Взгляд на проблему хирургического лечения почечно-клеточного рака в аспекте биомолекулярной диагностики и оценки почечной функции


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлен анализ отечественной и зарубежной литературы, посвященной вопросам биомолекулярной диагностики острого почечного повреждения в периоперационном периоде у больных почечно-клеточным раком (ПКР). Появившиеся возможности раннего обнаружения опухоли делают еще более актуальным применение малоинвазивных хирургических методов лечения. При этом не менее важной задачей остаются диагностика функционального состояния почек у больных с выявленным ПКР, прогнозирование острого почечного повреждения и прогрессирования хронической болезни почек в послеоперационном периоде. Проведен систематический поиск доклинических и клинических исследований с целью выявления основных тенденций и достижений в области биомолекулярной диагностики ПКР и почечного повреждения, позволяющих индивидуализировать подход к выбору хирургических методов лечения, повышать выживаемость и качество жизни пациента и улучшать функциональное состояние почечной паренхимы.

Полный текст

Доступ закрыт

Об авторах

В. М. Попков

ФГБОУ ВО «Саратовский государственный медицинский университет им. В. И. Разумовского» Минздрава России

Email: meduniv@sgmu.ru
ректор д.м.н., профессор, заведующий кафедрой урологии

А. И Тарасенко

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Первый Московский государственный медицинский университет им. И. М. Сеченова» Минздрава России

Email: tar-art@yandex.ru
к.м.н., заместитель директора НИИ уронефрологии и репродуктивного здоровья по инновационному развитию

Г. Н Маслякова

ФГБОУ ВО «Саратовский государственный медицинский университет им. В. И. Разумовского» Минздрава России

Email: gmaslyakova@yandex.ru
д.м.н., профессор

А. Н Россоловский

ФГБОУ ВО «Саратовский государственный медицинский университет им. В. И. Разумовского» Минздрава России

Email: rossol@list.ru
д.м.н., доцент кафедры урологии

О. Л Березинец

ФГБОУ ВО «Саратовский государственный медицинский университет им. В. И. Разумовского» Минздрава России

Email: oksy.b@mail.ru
к.м.н., научный сотрудник НИИ фундаментальной и клинической уронефрологии

