Automated system for supporting medical decision-making in the treatment of patients with renal parenchyma neoplasms – first experience of using the web-platform «Sechenov.AI_nephro» – results of multicenter testing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Corresponding author: A.A. Zholdubaev – urologist, Ph.D. student, Institute of Urology and Reproductive Health, FGAOU VO I.M. Sechenov First Moscow State Medical University, Moscow, Russia; е-mail: dr_agabek@mail.ru

Aim. To evaluate the automated medical decision support system «Sechenov.AI_nephro» in the treatment of patients with renal parenchymal tumors.

Materials and methods: The beta version of the web-platform «Sechenov.AI_nephro» consists of a neural network based on MONAI (Medical open network for AI) and a web interface, with algorithms classified based on segmentation data in manual mode using the 3D modeling program «Amira». A total of 441 patients with renal parenchymal tumors were included in the multicenter prospective study. Testing was carried out over 12 months in 3 urological centers: 358 (81.2%) patients from I.M. Sechenov First Moscow State Medical University, Moscow; 73 (16.6%) patients from Bashkir State Medical University; and 10 (2.3%) patients from Saratov State Medical University named after V.I. Razumovsky. In all cases, contrast-enhanced computed tomography (CT) was performed preoperatively. DICOM (Digital Imaging and Communications in Medicine) data of each patient's CT was uploaded to the web-platform «Sechenov.AI_nephro» for automatic construction of a 3D model of the tumor. The work of the web-platform «Sechenov.AI_nephro» was evaluated based on a questionnaire completed by surgeons who performed the surgical intervention. The questionnaire consisted of 14 questions, with a scoring system from 1 to 10 points. It was divided into 3 main sections, including first for assessment of the quality of work of the web-platform «Sechenov.AI_nephro»; second for evaluation of the use of the 3D model in communication with the patient, for surgical planning and intraoperative navigation; and third for analysis of the choice of useful data display mode, errors in constructing the 3D model.

Results. The questionnaire was completed in 253 (57.37% of 441) cases. The quality of 3D models was rated 7.8–9.4 points, and the use of the 3D model in communication with the patient, for surgical planning and intraoperative navigation was rated 7.8–9.4 points. The 3D models were constructed correctly in 70% of cases. The area of interest was the useful mode of 3D models display in surgical planning. Incorrectly constructed anatomical elements were veins in 25.5% and the tumor in 26.4% of cases, respectively.

Conclusion. The automated medical decision support system in the treatment of patients with renal parenchymal tumors «Sechenov.AI_nephro» demonstrated satisfactory quality of 3D reconstruction of pathological process. 3D models allow for personalized determination of the surgical tactic for treating patients with renal tumors.

Texto integral

Acesso é fechado

Sobre autores

A. Zholdubaev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Autor responsável pela correspondência
Email: dr_agabek@mail.ru

urologist, Ph.D. student, Institute of Urology and Reproductive Health

Rússia, Moscow

P. Glybochko

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: glybochko_v_p@staff.sechenov.ru

Ph.D., MD, academician of RSA, rector, Institute of Urology and Reproductive Health

Rússia, Moscow

Yu. Alyaev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: ugalyaev@mail.ru

corresponding member of RAS, Ph.D., MD, professor at the Institute of Urology and Reproductive Health

Rússia, Moscow

D. Butnaru

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: butnaru_d_v@staff.sechenov.ru

Ph.D., MD, urologist, Chief Physician of the University Clinical Hospital No. 1, Institute of Urology and Reproductive Health

Rússia, Moscow

E. Shpot

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: shpot@inbox.ru

Ph.D., MD, urologist, oncologist, deputy director on scientific work at the Department of Urology at the Institute for Urology and Human Reproductive Health 

Rússia, Moscow

M. Chernenky

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: chernenkiy_m_m@staff.sechenov.ru

physical engineer, Institute of Urology and Reproductive Health

Rússia, Moscow

I. Chernenky

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: chernenkiy_i_m@staff.sechenov.ru

software engineer at the Institute of Urology and Reproductive Health

Rússia, Moscow

D. Fiev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: fiev_d_n@staff.sechenov.ru

Ph.D., MD, urologist, chief researcher at the Institute of Urology and Reproductive Health

Rússia, Moscow

A. Proskura

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: proskura_a_v_1@staff.sechenov.ru

Ph.D., urologist, oncologist, assistant of the Institute for Urology and Human Reproductive Health 

Rússia, Moscow

A. Konyshev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: urokulez@yandex.ru

urologist, applicant of the Institute of Urology and Reproductive Health

Rússia, Moscow

E. Syrota

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: sirota_e_s@staff.sechenov.ru

Ph.D., MD, urologist, oncologist, Chief of the Center of Neural Network Technologies of Institute of Urology and Reproductive Health

