A role of fructose in urinary stone formation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Obesity is one of the actual problems of modern medicine. The comorbid conditions in patients with obesity and metabolic syndrome have no less important value, attracting the attention of scientists and clinicians. Renal stone disease is one these diseases. We are interested in its development, which is directly related to the effect of excess amounts of such a monosaccharide, as fructose. For quite a long time, this carbohydrate was considered to have only positive properties, including its role in carbohydrate metabolism in general, and, in particular, in diabetes mellitus. Over the years, a pathological effect of excess fructose was detected. Since fructose was used to replace glucose, and accordingly, its amount in food, and especially in diabetic foods, was growing. In addition, the industrial production of corn-based fructose has become much less expensive than the production of sucrose, which has also contributed to the increased use of this monosaccharide in the food industry. In this article, the mechanisms leading to the development of pathologies which are associated with the excessive use of fructose, increase in the level of uric acid with subsequent formation of uric acid stones, are reviewed. Thus, the study of the effect of fructose on the pathogenesis of renal stone disease is interesting and extremely relevant, since for many specialists, it is animal protein that is associated with the development of kidney stone disease and the role of fructose is not only unobvious, but is also a revelation.

Full Text

Restricted Access

About the authors

Z. Sh Pavlova

Medical Scientific and Educational Center of Lomonosov Moscow State University

Email: zukhra73@gmail.com
Ph.D

I. I Golodnikov

Moscow State University by Lomonosov; Moscow State University by Lomonosov

Faculty of Fundamental Medicine; Head of the Department of Urology and Andrology, Faculty of Fundamental Medicine

A. A. Kamalov

Medical Scientific and Educational Center of Lomonosov Moscow State University

Email: armais.kamalov@rambler.ru
Academician of the RAS, MD, professor, Director

A. N Nizov

Medical Scientific and Educational Center of Lomonosov Moscow State University; Moscow State University by Lomonosov

Email: nizovale@gmail.com
urologist; Ph.D. student of the Faculty of Fundamental Medicine