Список литературы

  1. Solarek W., Czarnecka A.M., Escudier B. Insulin and IGFs in renal cancer risk and progression. Endocr Relat Cancer. 2015;22(5):253-264.
  2. Chinello C., L’imperio V., Stella M. The proteomic landscape of renal tumors. Expert Rev Proteomics. 2016;13(12):1103-1120.
  3. Kogan M.I., Ahohov Z.M., Gusev A.A.,PasechnikD.G. Molecular -biological factors predicting the course of renal cell cancer (literature review). Oncourology. 2016;12(3):45-51.
  4. Alyaev Yu.G., Grigoryan Z.G., Levko A.A. Two-sided asynchronous kidney cancer. Oncourology. 2010;2:14-21.
  5. Mustafa G., Ilhan G., Necip P. Nature of lesions undergoing radical nephrectomy for renal cancer. Asian Pac J Cancer Prev. 2012; 13(9): 4431-4433.
  6. Morrissey J.J., London A.N., Luo J., Kharasch E.D. Urinary Biomarkers for the Early Diagnosis of Kidney Cancer. Mayo Clin Proc. 2010; 85(5):413-421.
  7. Banyra O.B., Story A.A., Shulyak A.V. Markers of tumor growth in the diagnosis of kidney cancer. Experimental and clinical urology. 2011;4:72.
  8. Li M., Rathmell W.K. The Current Status of Biomarkers for Renal Cell Carcinoma. 2011;153-157.
  9. Tang Y., Nakada M.T., Kesavan P., McCabe F. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 2005;65(8):3193-3199.
  10. Zhang L., Xul B., Chen S., Lu K., Liu C., Wang Y., Zhao Y., Zhang X., Liu D., Chen M. The complex roles of microRNAs in the metastasis of renal cell carcinoma. J Nanosci Nanotechnol. 2013;13:3195-3203.
  11. Kakurina G.V., Kondakova I.V., Choynzonov E.L. Degradome Components in Progression ofSquamous Cell Carcinoma ofthe Head and Neck. Annals of the Russian academy of medical sciences. 2015;70(6):684-693.
  12. Wu D., Pan H., Zhou Y., Zhou J. MicroRNA-133b downregulation and inhibition of cell proliferation, migration and invasion by targeting matrix metallopeptidase-9 in renal cell carcinoma. Mol Med Rep. 2014;9(6):2491-2498.
  13. Lin H., Pan J.C., Zhang F.M., Huang B, Chen X., Zhuang J.T., Wang H., Mo C.Q., Wang D.H., Qiu S.P. Matrix metalloproteinase-9 is required for vasculogenic mimicry by clear cell renal carcinoma cells. Urol Oncol. 2015;33(4):168.
  14. DI Carlo A. Matrix metalloproteinase-2 and - 9 and tissue inhibitor of metalloproteinase-1 and -2 in sera and urine of patients with renal carcinoma. Oncol Lett. 2014;7(3):621-626.
  15. Glybochko P.V., Zacharova N.B., Ponukalin A.N., Durnov D.A., Shachpazyan N.K. Diagnostic value of angiogenesis rates in renal-cell carcinoma. Cancer Urology. 2011;7(3):25-30.
  16. Lu H., Cao X., Zhang H. Imbalance between MMP-2, 9 and TIMP-1 promote the invasion and metastasis of renal cell carcinoma via SKP2 signaling pathways. Tumour Biol. 2014;35(10):9807-9813.
  17. Miyake H., Nishikawa M., Tei H., Furukawa J. Significance of circulating matrix metalloproteinase-9 to tissue inhibitor of metalloproteinases-2 ratio as a predictor of disease progression in patients with metastatic renal cell carcinoma receiving sunitinib. Urol Oncol. 2014;32(5):584-588.
  18. Chen S.J., Yao X.D., Peng B.O., Xu Y.F., Wang G.C., Huang J., Liu M., Zheng J.H. Epigallocatechin-3-gallate inhibits migration and invasion of human renal carcinoma cells by downregulating matrix metalloproteinase-2 and matrix metalloproteinase-9 Exp. Ther Med. 2016;11(4):1243-1248.
  19. Zhou Q., Gil-Krzewska A., Peruzzi G., Borrego F. Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumour immunotherapy. Clin Exp Immunol. 2013;173(1):131-139.
  20. Xngelina Di Carlo. Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in sera and urine of patients with kidney tumors. Oncol Lett. 2013;5(5):1677-1681.
  21. Sarfstein R., Werner H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology. 2013;154(5):1672-1679.
  22. Tracz A.F., Szczylik C., Porta C., Czarnecka A.M. Insulin-like growth factor-1 signaling in renal cell carcinoma. BMC Cancer. 2016;16:453.
  23. Allen J.T., Bloor C.A., Knight R.A., Spiteri M.A. Expression of insulinlike growth factor binding proteins in bronchoalveolar lavage fluid of patients with pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 1998; 19(2):250-258.
  24. Padanilam B.J., Martin D.R., Hammerman M.R. Insulin-like growth factor I-enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology. 1996;137:2133-2140.