Rússia, Moscow

H Ismailov

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: halilismailov2013@mail.ru

urologist, Ph.D. student, Institute of Urology and Reproductive Health

Rússia, Moscow

R. Shurygina

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: Yourolog@yandex.ru

Ph.D. student, Institute of Urology and Reproductive Health

Rússia, Moscow

S. Amrakhov

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: gradmonaco@yandex.ru

urologist, Ph.D. student, Institute of Urology and Reproductive Health

Rússia, Moscow

A. Izmailova

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: izmailovaa20@gmail.com

4-year student, Institute of Urology and Reproductive Health

Rússia, Moscow

I. Sarkisyan

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: ig.sark.0201@gmail.com

4-year student, Institute of Urology and Reproductive Health

Rússia, Moscow

A. Suvorov

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: suvorov_a_yu_1@staff.sechenov.ru

Chief Biostatistician, Research Services Division, Department of Scientific Development and Clinical Research, Institute of Urology and Reproductive Health

Rússia, Moscow

V. Pavlov

Bashkir State Medical University of the Ministry of Health of Russia

Email: pavlov@bashgmu.ru

academician of RAS, professor, Ph.D., MD, Director of the Institute of Urology and Clinical Oncology, rector 

Rússia, Ufa

I Kabirov

Bashkir State Medical University of the Ministry of Health of Russia

Email: ildarkabirov@gmail.com

Ph.D., associate professor at the Department of Urology and Oncology 

Rússia, Ufa

M. Urmantsev

Bashkir State Medical University of the Ministry of Health of Russia

Email: urmantsev85@mail.ru

Ph.D., Head of the Department of Oncology of the Clinic 

Rússia, Ufa

D. Baykov

Bashkir State Medical University of the Ministry of Health of Russia

Email: dr_agabek@mail.ru

Ph.D., MD, professor at the Department of General Surgery with a course of transplantology and X-ray diagnoctics

Rússia, Ufa

A. Itkulov

Bashkir State Medical University of the Ministry of Health of Russia

Email: dr_agabek@mail.ru

Head of the Laboratory of radionuclide diagnostics 

Rússia, Ufa

M. Khafizov

Bashkir State Medical University of the Ministry of Health of Russia

Email: dr_agabek@mail.ru

Head of the X-ray department of the Clinic

Rússia, Ufa

R. Gilmetdinov

Bashkir State Medical University of the Ministry of Health of Russia

Email: dr_agabek@mail.ru

radiologist of the Laboratory of radionuclide diagnostics 

Rússia, Ufa

A. Antipina

Bashkir State Medical University of the Ministry of Health of Russia

Email: dr_agabek@mail.ru

radiologist of the Laboratory of radionuclide diagnostics 

Rússia, Ufa

A. Rossolovsky

Saratov State Medical University named after V.I. Razumovsky of the Ministry of Health of Russia

Email: rossol@list.ru

Ph.D., MD, associate professor, Deputy chief on the Surgery of University Clinical Hospital No1

Rússia, Saratov

D. Durnov

Saratov State Medical University named after V.I. Razumovsky of the Ministry of Health of Russia

Email: dendurnov@mail.ru

Ph.D., associate professor, Head of the Department of Oncourology of University Clinical Hospital No1

Rússia, Saratov

D. Bobylev

Saratov State Medical University named after V.I. Razumovsky of the Ministry of Health of Russia

Email: dreik2006@mail.ru

Ph.D., assistant at the Department of X-ray Diagnostics named after prof. N.E. Stern of University Clinical Hospital No1

Rússia, Saratov

S. Ivanov

Saratov State Medical University named after V.I. Razumovsky of the Ministry of Health of Russia

Email: ivanovsd24@gmail.ru

assistant at the Department of X-ray Diagnostics named after prof. N.E. Stern, radiologist at the University Clinical Hospital No1

