Justification of a use of additional antioxidant therapy in experimental models of chronic bacterial prostatitis


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Aim. To study the changes of the main parameters of the oxidative status in prostate after standard antimicrobial monotherapy and to justify a use of additional antioxidant therapy in various experimental models of chronic bacterial prostatitis (CBP). Material and methods. A total of 60 outbred adult male healthy rats weighing 180-200 grams were used in the experiment. In a control group, 20 intact rats were included. Two experimental groups of 20 animals each were formed and in each group two subgroups (n=10) were distinguished. Two series of experiments were performed in the episodic and relapse models of CBP (based on the Nickel J.C. (1990) and Goto T. (1991)), respectively, with an evaluation of the efficiency of antimicrobial monotherapy (levofloxacin 12.5 mg/kg/day per os for 20 days) in each of the subgroups. In prostate homogenates the levels of CFUs, active forms of oxygen (ROS), diene conjugates and malonic dialdehyde, as well as an activity of superoxide dismutase (SOD) and succinate dehydrogenase (SDH)) were evaluated. Results. The microbiological efficiency of standard antimicrobial monotherapy in the episodic model of CBP was higher than in the recurrent model (90.0% vs 80.0, respectively, p<0.05). The degree of free radical aggression and a severity of lipid peroxidation in recurrent CBP were significantly higher, and the activity of SOD and SDH was significantly lower than in the episodic model of CBP (p<0.05). In both models, residual oxidative stress persisted in the prostate tissue after antimicrobial therapy, indicating an incompleteness (in the case of episodic model of CBP) or decompensation (in case of recurrent CBP) of the antioxidant defense system. Conclusion. A persisting of residual oxidative stress after a course of etiotropic antimicrobial monotherapy in the prostate has justified a necessity of the additional administration of antioxidants (antihypoxants) for a combined pharmacotherapy of CBP.

全文:

受限制的访问

作者简介

O. Bratchikov

Kursk State Medical University

Email: bratov45@mail.ru
MD, professor, academician of Russian Academy of Natural Sciences, honored doctor of the Russian Federation, Head of the Urologic Department

P. Dubonos

Kursk State Medical University

Email: v-utkin@rambler.ru
Ph.D. student at the Urologic Department

I. Tyuzikov

Medical Center “Tandem-Plus”

Email: phoenix-67@list.ru
urologist and andrologist, Ph.D., professor of the Russian Academy of Natural History, Honored Worker of Science and Education

参考

  1. Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1957;2:298-300.
  2. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. Biomed Res Int. 2014;2014:761264.
  3. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К., Бондарь И.А., Круговых Н.Ф., Труфакин В.А. Окислительный стресс - прооксиданты и антиоксиданты. М.: Фирма «Слово», 2006. 556 с.
  4. Romano A.D., Serviddio G., deMatthaeis A., Bellanti F., Vendemiale G. Oxidativestressandaging. J. Nephrol. 2010;23(Suppl. 15):S29-536.
  5. Bartz R.R., Piantadosi C.A. Clinical review: oxygen as a signaling molecule. Crit Care 2010;14(5):234.
  6. Bowles D., Torgan C., Ebner S. et al. Effects of acute, submaximal exercise on skeletal muscle vitamin E. Free Radic Res Commun. 1991;14:139-143.
  7. Vina J., Borras C., Abdelaziz K.M. et al. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal. 2013;19(8):779-787.
  8. Merksamer P.I., Liu Y., He W. et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144-150.
  9. Robert A.M., Robert L. Xanthine oxido-reductase, free radicals and cardiovascular disease. Acriticalreview. Pathol Oncol Res. 2014;20(1):1- 10.
  10. Sastre J., Pallardo F.V., Garciadela Asuncion J., et al. Mitocondria, oxidative stress and aging. Free Rad Res. 2000;32:189-198.
  11. Weinert B.T., Timiras P.S. Theories of aging. J. Appl Physiol. 2003;95:1706-1716.
  12. Kim B., Song Y.S. Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic Res. 2016;:1:16.
  13. Bostwick D.G., Dela Roza G., Dundore P. etal.Intraepithelial and stromal lymphocytes in the normal human prostate. The Prostate. 2003;55:187-193.
  14. Кутлуев М.М. Состояние процессов свободнорадикального окисления в ткани предстательной железы при простатите (экспериментальноклиническое исследование). Автореф. дисс. к.м.н. Нижний Новгород, 2011. 23 с.
  15. Божедомов В.А., Николаева М.А., Ушакова И.В., Мингболатов А.Ш., Александрова Л.М., Липатова Н.А., Голубева Е.Л., Теодорович О.В., Сухих Г.Т. Роль процессов свободно-радикального окисления в патогенезе мужского иммунного бесплодия. Андрология и генитальная хирургия. 2010;4:62-66
  16. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. В.П. Фисенко. М.: МЗ РФ, 2000. 398 с.
  17. Nickel J.C., Olson M.E., Costerton J.W. Pathogenesis of chronic bacterial prostatitis in an animal model. Br J. Urol. 1990;66(1):47-54.
  18. Goto T., Kawahara M., Kawahara K., Mahinose S., Mizuma Y., Sakamoto N. Experimental bacterial prostatitis in rats. Urol. Res. 1991;19:141-144.
  19. Коржевский Д.Э., Гиляров А.В. Основы гистологической техники. М.: Спецлит. 2010. 94 с.
  20. White E., Bursey M. Chemiluminescence of luminol: The chemical reaction. J. Am. Chem. Soc. 1964;86(6):940-941.
  21. Faulkner K., Fridovich I. Luminol and lucigenin as detectors for O2 Free Radic. Biol. Med. 1993;15(4):447-451.
  22. Хаитов P.M., Пинегин Б.В., Истамов Х.И. Экологическая иммунология. М.: ВНИРО, 1995. 219 с.
  23. Стальная И.Д. Метод определения диеновой конъюгации ненасыщенных высших жирных кислот. В. кн.: Современные методы в биохимии. М.: Медицина, 1977. С. 63-64
  24. Стальная И.Д., Гаришвилли Т.Г. Метод определения малоновогодиальдегида с помощью тиобарбитуровой кислоты. В. кн.: Современные методы в биохимии. М.: Медицина, 1977. С. 66-68
  25. Костюк В.А., Потапов А.Н., Ковалева Ж.В. Простой и чувствительный метод определения супероксиддисмутазы, основанный на реакции окисления кверцетина. Вопросы медицинской химии. 1990;36(2): 88-91
  26. Hille R., Miller S., Palfey B. (Eds). Handbook of Flavoproteins: Volume 2 Complex Flavoproteins, Dehydrogenases and Physical Methods. Berlin: Walter de Gruyter& Co, 2013. 436 p.
  27. Нельсон Д.Л., Кокс М.М. Основы биохимии Ленинджера. Биоэнергетика и метаболизм. М.: Бином. Лаборатория знаний. 2012;2:692
  28. Сторожук П.Г., Сторожук А.П. Способ определения фермента сукцинатдегидрогеназы в крови. Патент РФ, № 2236011. 2004
  29. Гланц С. Медико-биологическая статистика. Пер. с англ. М.: Практика, 1999. 459 с

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2019
##common.cookie##