  25. Matejka G.L., Jennische E. IGF I binding and IGF mRNA expression in the post-ischemic regenerating rat kidney. Kidney Int. 1992; 42:1113-1123.
  26. Miller S.B., Martin D.R., Kissane J., Hammerman M.R. Hepatocyte growth factor accelerates recovery from acute ischemic renal injury in rats. Am J Physiol. 1994;266:129-134.
  27. Yildiz B., Kural N., Colak O, Ak I., Akcar N. IGF-1, IGFBP-3, VEGF and MMP-9 levels and their potential relationship with renal functions in patients with compensatory renal growth. Clin Physiol Funct Imaging. 2008;28(2):107-112.
  28. Rabkin R., Schaefer F. New concepts: growth hormone, insulinlike growth factor-I and the kidney. Growth Horm IGF Res. 2004; 14(4):270-276.
  29. Marc R. Hammerman. The growth hormone-insulin-like growth factor axis in kidney re-revisited. Nephrol Dial Transplant. 1999;14:1853-1860.
  30. Rossolovsky A.N., Popkov V.M., Ponukalin A.N., Blumberg B.I., Zakharova N.B., Berezinets O.L. Clinical significance of excretion of insulin-like growth factor-1 in urine in patients with nephrolithiasis. Kursk medical bulletin «Man and his health». 2010;3:58-63
  31. Kamenicky P., Mazziotti G., Lombes M., Giustina A., Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev. 2014;35(2):234-281.
  32. Marc R.H. The growth hormone-insulin-like growth factor axis in kidney re-revisited. Nephrol Dial Transplant. 1999;14:1853-1860.
  33. Parker A., Cheville J.C., Lohse C., Cerhan J.R., Blute M.L. Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma. J Urol. 2003;170(2 Pt 1):420-424.
  34. Tracz A.F., Szczylik C., Porta C. Insulin-like growth factor-1 signaling in renal cell carcinoma. BMC Cancer. 2016;12(16):453.
  35. Aleksic T., Chitnis M.M., Perestenko O.V., Gao S., Thomas P.H., TurnerG.D., Protheroe A.S., Howarth M., Macaulay V.M. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412-6419.
  36. Seregin A.V., Laurent O.B., Ashugian V.R. Factors predicting survival in kidney cancer. Oncourology. 2009;5(2):15-21.
  37. Huang W.C., Atoria C.L., Bjurlin M., Pinheiro L.C., Russo P., Lowrance W.T., Elkin E.B. Management of small kidney cancers in the new millennium: contemporary trends and outcomes in a population-based cohort. JAMA Surgery. 2015;150(7):664-672.
  38. Meeks J.J., Gonzalez C.M. Standard of care for small renal masses in the 21st century. JAMA Surgery. 2015;150(7):672-673.
  39. Tracz A.F., Szczylik C., Porta C., Czarnecka A.M. Insulin-like growth factor-1 signaling in renal cell carcinoma. BMC Cancer. 2016;16:453.
  40. Ha S.C., Zlomke H.A., CostN., Wilson S. The Past, Present, and Future in Management of Small Renal Masses. J Oncol. 2015:364807.
  41. Kim S.H., Lee S.E., Hong S.K., Jeong C.W., Park Y.H., Kim Y.J., Kang S.H., Hong S.H., Choi W.S., Byun S.S. Incidence and risk factors of chronic kidney disease in korean patients with t1a renal cell carcinoma before and after radical or partial nephrectomy. Jpn J Clin Oncol. 2013; 43:1243-1248.
  42. Huang W.C., Elkin E.B., Levey A.S., Jang T.L., Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors-is there a difference in mortality and cardiovascular outcomes? J Urol. 2009;181:55-61.
  43. Rini B.I., Campbell S.C., Escudier B. Renal cell carcinoma. Lancet 2009;373(9669):1119-1132.
  44. Ghoneim T.P., Sjoberg D.D., Lowrance W. Partial nephrectomy for renal tumors in solitary kidneys: postoperative renal function dynamics. World J Urol. 2015;33(12):2023-2029.
  45. Simhan J., Smaldone M.C., Tsai K.J., Canter D.J., Li T., Kutikov A., Viterbo R., Chen D.Y., Greenberg R.E., Uzzo R.G. Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. European Urology. 2011;60(4):724-730.
  46. Scosyrev E., Messing E. M., Sylvester R., Campbell S., Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. European Urology. 2014;65(2):372-377.
  47. Kim C.S., Bae E.H., Ma S.K. Impact of partial nephrectomy on kidney function in patients with renal cell carcinoma. BMC Nephrol. 2014;15:181.
  48. Ha S.C., Zlomke H.A., Cost N., Wilson S. The Past, Present, and Future in Management of Small Renal Masses. J Oncol. 2015;2015:364807.
  49. Izzedine H., Perazella M.A. Onco-nephrology: an appraisal of the cancer and chronic kidney disease links. Nephrol Dial Transplant. 2015;30(12):1979-1988.
