СИНТЕЗ АЛГОРИТМОВ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ИНДУКЦИОННОГО НАГРЕВА МАССИВНОГО ТЕЛА

М.Х. Лапицкая

Самарский государственный технический университет 443100, г. Самара, ул. Молодогвардейская, 244 E-mail: lapitskaya@bk.ru

В данной работе решается задача поиска оптимального алгоритма управления внутренними источниками тепла в системе с обратной связью для стабилизации температурного поля внутри алюминиевой пластины. Рассмотрен метод последовательных приближений для определения коэффициентов данного алгоритма.

Ключевые слова: объект с распределенными параметрами, критерий оптимальности, метод последовательных приближений, температурное поле, удельная мощность внутренних источников тепла.

Введение. Задача синтеза замкнутой системы оптимального управления с обратными связями для процессов индукционного нагрева является одним из перспективных направлений, поскольку подобные системы могут обеспечить автоматическую обработку оптимальной программы управления с допустимой погрешностью в реальных условиях ограниченной неопределенности характеристик объекта с распределенными параметрами и воздействия различных возмущений.

В данной работе решается задача аналитического конструирования оптимальных регуляторов (АКОР) для управления процессом индукционного нагрева алюминиевой пластины, рассматриваемой как объект управления с распределенными параметрами (ОРП). Рассматривается случай полного измерения функции состояния, представляющей собой распределение температурного поля $\theta(x,t)$ по пространственной координате x и во времени t. В работе формулируется задача поиска оптимального алгоритма управления внутренними источниками тепла $F^*(\theta_u, x, t)$, определяемого как функция величины $\theta(x,t)$, для стабилизации температурного поля относительного невозмущенного состояния.

Постановка задачи АКОР. Рассмотрим задачу АКОР при управлении распределением температурного поля $\theta(x,t)$ по толщине *R* неограниченной пластины. Для объекта управления, описываемого в отклонениях от невозмущенного состояния уравнением теплопроводности Фурье следующего вида:

$$\frac{\partial \theta(x,t)}{\partial t} = a \frac{\partial^2 \theta(x,t)}{\partial x^2} + \frac{1}{c\gamma} F(x,t); \ 0 < x < R, \ t > 0; \tag{1}$$

с граничными и начальными условиями:

$$\lambda \frac{\partial \Theta(R,t)}{\partial x} + \alpha \Theta(R,t) = 0;$$

$$\frac{\partial \Theta(0,t)}{\partial x} = 0; \ \Theta(x,0) = \Theta_0(x); \ x \in [0,R],$$
(2)

Мария Хамильевна Лапицкая – аспирант.

требуется найти алгоритм управления с обратной связью $F^*(\theta_u, x, t)$, обеспечивающий минимум следующего критерия оптимальности:

$$I = \int_{0}^{\infty} S \, dt \to \min, \tag{3}$$

где

$$S = \int_{0}^{R} \int_{0}^{R} \omega_1(x,\xi) \,\theta(x,t) \,\theta(\xi,t) \,dx \,d\xi + \int_{0}^{R} \omega_2(x) F^2(x,t) \,dx. \tag{4}$$

Здесь F(x,t) – управляющее воздействие, в роли которого выступает удельная мощность внутреннего тепловыделения, λ – коэффициент теплопроводности, c – удельная теплоемкость, γ – плотность, a – коэффициент температуропроводности, α – коэффициент конвективной теплоотдачи, R – половина толщины пластины, ξ – переменная интегрирования по пространственной координате, $\omega_1(x,\xi)$ и $\omega_2(x)$ – заранее фиксируемые весовые функции.

Критерий оптимальности (3) представляет собой взвешенную сумму интегральных квадратичных ошибок приближения температурного поля на всем протяжении процесса управления к невозмущенному состоянию $\theta(x,t) = 0$ и энергетических затрат, оцениваемых величиной интеграла от квадрата управляющего воздействия по области его определения.

Решение задачи АКОР. Оптимальный алгоритм управления, минимизирующий критерий *I*, полученный методом динамического программирования, согласно [1] будет иметь вид:

$$F^{*}(x,t) = -\frac{a}{c\gamma\omega_{2}} \sum_{m=1}^{N} \left(\sum_{n=1}^{N} \frac{\upsilon_{nm}}{E_{n}} \cos\left(\eta_{n} \frac{x}{R}\right) \right) \overline{\Theta}_{m}(t),$$
(5)

где η_n , $n = \overline{1, N}$ – корни трансцендентного уравнения вида:

$$\eta t g \eta - \frac{\alpha R}{\lambda} = 0 , \qquad (6)$$

$$E_n^{-1} = \sqrt{\frac{a}{R} \cdot \frac{2\eta_n}{\eta_n + \sin\eta_n \cos\eta_n}},$$
(7)

 $\overline{\theta}_m(t)$ представляют собой моды температурного поля, определяемые по формуле:

$$\overline{\Theta}_m(t) = -\int_0^R \Theta(x,t) \frac{1}{E_m} \cos\left(\eta_m \frac{x}{R}\right) dx .$$
(8)

