PSMA-targeted therapy in the treatment of metastatic castration-resistant prostate cancer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Introduction. Metastatic castration-resistant prostate cancer (mCRPC) is the most severe form of prostate cancer, developing in about 30% of patients; standard approaches of its treatment often remain ineffective. The development of theranostics principle and the discovery of the prostate-specific membrane antigen (PSMA) make it possible to implement a new approach in the treatment of patients with mCRPC – PSMA-targeted therapy. It is based on the use of a specific radionuclide (alpha or beta-minus emitter) associated with a ligand (radioligand) that binds to PSMA and has a targeted effect on tumor cells. One of the advantages of this technique in mCRPC is simultaneous diagnostics and treatment of the disease (the basic principle of the theranostics). The high specificity of PSMA-targeted therapy in combination with increased expression of PSMA by cancer cells allows to treat numerous distant metastases, slowing down the progression of the disease and improving the patient’s condition.

Aim. Review of the main approaches to the use of PSMA and radionuclides to treat patients with mCRPC as part of PSMA-targeted therapy.

Conclusions. The most preferred method to treat patients with mCRPC is β--radionuclide therapy, since β--radiation isotopes have a «crossfire effect» and relatively low toxicity and are available for use. The most optimal radionuclide from the group of β-emitters is lutetium-177 – 177Lu (PSMA radioligands: 177Lu-PSMA-617 and 177Lu-PSMA-I&T). Despite the large number of β--radionuclide therapy advantages, it is also possible to use α-radionuclide therapy; actinium-225-225Ac (PSMA radioligand: 225Ac-PSMA) therapy is more toxic to the body, however, it can be considered as a second line or escape medication for patients with mCRPC and previous ineffective β--therapy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Shapovalenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: roman.shap99@gmail.com
ORCID iD: 0000-0002-0657-7172

3rd year student 

Ресей, Moscow

A. Shpikina

Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: a.d.shpikina@yandex.ru
Scopus Author ID: 57218489879

2nds year postgraduate student 

Ресей, Moscow

A. Morozov

Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Хат алмасуға жауапты Автор.
Email: Andrei.o.morozov@gmail.com
ORCID iD: 0000-0001-6694-837X

senior researcher 

Ресей, Moscow

M. Gazimiev

Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: gazimiev@yandex.ru
ORCID iD: 0000-0002-8398-1865

M.D., PhD., professor 

Ресей, Moscow

D. Enikeev

Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University); Medical University of Vienna; Rabin Medical Center; Tel Aviv University

Email: dvenikeev@gmail.com
ORCID iD: 0000-0001-7169-2209

M.D., PhD., professor at the Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Ресей, Moscow; Vienna, Austria; Petach Tiqwa, Israel; Tel Aviv, Israel