  50. Kitai Y., Matsubara T., Yanagita M. Onco-nephrology: current concepts and future perspectives. Jpn J Clin Oncol. 2015;45(7):617-628.
  51. Lameire N., Vanholder R., Van Biesen W., Benoit D. Acute kidney injury in critically ill cancer patients: an update. Crit Care. 2016;20(1):209.
  52. Keith O.I., France E.M., Dimitriadi S.N., Kapliev I.V. The role of markers of acute renal damage in the choice of tactics for surgical treatment of patients with kidney cancer. Oncourology. 2015; 11(3) :34-39
  53. Ariarajah N., Gerstel E., Martin P.Y., Ponte B. Biomarkers in acute kidney injury: an update. Rev Med Suisse. 2011;7(284):490-496.
  54. Papayan A.V., Arkhipov V.V., Beresneva E.A. Markers of kidney function and evaluation of the progression of renal failure. Ter. archive. 2004;4:83-90.
  55. Mori K., Nakao K. Neutrophil gelatinase-associated lipocalin as the realtime indicator of active kidney damage. Kidney Int. 2007;71:967-970.
  56. Mehta R.L., Kellum J.A., Shah S.V., Molitoris B.A., Ronco C., Warnock D.G., Levin A. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:31.
  57. Hoste E.A., Clermont G., Kersten A., Venkataraman R., Angus D.C., De Bacquer D., Kellum J.A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):73.
  58. Rossolovsky A.N., Glybochko P.V., Popkov V.M., Polozov A.B., Ponukalin A.N., Zakharova N.B., Berezinets O.L., Blyumberg B.I. Differentiated approach to renal damage assessment in patients with urolithiasis by noninvasive markers. Saratov Journal of Medical Scientific Research. 2010;6(3):708- 715.
  59. Rosner M.H. Urinary biomarkers for the detection of renal injury. Adv Clin Chem. 2009;49:73-97.
  60. Waanders F., van Timmeren M.M., Stegeman C.A., Bakker S.J., van Goor H. Kidney injury molecule-1 in renal disease. J Pathol. 2010;220(1):7-16.
  61. Popkov V.M., Tarasenko A., Maslyakova G.N., Rossolovsky A.N., Zakharova N.B., Berezinets O.L., Lomakin D.V. Biomolecular assessment of renal function in various types of surgical treatment of renal cell carcinoma. Saratov Journal of Medical Scientific Research. 2017;13(1):73- 77.
  62. Dieterle F., Sistare F., Goodsaid F., Papaluca M., Ozer J.S., Webb C.P., Baer W., Senagore A., Schipper M.J., Vonderscher J., Sultana S., Gerhold D.L., Phillips J.A., Maurer G., Carl K., Laurie D., Harpur E., Sonee M., Ennulat D., Holder D., Andrews-Cleavenger D., Gu Y.Z., Thompson K.L., Goering P.L., Vidal J.M., Abadie E., Maciulaitis R., Jacobson-Kram D., Defelice A.F., Hausner E.A., Blank M., Thompson A., Harlow P., Throckmorton D., Xiao S., Xu N., Taylor W., Vamvakas S., Flamion B., Lima B.S., Kasper P., Pasanen M., Prasad K., Troth S., Bounous D., Robinson-Gravatt D., Betton G., Davis M.A., Akunda J., McDuffie J.E., Suter L., Obert L., Guffroy M., Pinches M., Jayadev S., Blomme E.A., Beushausen S.A., Barlow V.G., Collins N., Waring J., Honor D., Snook S., Lee J., Rossi P., Walker E., Mattes W. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010,28:455-462.
  63. Ozer J.S, Dieterle F., Troth S. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol. 2010;28:486-494.
  64. Melnikov V.Y., Molitoris B.A. Saudi J. Improvements in the diagnosis of acute kidney injury. Kidney Dis.Transpl. 2008;4(19):537-544.
  65. Mishra J., Ma Q., Prada A., Mitsnefes M., Zahedi K., Yang J., Barasch J., Devarajan P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534-2543.
  66. Munshi R., Johnson A., Siew E.D., Ikizler T.A., Ware L.B., Wurfel M.M., Himmelfarb J., Zager R.A. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol. 2011;22:165-175.
  67. Bonventre J.V. Kidney injury molecule-1 (KIM-1): a specific and sensitive biomarker of kidney injury. Scand J Clin Lab Invest Suppl. 2008; 241:78-83.
  68. Kjeldsen L. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268:10425-10432.
  69. Flower D.R., North A.C., Sansom C.E. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000;1482:9-24.
  70. Tong Z. Neutrophil gelatinase-associated lipocalin as a survival factor. Biochem J. 2002;391:441-448.
  71. Gwira J.A., Wei F., Ishibe S., Ueland J.M., Barasch J., Cantley L.G. Expression of neutrophil gelatinase associated lipoca-lin regulates epithelial morphogenesis in vitro. J Biol Chem. 2005;280:7875-7882.