Rússia, Saratov

Bibliografia

  1. Wilhelm Konrad Roentgen-The Centennial of His Birth-Semicentennial of the X-Rays. JAMA. 2020;323(15):1512. doi: 10.1001/jama.2019.13400.
  2. Alyaev Yu.G., Sirota E.S., Proskura A.V. Digitalization of operations for kidney tumors. M.:GEOTAR-Media. 2021. Russian (Аляев Ю.Г., Сирота Е.С., Проскура А.В. Цифровизация операций при опухоли почки. И.:ГЭОТАР-Медия. 2021)
  3. Gusev A.V., Zarubina T.V. Clinical Decisions Support in medical information systems of a medical organization. M.: Information technologies for the Physician. 2017;2:60–72. Russian (Гусев А.В., Зарубина Т. В. Поддержка принятия врачебных решений в медицинских информационных системах медицинской организации. Врач и информационные технологии. 2017;2:60–72).
  4. Lasser M.S., Doscher M., Keehn A., Chernyak V., Garfein E., Ghavamian R. Virtual surgical planning: a novel aid to robot-assisted laparoscopic partial nephrectomy. J Endourol. 2012;26(10):1372–1379. doi: 10.1089/end.2012.0093.
  5. Hyde E.R., Berger L.U., Ramachandran N., Hughes-Hallett A., Pavithran N.P., Tran M.G.B., Ourselin S., Bex A., Mumtaz F.H. Interactive virtual 3D- models of renal cancer patient anatomies alter partial nephrectomy surgical planning decisions and increase surgeon confidence compared to volume-rendered images. Int J Comput Assist Radiol Surg. 2019;14(4):723–732. doi: 10.1007/s11548-019-01913-5.
  6. Kamai T., Furuya N., Kambara T., Abe H., Honda M., Shioyama Y., Kaji Y., Yoshida K. Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering. BMC Urol. 2010;10:7. doi: 10.1186/1471-2490-10-7.
  7. Shuji Isotani, Hirofumi Shimoyama, Isao Yokota, Toshiyuki China, Shin-ichi Hisasue, Hisamitsu Ide, Satoru Muto, Raizo Yamaguchi, Osamu Ukimura, Shigeo Horie. Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. doi.org/10.1111/iju.12714
  8. Alyaev Y.G., Sirota E.S., Bezrukov E.A., Sukhanov RB. Computer-assisted laparoscopic surgery for renal carcinoma. Urologiia. 2018;(3):30–38. Russian (Аляев Ю.Г., Сирота Е.С., Безруков Е.А., Суханов Р.Б. Компьютер-ассистированные лапароскопические операции при хирургическом лечении рака почки. Урология. 2018;(3):30–38).
  9. Schiavina R., Bianchi L., Chessa F., Barbaresi U., Cercenelli L., Lodi S., Gaudiano C., Bortolani B., Angiolini A., Bianchi F.M., Ercolino A., Casablanca C., Molinaroli E., Porreca A., Golfieri R., Diciotti S., Marcelli E., Brunocilla E. Augmented Reality to Guide Selective Clamping and Tumor Dissection During Robot-assisted Partial Nephrectomy: A Preliminary Experience. Clin Genitourin Cancer. 2021;19(3):e149-e155. doi: 10.1016/j.clgc.2020.09.005.
  10. Michiels C., Khene Z.E., Prudhomme T., Boulenger de Hauteclocque A., Cornelis F.H., Percot M., Simeon H., Dupitout L., Bensadoun H., Capon G., Alezra E., Estrade V., Bladou F., Robert G., Ferriere J.M., Grenier N., Doumerc N., Bensalah K., Bernhard J.C. 3D-Image guided robotic-assisted partial nephrectomy: a multi-institutional propensity score-matched analysis (UroCCR study 51). World J Urol. 2023;41(2):303–313. doi: 10.1007/s00345-021-03645-1.
  11. Makiyama K., Tatenuma T., Ohtake S., Suzuki A., Muraoka K., Yao M. Clinical use of a patient-specific simulator for patients who were scheduled for robot-assisted laparoscopic partial nephrectomy. Int J Urol. 2021;28(1):130–132. doi: 10.1111/iju.14413.
  12. Tapiero S., Karani R., Limfueco L., Xie L., Jefferson F.A., Reinwart C., Okhunov Z., Clayman R.V., Landman J. Evaluation of Interactive Virtual Reality as a Preoperative Aid in Localizing Renal Tumors. J Endourol. 2020;34(11):1180–1187. doi: 10.1089/end.2020.0234.
  13. Mackin D., Fave X., Zhang L., Fried D., Yang J., Taylor B., Rodriguez-Rivera E., Dodge C., Jones A.K., Court L. Measuring Computed Tomography Scanner Variability of Radiomics Features. Invest Radiol. 2015;50(11):757–765. doi: 10.1097/RLI.0000000000000180.
  14. Komai Y., Sakai Y., Gotohda N., Kobayashi T., Kawakami S., Saito N. A novel 3-dimensional image analysis system for case-specific kidney anatomy and surgical simulation to facilitate clampless partial nephrectomy. Urology. 2014;83(2):500–556. doi: 10.1016/j.urology.2013.09.053.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. MSCT with contrast in three planes: A - axial, B - sagittal and C - frontal (the neoplasm is indicated by a red circle and an arrow)

Baixar (753KB)
3. Рис. 2. Заполнение клинических и демографических данных пациента

Baixar (272KB)
4. Fig. 3. Uploading DICOM data to the web platform "Sechenov.AI_nephro"

Baixar (197KB)
5. Fig. 4. Definition of 4 phases of MSCT in the interface of the web platform "Sechenov.AI_nephro": 1 - native phase, 2 - arterial phase, 3 - venous phase, 4 - excretory phase

Baixar (536KB)
6. Fig. 5. Determination of the area of ​​interest by the arterial phase of MSCT in three planes: A - axial, B - sagittal and C - frontal

Baixar (376KB)
7. Fig. 6 ED model of the pathological process of a tumor of the left kidney (A - neoplasm of the parenchyma of the left kidney, B - the area of ​​the hilum of the right kidney, C - the area of ​​the hilum of the left kidney, D - the inferior vena cava, E - the aorta)

Baixar (301KB)
8. Fig. 7. Virtual planning of surgery on the web platform “Sechenov.AI_nephro”

Baixar (354KB)
9. Fig. 8. Questionnaire for surveying urologists

Baixar (1MB)

Declaração de direitos autorais © Bionika Media, 2024