Comparative study of the influense of stone size and volume on the duration of thulium laser percutaneous nephrolithotripsy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. The aim of the investigation was to determine the influence of such parametric characteristics of the stone such as size and volume on the duration of tulium laser disintegration of the urinary stone and to determine which of these parameters is more effective to use like prognostic criterion for the duration of the planned surgical intervention in the percutaneous nephrolithotripsy. Materials and methods. Overall 52 patients (27 females and 25 males) with an average age of 56,9 (25-79) years participated in the present study. All patients underwent percutaneous nephrolithotripsy with disintegration of the kidney stone by thulium energy. Inclusion criteria were: stone size >2 cm, stone density >1100 HU. Exclusion criteria were: patients with a single kidney, urinary tract divertions, coagulopathy. The average operation time was 30 (15-100) minutes, with an average puncture time of 3.15 (1-10) minutes and lithotripsy time of 28 (14-98) minutes. To determine the volume we used the method of automatic lithometry according to CT data using the software: Vitrea ver. 4.1.52. The size of the stone was determined by the longest length in one of the plane. During the study it was found that the average size of the stone was 28.25 (20-58) mm and the average volume was 2579.4 (250-9990) mm3. To confirm our assumption, we decided to determine the dependence of the time of disintegration of the stone on the size and volume of the stone. For this purpose, we graphically presented the correlation of these parameters. Results. We have drawn 2 graphs reflecting the dependence of lithotripsy time parameters on the size and volume characteristics of the stone. As a result of comparing these parameters we found that size is a prognostically less reliable predictor of lithotripsy time, and is not characterized by a linear distribution, in contrast to the stone volume. Conclusions. Thereby, the main stereoscopic characteristic of a stone is a volume, which should be the primary guide in selecting the preferred method of treatment as well as in predicting the operative time and associated risks.

全文:

受限制的访问

作者简介

S. Popov

St. Luke Clinical Hospital; Military medical academy of S.M. Kirov

Email: doc.popov@gmail.com
Dr. Sc., head physician

I. Orlov

St. Luke Clinical Hospital; North-Western State Medical University named after I.I Mechnikov

Email: doc.orlov@gmail.com
PhD, head of the urology department No. 1

M. Suleymanov

St. Luke Clinical Hospital

Email: doc.suleimanov@gmail.com
PhD, urologist

M. Gorelik

St. Luke Clinical Hospital; North-Western State Medical University named after I.I Mechnikov

Email: mr.maksim.gorelik@mail.ru.authorid1050777
resident-urologist

M. Perfil’ev

St. Luke Clinical Hospital; North-Western State Medical University named after I.I Mechnikov