  72. Supavekin S., Zhang W., Kucherlapati R., Kaskel F.J., Moore L.C., Devarajan P. Differential gene expression following early renal ischemia/ reperfusion. Kidney Int. 2003;63:1714-1724.
  73. Mishra J., Mori K., Ma Q., Kelly C., Yang J., Mitsnefes M., Barasch J., Devarajan P. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15:3073-3082.
  74. Mori K., Lee H.T., Rapoport D., Drexler I.R., Foster K., Yang J., Schmidt-Ott K.M., Chen X., Li J.Y., Weiss S., Mishra J., Cheema F.H., Markowitz G., Suganami T., Sawai K., Mukoyama M., Kunis C., D’Agati V., Devarajan P., Barasch J. Endocytic delivery of lipocalinsiderophore- iron complex rescues the kidney from ischemia-ischemia-reperfusion injury. J Clin Invest. 2005;115:610-621.
  75. Schmidt-Ott K.M., Mori K., Kalandadze A. Neutrophil gelatinaseassociated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006;15:442-449.
  76. Schmidt-Ott K.M., Mori K., Li J.Y., Kalandadze A. Dual Action of Neutrophil Gelatinase-Associated Lipocalin. J Am Soc Nephrol. 2007;18:407-413.
  77. Wagener G., Jan M., Kim M., Mori K., Barasch J.M., Sladen R.N., Lee H.T. As-sociation between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105:485-491.
  78. Mishra J., Ma Q., Kelly C., Mitsnefes M., Mori K., Barasch J., Devarajan P. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006;21:856-863.
  79. Wagener G., Jan M., Kim M., Mori K. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006; 105:485-491.
  80. Malyszko J., Bachorzewska-Gajewska H., Sitniewska E. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in nondiabetic patients with stage 2-4 chronic kidney disease.Ren Fail. 2008;30(6):625-628.
  81. Bolignano D., Coppolino G., Lacquaniti A. Pathological and prognostic value of urinary neutrophil gelatinase-associated lipocalin in macroproteinuric patients with worsening renal function. Kidney Blood Press Res. 2008;31(4):274-79.
  82. Bolignano D., Lacquaniti A., Coppolino G., Campo S., Arena A., Buemi M. Neutrophil gelatinase associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31:255-258.
  83. Mori K., Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007; 107(1):967-970.
  84. Triebel S., Bläser J., Reinke H., Tschesche H. A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett. 1992;314:386-388.
  85. Yan L., Borregaard N., Kjeldsen L., Moses M.A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP and neutrophil gelatinase-associated lipocalin (NGAL) Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001;276:37258-37265.
  86. Perrin C., Patard J.J., Jouan F., Collet N., Théoleyre S. The neutrophil gelatinase-associated lipocalin, or LCN 2, marker of aggressiveness in clear cell renal cell carcinoma. Prog Urol. 2011;21(12):851-858.
  87. Viau A.E., Karoui K., Laouari D., Burtin M., Nguyen C., Mori K., Pillebout E., Bertger T., Mak T.W., Knebelmann B., Friedlander G., Barasch J., Terzi F. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010;120:4065-4076.
  88. Dinarello C.A., Novick D., Kim S., Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.
  89. Srivastava S., Salim N., Robertson M.J. Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem. 2010;17:3353-3357.
  90. Xin Yang, Man-Tang Qiu, Jing-Wen Hu. Association of Interleukin-18 Gene Promoter - 607 C>A and -137G>C Polymorphisms with Cancer Risk: A Meta-Analysis of 26 Studies. PLoS One. 2013;8(9):73671.
  91. Park S., Cheon S., Cho D. The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol. 2007;4:329-335.
  92. Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purif. 2010;4(29):357-365.
  93. Zang, Z.D., Huang Y.Z., Yang Y., Guo F.M., Qiu H.B. Urinary neutrophil gelatinase-associated lipocalin and urinary interleukin-18 in early diagnosis of acute kidney injury in critically ill patients. Zhonghua Nei Ke Za Zhi. 2010;5(49):396-399.
  94. Parikh C.R., Jani A., Melnikov V.Y., Faubel S., Edelstein C.L. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43:405-414.
  95. Urbschat A., Nicholas Obermüller N., Haferkamp A. Biomarkers of kidney injury. Biomarkers. 2011;16(1):22-30.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2017

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах