-2):264-276. doi: 10.1089/ten.TEA.2011.0609.
  41. Tu D.D., Chung Y.G., Gil E.S., Seth A., Franck D., Cristofaro V., Sullivan M.P., Di Vizio D., Gomez P. 3rd, Adam R.M., Kaplan D.L., Estrada C.R. Jr, Mauney J.R. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty. Biomaterials. 2013;34(34):8681-8689. Doi: 10.1016/j. biomaterials.2013.08.001.
  42. Chung Y.G., Algarrahi K., Franck D., Tu D.D., Adam R.M., Kaplan D.L., Estrada C.R. Jr, Mauney J.R. The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury. Biomaterials. 2014;35(26):7452- 7459. doi: 10.1016/j.biomaterials.2014.05.044.
  43. Wang Y., Liao L. Histologic and functional outcomes of small intestine submucosa-regenerated bladder tissue. BMC urology. 2014; 14:69. doi: 10.1186/1471-2490-14-69.
  44. Sun Y., Geutjes P., Oosterwijk E., Heerschap A. In vivo magnetic resonance imaging of type I collagen scaffold in rat: improving visualization of bladder and subcutaneous implants. Tissue engineering Part C, Methods. 2014;20(12):964-71. doi: 10.1089/ten.TEC.2014.0046.
  45. Sabetkish N., Kajbafzadeh A.M., Sabetkish S., Tavangar S.M. Augmentation cystoplasty using decellularized vermiform appendix in rabbit model. Journal of pediatric surgery. 2014;49(3):477-483. doi: 10.1016/j.jpedsurg.2013.07.016.
  46. Horst M., Milleret V., Noetzli S., Gobet R., Sulser T., Eberli D. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. Journal of biomedical materials research Part B, Applied biomaterials. 2015. doi: 10.1002/jbm.b.33591.
  47. Zhao Y., He Y., Zhou Z., Guo J.H., Wu J.S., Zhang M., Li W., Zhou J., Xiao D.D., Wang Z., Sun K., Zhu Y.J., Lu M.J. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta biomaterialia. 2015;23:91-102. doi: 10.1016/j.actbio. 2015.05.032.
  48. Kajbafzadeh A.M., Khorramirouz R., Sabetkish S., Ataei Talebi M., Akbarzadeh A., Keihani S. In vivo regeneration of bladder muscular wall using decellularized colon matrix: an experimental study. Pediatric surgery international. 2016. doi: 10.1007/s00383-016-3871-8

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2017

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>