Email: perfilevmark@outlook.com
resident-urologist

参考

  1. Turk C., Neisius A., Petrik A., et al. EAU Guidelines on Urolithiasis 2017.
  2. Thomas K., Smith N.C., Hegarty N., et al. The Guy’s Stone Score-Grading the Complexity of Percutaneous Nephrolithotomy Procedures. Urology 2011;78:277-281.
  3. Okhunov Z., Friedlander J.I., George A.K., et al. S.T.O.N.E. Nephrolithometry: Novel Surgical Classification System for Kidney Calculi. Urology 2013;81:1154-1160.
  4. Vernez S.L., Okhunov Z., Motamedinia P., et al. Nephrolithometric Scoring Systems to Predict Outcomes of Percutaneous Nephrolithotomy. Rev Urol 2016; 18: 15-27.
  5. Niemann T., Kollmann T., Bongartz G. Diagnostic performance of low dose CT for the detection of urolithiasis: A meta-analysis. Am J. Roentgenol. 2008;191(2):396-401. doi: 10.2214/AJR.07.3414.
  6. TUrk C., Petrik A., Sarica K., et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol. 2015; 69:1-7. doi: 10.1016/j.eururo.2015.07.040.
  7. Desai M., Sun Y., Buchholz N., et al. Treatment selection for urolithiasis: percutaneous nephrolithomy, ureteroscopy, shock wave lithotripsy, and active monitoring. World J. Urol. 2017; 35 (9):1395-1399.
  8. Parekattil S.J., Kumar U., Hegarty N.J., et al. External Validation of Outcome Prediction Model for Ureteral/Renal Calculi. J. Urol. 2006;175(2):575- 579. doi: 10.1016/S0022-5347(05)00244-2.
  9. Finch W., Johnston R., Shaida N., et al. Measuring stone volume - threedimensional software reconstruction or an ellipsoid algebra formula? BJU Int 2014;113:610-614.
  10. Patel SR, Nakada SY. Quantification of Preoperative Stone Burden for Ureteroscopy and Shock Wave Lithotripsy: Current State and Future Recommendations. Urology2011;78:282-285.
  11. Scheffel H., Stolzmann P., Frauenfelder T., et al. Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 2007;42:823-829.
  12. Bandi G., Meiners RJ, Pickhardt PJ, et al. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 2009; 103: 524-528.
  13. Wilhelm K., Miernik A., Hein S., Schlager D., Adams F., Benndorf M., Neubauer J. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. Journal of Endourology. 2018;32(7):659-664. doi: 10.1089/end.2018.0058
  14. Berkovitz N., Simanovsky N., Katz R., et al. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification. Eur Radiol 2010;20:1047-1051.
  15. Zorba O.U., Ogullar S., Yazar S., Akca G. Ct-Based Determination of Ureteral Stone Volume: a Predictor of Spontaneous Passage. J. Endourol. 2015;30(1):32-36. doi: 10.1089/end.2015.0481.
  16. Demehri S., Kalra MK, Rybicki FJ, et al. Quantification of Urinary Stone Volume: Attenuation Threshold-based CT Method - A Technical Note. Radiology. 2011;258(3):915-922. doi: 10.1148/radiol.10100333.
  17. Jain R., Omar M., Chaparala H., Kahn A., Li J., Kahn L., Sivalingam S. How Accurate Are We in Estimating True Stone Volume? A Comparison of Water Displacement, Ellipsoid Formula, and a CT-Based Software Tool. Journal of Endourology. 2018; 32(6):572-576. doi: 10.1089/end.2017.0937.
  18. Wilhelm K., Miernik A., Hein S., Schlager D., Adams F., Benndorf M., Neubauer J. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. Journal of Endourology. 2018;32(7):659-664. doi: 10.1089/end.2018.0058.
  19. Patel S.R., Stanton P., Zelinski N., et al: Automated renal stone volume measurement by noncontrast computerized tomography is more reproducible than manual linear size measurement. J. Urol. 2011;186:2275- 2279.
  20. Patel S.R., Wells S., Ruma J., et al: Automated Volumetric Assessment by Noncontrast Computed Tomography in the Surveillance of Nephrolithiasis. Urology. 2012;80:27-31.
  21. Bell J.R., Posielski N.M., Penniston K.L., Lubner M.G., Nakada S.Y., Pickhardt P.J. Automated Computer Software Compared with Manual Measurements for CT-Based Urinary Stone Metrics: An Evaluation Study. Journal of Endourology. 2018;32(5):455-461. doi: 10.1089/end.2017.0787
  22. Yoshida S., Hayashi T., Morozumi M., Osada H., Honda N., Yamada T. Three-dimensional assessment of urinary stone on non-contrast helical computed tomography as the predictor of stonestreet formation after extracorporeal shock wave lithotripsy for stones smaller than 20 mm. Int J. Urol. 2007;14(7):665-667.
  23. Al-Qahtani S.M., Gil-Deiz-de-Medina S., Traxer O. Predictors of clinical outcomes of flexible ureterorenoscopy with holmium laser for renal stone greater than 2 cm. Adv Urol. 2012;2012:534-547.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2022
##common.cookie##