Числа υ_{nm} , $n = \overline{1, N}$, $m = \overline{1, N}$ являются корнями системы квадратных уравнений

$$\left(\mu_n^2 + \mu_m^2\right)\upsilon_{nm} + \frac{a}{c^2\gamma^2\omega_2}\sum_{i=1}^N \upsilon_{ni}\upsilon_{mi} = \overline{\overline{\omega}}_{1nm}, \ n, m = 1, 2, \dots,$$
(9)

221

где

$$\mu_n = \frac{\sqrt{a}}{R} \eta_n, \ n = 1, 2, ..., \tag{10}$$

а $\overline{\overline{\omega}}_{1nm}$ для постоянного весового множителя $\omega_1(x,\xi) = \omega_1 = const$ определяются по формуле [1]:

$$\overline{\overline{\omega}}_{1nm} = \frac{\omega_1 R^2}{a^2 E_n E_m \eta_n \eta_m} \sin \eta_n \sin \eta_m, \ m, n = 1, 2, \dots$$
(11)

Система уравнений (9) при заданных значениях μ_n , μ_m , *a*, *c*, γ , ω_2 , $\overline{\overline{\omega}}_{lnm}$ решается методом последовательных приближений по схеме, предложенной в [1].

Сначала находятся первые приближения для коэффициентов υ_{nm} при $n \neq m$ по формуле:

$$\upsilon_{nm}^{(1)} = \frac{\overline{\overline{\omega}}_{1nm}}{\mu_n^2 + \mu_m^2}, \ n \neq m; \ n, m = \overline{1, N}.$$
(12)

Затем по величинам $\upsilon_{nm}^{(1)}$, $n \neq m$ находятся первые приближения для коэффициентов υ_{nm} при n = m, как корни квадратных уравнений:

$$\frac{a}{\omega_2 c^2 \gamma^2} \left(\upsilon_{nn}^{(1)} \right)^2 + 2\mu_n^2 \upsilon_{nn}^{(1)} + \frac{a}{\omega_2 c^2 \gamma^2} \sum_{\substack{i=1\\i \neq n}}^N \left(\upsilon_{ni}^{(1)} \right)^2 - \overline{\overline{\omega}}_{1nn} = 0, \ n = \overline{1, N},$$
(13)

то есть определяются по формуле:

$$\overline{\overline{\upsilon}}_{nn}^{(1)} = \frac{\omega_2 c^2 \gamma^2}{a} \Biggl\{ -\mu_n^2 + \sqrt{\mu_n^4 + \frac{a}{\omega_2 c^2 \gamma^2}} \Biggl[\overline{\overline{\omega}}_{1nn} - \frac{a}{\omega_2 c^2 \gamma^2} \sum_{\substack{i=1\\i\neq n}}^N \left(\overline{\overline{\upsilon}}_{ni}^{(1)} \right)^2 \Biggr] \Biggr\}.$$
 (14)

Следующие приближения $\upsilon_{nm}^{(2)}$, $n = \overline{1, N}$, $m \neq n$ для коэффициентов υ_{nm} находятся по согласно выражению

$$\upsilon_{nm}^{(2)} = \frac{1}{\mu_n^2 + \mu_m^2} \left[\overline{\overline{\omega}}_{1nm} - \frac{a}{\omega_2 c^2 \gamma^2} \sum_{i=1}^N \upsilon_{ni}^{(1)} \upsilon_{mi}^{(1)} \right], \quad m \neq n.$$
(15)

Затем находятся $\upsilon_{nn}^{(2)}$ из квадратных уравнений вида (13) заменой $\upsilon_{ni}^{(1)}$ на $\upsilon_{ni}^{(2)}$:

$$\upsilon_{nn}^{(2)} = \frac{\omega_2 c^2 \gamma^2}{a} \left\{ -\mu_n^2 + \sqrt{\mu_n^4 + \frac{a}{\omega_2 c^2 \gamma^2}} \left[\overline{\omega}_{nn} - \frac{a}{\omega_2 c^2 \gamma^2} \sum_{\substack{i=1\\i\neq n}}^N \left(\upsilon_{ni}^{(2)} \right)^2 \right] \right\}, \ n = \overline{1, N}.$$
(16)

Далее вычисления продолжаются по схеме (15) – (16) до тех пор, пока не совпадут М-ое и М+1-ое приближения $\upsilon_{nm}^{(M)}$ и $\upsilon_{nm}^{(M+1)}$ с точностью 5%.

222

Температурные моды, определяемые выражением (8), являются решением системы дифференциальных уравнений [1]:

$$\frac{d\overline{\Theta}_m(t)}{dt} + \mu_m^2 \overline{\Theta}_m(t) + \sum_{i=1}^N P_{mi} \overline{\Theta}_i = 0; \ \overline{\Theta}_m(0) = \frac{\Theta_0^{(0)} R}{a E_m \eta_m} \sin(\eta_m),$$
(17)

где

$$P_{mi} = \frac{a}{\omega_2 c^2 \gamma^2} \upsilon_{kv}; m, i = \overline{1, N}.$$
(18)

Подстановка $\overline{\theta}_m(t)$ в (5) позволяет найти оптимальный алгоритм управления в системе с обратной связью как явную функцию *x* и *t*.

Температурное поле в оптимальном процессе при управлении (5) находится по формуле [1]

$$\theta^*(x,t) = \sum_{n=1}^{N} \overline{\theta}_m(t) \frac{1}{E_n} \cos\left(\eta_n \frac{x}{R}\right).$$
(19)

Результаты вычислений. На рис. 1-5 приведены некоторые результаты вычислений для равномерного начального распределения температурного поля $\theta_0^{(0)} = 100^{\circ}C$, рассматриваемого как возмущающее воздействие, в процессе нагрева алюминиевой пластины толщиной R = 0.24 M, при следующих теплофизических параметрах процесса: $\lambda = 1714 Bm/M^{\circ}C$, $a = 7,66 \cdot 10^{-5} M^2/c$, $\omega_1(x,t) = a^2/R^2$, $\omega_2(x) = a/c^2 \gamma^2$, критерии Био Bi = 0,7 и N = 3.

В процессе вычисления методом перебора было установлено, что устойчивость процедуры последовательного приближения для коэффициентов v_{nm} при данных параметрах обеспечивается, если вместо k-того приближения $v_{nm}^{(k)}$, $n \neq m$, k = 1, 2, 3...M, вычисляемого по формуле (15), принять величину

$$\left(\upsilon_{nm}^{(k)}\right)^{*} = v \upsilon_{nm}^{(k)} + (1 - v)\upsilon_{nm}^{(k-1)}$$
(20)

с числовым множителем v = 0,6.

На рис. 1 представлены результаты процедуры последовательного приближения при вычислении коэффициентов υ_{mn} без замены k-того приближения $\upsilon_{nm}^{(k)}$ на величину $\left(\upsilon_{nm}^{(k)}\right)^*$.

На рис. 2 представлены результаты процедуры последовательного приближения с заменой k-того приближения $\upsilon_{nm}^{(k)}$ на величину $\left(\upsilon_{nm}^{(k)}\right)^*$. На рис. 3 представлены температурные моды, на рис. 4-5 – внутреннее распределенное управляющее воздействие в относительных единицах и температурное поле для оптимального процесса управления в различные моменты времени соответственно.

Рис. 1. Итерационный процесс вычисления коэффициентов υ_{nm} без замены k -того

приближения $\upsilon_{nm}^{(k)}$ на величину $\left(\upsilon_{nm}^{(k)}\right)^*$: a – $\upsilon_{11}^{(k)}$; б – $\upsilon_{12}^{(k)}$; в – $\upsilon_{13}^{(k)}$; г – $\upsilon_{22}^{(k)}$; д – $\upsilon_{23}^{(k)}$; е – $\upsilon_{33}^{(k)}$

Рис. 2. Итерационный процесс вычисления коэффициентов v_{nm} с заменой k -го

приближения
$$\upsilon_{nm}^{(k)}$$
 на величину $\left(\upsilon_{nm}^{(k)}\right)^*$:
a – $\upsilon_{11}^{(k)}$; б – $\upsilon_{12}^{(k)}$; в – $\upsilon_{13}^{(k)}$; г – $\upsilon_{22}^{(k)}$; д – $\upsilon_{23}^{(k)}$; е – $\upsilon_{33}^{(k)}$

Заключение. В результате работы получен оптимальный по критерию (3)Ошибка! Источник ссылки не найден. алгоритм управления процессом нагрева

алюминиевой пластины. Для расчета коэффициентов υ_{nm} данного алгоритма в системе с обратной связью была использована методика, расчетные результаты по которой показали достаточно быструю сходимость итерационного процесса при вычислении коэффициентов. Полученные алгоритмы оптимального управления обеспечивают асимптотическую сходимость температурного поля к установившемуся состоянию, соответствующему нулевым значениям.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *Рапопорт Э.Я*. Оптимальное управление системами с распределенными параметрами. – М.: Высш. шк., 2008.

Статья поступила в редакцию 8 декабря 2010 г.

UDC 517.977.56

SYNTHESIS OF OPTIMAL CONTROL ALGORITHMS FOR PROCESS OF INDUCTION HEATING OF MASSIVE BODY

M.H. Lapitskaya

Samara State Technical University 244, Molodogvardeyskaya str., Samara, 443100

This paper considers the task of searching for optimal control algorithm of internal heat sources in feed-back system for stabilization temperature field within aluminum plate. Method of method of subsequent approximation for finding coefficients of this algorithm is investigated.

Keywords: object with distributed parameters, optimization criterion, method of subsequent approximation, temperature field, internal heat source density.

Maria H. Lapitskaya – Postgraduate student.