Әдебиет тізімі

  1. el Fakiri M., Geis N.M., Ayada N., Eder M., Eder A.C. PSMA-targeting radiopharmaceuticals for prostate cancer therapy: Recent developments and future perspectives. Cancers. 2021;13(16):3967. doi: 10.3390/cancers13163967.
  2. World Health Organization. Cancer Today. Available online: https://gco.iarc.fr/today/home
  3. Zhang H., Koumna S., Pouliot F., Beauregard J.M., Kolinsky M. PSMA theranostics: Current landscape and future outlook. Cancers. 2021;13(16):4023. doi: 10.3390/cancers13164023.
  4. Slusher B.S., Rojas C., Coyle J.T. Glutamate Carboxypeptidase II. Handbook of Proteolytic Enzymes. 2013;2:1620–1627. doi: 10.1016/B978-0-12-382219-2.00368-9.
  5. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine – PubMed. https://pubmed.ncbi.nlm.nih.gov/10754531/ (accessed Dec. 24, 2022).
  6. Mokoala K. et al. PSMA theranostics: Science and practice. Cancers. 2021;13(15):3904. doi: 10.3390/cancers13153904.
  7. Davis M.I., Bennett M.J., Thomas L.M., Bjorkman P.J. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci U S A. 2005;102(17):5981–5986. doi: 10.1073/PNAS.0502101102/SUPPL_FILE/02101FIG5.JPG.
  8. Murshed H. Fundamentals of radiation oncology: physical, biological, and clinical aspects. 2019, Accessed: Dec. 24, 2022. [Online]. Available: https://books.google.com/books?hl=ru&lr=&id=UpqCDwAAQBAJ&oi=fnd&pg=PP1&dq=+Murshed,+H.+Radiation+Biology.+In+Fundamentals+of+Radiation+Oncology%3B+Elsevier:+Amsterdam,+The+Netherlands,+2019%3B+pp.+57%E2%80%9387&ots=KtAlW1KTKZ&sig=rTABIM9QDEA__338KiL5YEGrq_E
  9. Kassis A.I. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–366. doi: 10.1053/J.SEMNUCLMED.2008.05.002.
  10. Enger S.A., Hartman T., Carlsson J., Lundqvist H. Cross-fire doses from beta-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys Med Biol. 2008;53(7):1909–1920. doi: 10.1088/0031-9155/53/7/007.
  11. Ruigrok E.A.M. et al. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur J Nucl Med Mol Imaging. 2021;48(5):1339–1350. doi: 10.1007/S00259-020-05057-6.
  12. Hofman M.S. et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825–833. doi: 10.1016/S1470-2045(18)30198-0.
  13. Sartor O. et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021;385(12):1091–1103. doi: 10.1056/NEJMOA2107322.
  14. Violet J. et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of 177Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med. 2020;61(6):857–865. doi: 10.2967/JNUMED.119.236414.
  15. Marinova M. et al. Improving quality of life in patients with metastatic prostate cancer following one cycle of 177Lu-PSMA-617 radioligand therapy: a pilot study. Nuklearmedizin. 2020;59(6):409–414. doi: 10.1055/A-1234-5891.
  16. Lord C.J., Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–294. doi: 10.1038/NATURE10760.
  17. Nonnekens J. et al. Potentiation of Peptide Receptor Radionuclide Therapy by the PARP Inhibitor Olaparib. Theranostics. 2016;6(11):1821–1832. doi: 10.7150/THNO.15311.
  18. Chalmers A.J. Poly(ADP-ribose) polymerase-1 and ionizing radiation: sensor, signaller and therapeutic target. Clin Oncol (R Coll Radiol). 2004;16(1):29–39, 2004, doi: 10.1016/S0936-6555(03)00223-1.
  19. de Wit R. et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med. 2019;381(26):2506–2518. doi: 10.1056/NEJMOA1911206.
  20. Heck M.M. et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with 177Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2019;75(6):920–926. doi: 10.1016/J.EURURO.2018.11.016.
  21. Yadav M.P., Ballal S., Sahoo R.K., Dwivedi S.N., Bal C. Radioligand Therapy With 177Lu-PSMA for Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol. 2019;213(2):275–285. doi: 10.2214/AJR.18.20845.
  22. Seifert R. et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [ 177 Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. doi: 10.1007/s00259-020-05040-1/Published.
  23. Leibowitz R. et al. A Retrospective Analysis of the Safety and Activity of Lutetium-177-Prostate-Specific Membrane Antigen Radionuclide Treatment in Older Patients with Metastatic Castration-Resistant Prostate Cancer. Oncologist. 2020;25(9):787–792. doi: 10.1634/THEONCOLOGIST.2020-0100.
  24. Hofman M.S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797–804. doi: 10.1016/S0140-6736(21)00237-3.
  25. Gunawardana D.H., Lichtenstein M., Better N., Rosenthal M. Results of strontium-89 therapy in patients with prostate cancer resistant to chemotherapy. Clin Nucl Med. 2004;29(2):81–85. doi: 10.1097/01.RLU.0000109721.58471.44.
  26. Hao G., Mastren T., Silvers W., Hassan G., Öz O.K., Sun X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep. 2021;11(1):3622. doi: 10.1038/S41598-021-82812-1.
  27. Riaz A., Awais R., Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4. doi: 10.3389/FONC.2014.00198.
  28. McCready V.R. Radioiodine – the success story of Nuclear Medicine : 75th Anniversary of the first use of Iodine-131 in humans. Eur J Nucl Med Mol Imaging. 2017;44(2):179–182. doi: 10.1007/S00259-016-3548-5.
  29. Gracheva N. et al. Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharm Chem. 2019;4(1). doi: 10.1186/S41181-019-0063-6.
  30. Kassis A., et al. Radiobiologic principles in radionuclide therapy. Soc Nuclear Med, Accessed: Dec. 24, 2022. [Online]. Available: https://jnm.snmjournals.org/content/46/1_suppl/4S.short
  31. Pouget J.P. et al. Clinical radioimmunotherapy--the role of radiobiology. Nat Rev Clin Oncol. 2011;8(12):720–734. doi: 10.1038/NRCLINONC.2011.160.
  32. Graf F. et al. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy. PLoS One. 2014;9(2). doi: 10.1371/JOURNAL.PONE.0088239.
  33. Morgenstern A., Bruchertseifer F. Development of Targeted Alpha Therapy from Bench to Bedside. J Med Imaging Radiat Sci. 2019;50(4S1):S18–S20. doi: 10.1016/J.JMIR.2019.06.046.
  34. Sgouros G. Dosimetry, Radiobiology and Synthetic Lethality: Radiopharmaceutical Therapy (RPT) With Alpha-Particle-Emitters. Semin Nucl Med. 2020;50(2):124–132. doi: 10.1053/J.SEMNUCLMED.2019.11.002.
  35. de Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals (Basel). 2015;8(2):321–336. doi: 10.3390/PH8020321.
  36. Kratochwil C. et al. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med. 2017;58(10):1624–1631. doi: 10.2967/JNUMED.117.191395.
  37. Feuerecker B. et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur Urol. 2021;79(3):343–350. doi: 10.1016/J.EURURO.2020.11.013.
  38. Sen I. et al. Therapeutic efficacy of 225Ac-PSMA-617 targeted alpha therapy in patients of metastatic castrate resistant prostate cancer after taxane-based chemotherapy. Ann Nucl Med. 2021;35(7):794–810. doi: 10.1007/S12149-021-01617-4.
  39. van der Doelen M.J. et al. Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urol Oncol. 2021;39(10):729.e7-729.e16. doi: 10.1016/J.UROLONC.2020.12.002.
  40. Sathekge M. et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46(1):129–138. doi: 10.1007/S00259-018-4167-0.
  41. Sathekge M.M. et al. Treatment of brain metastases of castration-resistant prostate cancer with 225Ac-PSMA-617. Eur J Nucl Med Mol Imaging. 2019;46(8):1756–1757. doi: 10.1007/S00259-019-04354-Z.
  42. Pelletier K., Côté G., Fallah-Rad N., John R., Kitchlu A. CKD After 225Ac-PSMA617 Therapy in Patients With Metastatic Prostate Cancer. Kidney Int Rep. 2020;6(3):853–856. doi: 10.1016/J.EKIR.2020.12.006.
  43. Deshayes E. et al. Radium 223 dichloride for prostate cancer treatment. Drug Des Devel Ther. 2017;11:643–2651. doi: 10.2147/DDDT.S122417.
  44. Müller C. et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2017;1. doi: 10.1186/S41181-016-0008-2.
  45. Lindegren S., Albertsson P., Bäck T., Jensen H., Palm S., Aneheim E. Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure. Cancer Biother Radiopharm. 2020; 35(6):425–436. doi: 10.1089/CBR.2019.3055.
  46. Wilbur D.S. [211At]Astatine-Labeled Compound Stability: Issues with Released [211At]Astatide and Development of Labeling Reagents to Increase Stability”. Current Radiopharmaceuticals. 2008;1(3):144–176. doi: 10.2174/1874471010801030144.
  47. Ayed T. et al. (211)At-labeled agents for alpha-immunotherapy: On the in vivo stability of astatine-agent bonds. Eur J Med Chem. 2016;16:156–164. doi: 10.1016/J.EJMECH.2016.03.082.
  48. Yong K., Brechbiel M. W. Towards translation of 212Pb as a clinical therapeutic; getting the lead in!. Dalton Trans. 2011;40(23):6068–6076. doi: 10.1039/C0DT01387K.
  49. Ahenkorah S. et al. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics. 2021;13(5). doi: 10.3390/PHARMACEUTICS13050599.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>