References

  1. Romero V., Akpinar H., Assimos D.G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12(2-3):e86-96.
  2. Khan S.R. Nephrocalcinosis in animal models with and without stones. Urol Res. 2010;38(6):429-38. doi: 10.1007/s00240-010-0303-4.
  3. Hall P.M. Nephrolithiasis: treatment, causes, and prevention. Cleve Clin J Med. 2009;76(10):583-91. doi: 10.3949/ccjm.76a.09043.
  4. Wong Y., Cook P., Roderick P., Somani B.K. Metabolic Syndrome and Kidney Stone Disease: A Systematic Review of Literature. J Endourol. 2016;30(3):246-53. doi: 10.1089/end.2015.0567.
  5. Rozhkova T.A., Ameliushkina V.A., Iarovaia E.B., Kotkina T.I., Malusheva P.P., Titov V.N. The hyperuricosuria in patients with high content of triglycerides: the combination of genetic and environmental factors and tactics of treatment. Klin Lab Diagn. 2012;6:3-8.
  6. Abdelmalek M.F., Suzuki A., Guy C., Unalp-Arida A., Colvin R., Johnson R.J., Diehl A.M. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1961-71. doi: 10.1002/hep.23535.
  7. Vos M.B., Lavine J.E. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013;57(6):2525-31. doi: 10.1002/hep.26299.
  8. Wu X.W., Lee C.C., Muzny D.M., Caskey C.T. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci USA. 1989;86(23):9412-9416.
  9. Huang W., Deng Y., He Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron. 2017;91:89-94. Doi: 10.1016/j. bios.2016.12.028.
  10. Martillo M.A., Nazzal L., Crittenden D.B. The crystallization of monosodium urate. Curr Rheumatol Rep. 2014;16(2):400. doi: 10.1007/s11926-013-0400-9.
  11. Jin M., Yang F., Yang I., Yin Y., Luo J.J., Wang H., Yang X.F. Uric acid, hyperuricemia and vascular diseases. Front Biosci (Landmark Ed). 2012;17:656-669.
  12. Daudon M., Frochot V. Crystalluria. Clin Chem Lab Med. 2015;53(Suppl. 2):s1479-87. doi: 10.1515/cclm-2015-0860.
  13. Halperin M.L., Cheema Dhadli S., Kamel K.S. Physiology of acid-base balance: links with kidney stone prevention. Semin Nephrol. 2006;26(6):441-46. doi: 10.1016/j.semnephrol.2006.10.001.
  14. Walter F., et al. Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders, 2005. P. 852.
  15. Nagami G.T. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest. 1988;81(1):159-164. Doi: 10.1172/ jci113287.
  16. Klisic J., Hu M.C., Nief V., Reyes L., Fuster D., Moe O.W., Ambuhl P.M. Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol. 2002;283(3):F532-9. doi: 10.1152/ajprenal.00365.2001.
  17. Johnson R.J., Segal M.S., Sautin Y., Nakagawa T., Feig D.I., Kang D.H., Gersch M.S., Benner S., Sanchez-Lozada L.G. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86(4):899-906. doi: 10.1093/ajcn/86.4.899.
  18. Bray G.A. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr. 2013;4(2):220-25. doi: 10.3945/an.112.002816.
  19. Douard, V. and R.P. Ferraris, The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol, 2013. 591(2). P. 401-414. doi: 10.1113/jphysiol.2011.215731.
  20. Karim S., Adams D.H., Lalor P.F. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol. 2012;18(46):6771-6781. doi: 10.3748/wjg.v18.i46.6771.
  21. Teff K.L., Grudziak J., Townsend R.R., Dunn T.N., Grant R.W., Adams S.H., Keim N.L., Cummings B.P., Stanhope K.L., Havel P.J. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab. 2009;94(5):1562- 1569. doi: 10.1210/jc.2008-2192.
  22. van den Berghe G., Bronfman M., Vanneste R., Hers H.G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977; 162(3):601-669.
  23. Bais R., James H.M., Rofe A.M., Conyers R.A. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol. Biochem J. 1985;230(1):53-60.
  24. Le M.T., Frye R.F., Rivard C.J., Cheng J., McFann K.K., Segal M.S., Johnson R.J., Johnson J.A. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism. 2012;61(5):641-651. doi: 10.1016/j.metabol.2011.09.013.
  25. Lin W.T., Chan T.F., Huang H.L., Lee C.Y., Tsai S., Wu P.W., Yang Y.C., Wang T.N., Lee C.H. Fructose-Rich Beverage Intake and Central Adiposity, Uric Acid, and Pediatric Insulin Resistance. J Pediatr. 2016;171:90-96.e1. doi: 10.1016/j.jpeds.2015.12.061.
  26. Carran E.L., White S.J., Reynolds A.N., Haszard J.J., Venn B.J. Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: a randomised controlled trial. Eur J Clin Nutr. 2016;70(9):1034-1038. doi: 10.1038/ejcn.2016.112.
  27. Raivio K.O., Becker A., Meyer L.J., Greene M.L., Nuki G., Seegmiller J.E. Stimulation of human purine synthesis de novo by fructose infusion. Metabolism. 1975;24(7):861-869.
  28. Yan L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 2018;1(1):7-13. Doi: 10.1002/ ame2.12001.
  29. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038. doi: 10.1155/2007/61038.
  30. Tsugawa T., Shinohara R., Nagasaka A., Nakano I., Takeda F., Nagata M., Oda N., Sawai Y., Hayakawa N., Suzuki A., Itoh M. Alteration of urinary sorbitol excretion in WBN-kob diabetic rats - treatment with an aldose reductase inhibitor. J Endocrinol. 2004;181(3):429-435.
  31. Gabbay K.H. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288(16):831-836. doi: 10.1056/nejm197304192881609.
  32. Choi Y.J., Yoon Y., Lee K.Y., Hien T.T., Kang K.W., Kim K.C., Lee J., Lee M.Y., Lee S.M., Kang D.H., Lee B.H. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis.Faseb J. 2014;28(7):3197-31204. Doi: 10.1096/ fj.13-247148.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies