ОЦЕНКА ПРИМЕНИМОСТИ МЕТОДОВ ПРЯМОГО И ОБРАТНОГО УДАРА ДЛЯ ОПРЕДЕЛЕНИЯ СВОЙСТВ ВНУТРЕННИХ АНТИКОРРОЗИОННЫХ ПОКРЫТИЙ НЕФТЕПРОВОДОВ

Π .Е. Θ дин 1 , А.А. Акулинин 2

¹ Самарский государственный технический университет 443100, г. Самара, ул. Молодогвардейская, 244 E-mail: yudin@npcsamara.ru

 2 ООО «Научно-производственный центр «Самара» 443022, г. Самара, Гаражный проезд, 3, литера Б

E-mail: office@npcsamara.ru

Проведено сравнение методов прямого и обратного удара для испытания внутренних антикоррозионных покрытий нефтегазопроводных труб, делаются выводы о применимости метода обратного удара для оценки качества труб с внутренними антикоррозионными покрытиями.

Ключевые слова: метод прямого удара, метод обратного удара, антикоррозионные покрытия, ударная прочность, типоразмер, нефтепровод, прочностной расчет.

В настоящее время существуют два подхода к определению стойкости внутренних покрытий к ударным воздействиям – методы прямого и обратного удара. Оба метода основаны на методиках, изложенных в ГОСТ 4765-73 и ГОСТ 51164-98 [1, 2]. Метод обратного удара заключается в воздействии бойка на наружную поверхность труб. Данный метод активно применяется на многих заводах, наносящих покрытия на внутреннюю поверхность труб, таких как ЗАО «УПоРТ» (ТУ 1390-003-52534308-2008), ООО «ЮКОРТ» (ТУ 139000-012-01297958-01), ООО «Предприятие Трубопласт» (ТУ 1381-012-00154341-02) [3, 4, 5]. Метод моделирует реальное ударное воздействие, возможное в процессе хранения, транспортировки и СМР. Однако, как показывает практика, отбраковки по данному показателю как при приемосдаточных, так и при периодических испытаниях не происходит.

С другой стороны, определение ударной прочности методом прямого удара, при котором воздействие бойка маятникового копра приходится на внутреннюю поверхность, непосредственно на покрытие, дает экспресс-данные о целом ряде параметров. В качестве примера можно привести данные о недостаточной полимеризации эпокси-новолачного покрытия производства ООО «Темерсо-инженеринг». В исходном состоянии прочность покрытия при прямом ударе составляла 3 Дж, при этом теплота реакции полимеризации составляла 12,28 Дж/г. После настройки сушильных печей теплота полимеризации уменьшилась до 3,70–3,82 Дж/г, а стойкость к прямому удару возросла до 12 Дж. Поскольку не у всех производителей есть возможность использовать методы дифференциальной сканирующей калориметрии или дифференциального термического анализа, определение стойкости к прямому удару для некоторых типов покрытий может косвенно характеризовать степень отверждения покрытия.

В данной статье произведен прочностной расчет нагрузок при воздействии бойка на внутреннюю и наружную поверхность трубы.

Павел Евгеньевич Юдин, аспирант. Александр Анатольевич Акулинин, ведущий инженер.

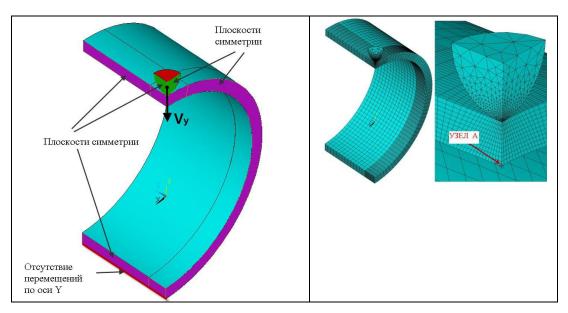
Расчет воздействия обратного удара осуществлялся методом конечных элементов с помощью программы Ansys [6, 7].

В качестве исходных данных были установлены следующие параметры:

- масса бойка с нагрузкой 3 кг (стандартная для копра типа «Константа-КП» и аналогов);
 - E = 15 Дж (максимальная энергия для копра типа «Константа-КП» и аналогов);
 - начальная скорость бойка рассчитана по формуле

$$V_{y} = \sqrt{\frac{2E}{m}}; (1)$$

- материал трубы сталь 20;
- физические свойства материала при $t=20^{o}\,C$; $E=2.13\cdot10^{1\,1}\Pi a$; $\rho=7859~\hat{e}\tilde{a}/$ i 3 ; $\mu=0.3$;
 - материал бойка принят абсолютно жестким.


Свойства пластичности материала трубы не учитывались.

Расчет производился для типоразмеров труб, указанных в табл. 1.

Таблица 1

Типоразмеры труб, для которых производились расчеты

Наружный диаметр D, мм	Толщины стенок t, мм
73	5,5
89	6, 8, 10, 12
114	6, 8, 10, 12
159	6, 8, 10, 12
219	6, 8, 10, 12
325	6, 8, 10, 12
426	6, 8, 10, 12

Расчетная модель стального патрубка

В качестве граничного условия был запрет перемещения в направлении оси У по нижнему ребру трубы. Расстояние между трубой и полусферой в начальный момент задано 10 мкм. Нагрузки определялись для узла А. Четверть расчетной модели представлена на рисунке.

Результаты пиковых значений напряжений для труб разных наружных диаметров с различной толщиной стенки представлены в табл. 2.

 Таблица 2

 Пиковые значения напряжений

Наружный диаметр, мм	Толщина стенки, мм	Напряжение, МПа	
73	5,5	99,0	
89	6	82,0	
	8	54,2	
	10	36,2	
	12	27,8	
114	6	78,0	
	8	53,5	
	10	35,4	
	12	23,0	
159	6	59,5	
	8	46,9	
	10	32,7	
	12	20,8	
219	6	51,1	
	8	42,1	
	10	33,8	
	12	24,7	
325	6	37,1	
	8	31,2	
	10	22,7	
	12	19,2	
426	6	46,5	
	8	29,1	
	10	24,3	
	12	20,4	

Расчет напряжений (σ_d), при воздействии бойка непосредственно на покрытие производился по формуле [4]

$$\sigma_d = \sigma_{st} \mathbb{I} k_{din} \tag{2}$$

где σ_{st} – напряжение, возникающее при статическом приложении массы бойка; k_{din} – динамический коэффициент.

В свою очередь,

$$k_{din} = 1 + \sqrt{1 + \frac{2H}{\delta_{st}}} \tag{3}$$

где H – высота падения груза (в нашем случае для 15 Дж она составляет 0.5м); δ_{st} – перемещение расчетной точки трубы при приложении статической нагрузки; для трубы [8]

$$\delta_{st} = \frac{\pi D(D-t)\sigma_{st}}{4tE} \tag{4}$$

где Е – модуль упругости.

Результаты расчетов динамических напряжений, а также соотношение напряжений при прямом и обратном ударе представлены в табл. 3.

Таблица 3

Расчетные данные

Деформация образца (δst) × 10 ⁻⁶ , м	Наружный диаметр образца (D), м	Толщина образца (t), м	k din	σ _d , Мпа	$\sigma_{ m dn}/\sigma_{ m do}$
5,02	0,073	0,0055	447,16	670,8	6,78
6,90	0,089	0,006	381,603	572,4	6,98
5,05	0,089	0,008	445,8748	668,8	12,34
3,94	0,089	0,01	504,6415	757,0	20,91
3,20	0,089	0,012	559,8306	839,7	30,21
1,15	0,114	0,006	295,8105	443,7	5,69
8,46	0,114	0,008	344,6139	516,9	9,66
6,64	0,114	0,01	388,848	583,3	16,48
5,43	0,114	0,012	430,0111	645,0	28,04
22,73	0,159	0,006	210,7324	316,1	5,31
16,82	0,159	0,008	244,7759	367,2	7,83
13,28	0,159	0,01	275,3724	413,1	12,63
10,92	0,159	0,012	303,5972	455,4	21,89
43,59	0,219	0,006	152,4616	228,7	4,48
32,38	0,219	0,008	176,7187	265,1	6,30
25,66	0,219	0,01	198,3966	297,6	8,80
21,18	0,219	0,012	218,2787	327,4	13,26
96,88	0,325	0,006	102,5989	153,9	4,15
72,20	0,325	0,008	118,6843	178,0	5,71
57,40	0,325	0,01	132,9911	199,5	8,79
47,53	0,325	0,012	146,0495	219,1	11,41
167,20	0,426	0,006	78,34134	117,5	2,53
124,80	0,426	0,008	90,51758	135,8	4,67
99,36	0,426	0,01	101,3227	152,0	6,26
82,40	0,426	0,012	111,1622	166,7	8,17

По результатам проведенных расчетов видно, что напряжения при обратном ударе ниже, чем при прямом, от 2,5 до 30 раз. Причем с увеличением толщины стенки и уменьшением диаметра разница возрастает.

Поскольку для большинства внутренних покрытий стойкость к прямому удару выше 10 Дж, минимальная энергия удара с наружной поверхности должна быть не менее 25 Дж. Современное испытательное оборудование, такое как маятниковый

копер «Константа-КП» и аналоги, может производить ударные воздействия с максимальной энергией 15 Дж.

Для подтверждения расчетной модели было произведено определение ударной прочности образцов различных типоразмеров при прямом и обратном ударе (табл. 4).

 Таблица 4

 Экспериментальные данные ударной прочности образцов

Марка образца	Наружный	Сплошность по-	Сплошность после	Фактическая
лакокрасочного		сле прямого уда-	обратного удара	
-	диаметр образца (D),	1	при энергии удара	ударная проч- ность при пря-
покрытия	мм × тол-	ра при энергии удара 15 Дж	15 Дж (определя-	
				мом ударе, Дж
	щина стен-	(определялась из	лась из расчета	
	ки, мм	расчета 5 кВ/мм)	5 кВ/мм)	
ТРЭПП-ТР	259×8	Несплошное	Сплошное	9
ТРЭПП-ТР	114 × 8	Сплошное	Сплошное	15
ТРЭПП-ТР	159 × 6	Сплошное	Сплошное	15
ТРЭПП-ТР -90	259 × 8	Несплошное	Сплошное	12
П-ЭП-585	325 × 6	Сплошное	Сплошное	15
П-ЭП-585	426 × 8	Сплошное	Сплошное	15
П-ЭП-585	219 × 8	Несплошное	Сплошное	12
Аргоф	$73 \times 5,5$	Несплошное	Сплошное	3
Алмаз	$73 \times 5,5$	Несплошное	Сплошное	3
Major Pack MPLAG 14	73 × 5,5	Несплошное	Сплошное	12
Major Pack	73 × 5,5	Несплошное	Сплошное	6
MPAG 58	73 × 3,3	Ticcilioninoc	Силошнос	3
Major Pack	$73 \times 5,5$	Несплошное	Сплошное	9
MPAG 96				
Poly-Plex-P	$73 \times 5,5$	Несплошное	Сплошное	3

Из полученных результатов видно, что расчетные данные хорошо согласуются с экспериментом. У девяти из тринадцати покрытий при воздействии бойка копра непосредственно на покрытие происходило его разрушение, которое фиксировалось при помощи электроискрового дефектоскопа с испытательным напряжением 5 кВ/мм по стандарту ASTM G62. Определить фактическое соотношение ударной прочности при прямом и обратном ударе не представлялось возможным, поскольку максимальная энергия копра составляет 15 Дж, однако для типоразмера 73 × 5,5 мм она более 15.

Подводя итог проделанной работы, можно сделать следующие практически значимые выводы:

- данные, полученные расчетным методом, соответствуют результатам, полученным экспериментальным путем;
- значения напряжений, полученные методом компьютерного моделирования обратного удара, ниже, чем при прямом (в некоторых случаях на порядок). Причем с увеличением толщины стенки и уменьшением диаметра разница возрастает. Данный факт свидетельствует о большей информативности метода прямого удара, значения которого не зависят от диаметра и толщины стенки трубы;

- метод обратного удара моделирует реальное ударное воздействие, возможное в процессе хранения, транспортировки и СМР, но, как показывает практика, отбраковки по данному показателю не происходит. В свою очередь, метод прямого удара косвенно характеризует целый ряд параметров покрытия (например степень отверждения полимерной основы, эластичность покрытия, адгезию и др.), что позволяет в ходе приемо-сдаточных испытаний на заводе-изготовителе проводить экспрессотбраковку изделий для последующих детальных исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ 29309-92 Покрытия лакокрасочные. Определение прочности при растяжении.
- 2. ГОСТ 18299-72*. Материалы лакокрасочные. Метод определения предела прочности при растяжении, относительного удлинения при разрыве и модуля упругости.
- ГОСТ 4765-73. Материалы лакокрасочные. Метод определения прочности при ударе.
- Жуков В.Г. Механика. Сопротивление материалов: Учеб. пособие. СПб.: Лань, 2012. 416 с.
- ASTM G62 Standard test methods for holiday detection in pipeline coatings.
- 6. Применение программного комплекса ANSYS для расчетов арматуры / А.В. Белобородов, А.П. Комаров, Г.Н. Новаковский, М.М. Ерофеев // САПР и графика. – 2008. – Октябрь. – С. 80-82.
- 7. Лукьянова И.Э., Шмелев В.В. Особенности совместного использования программных продуктов FLOWVISION и ANSYS для определения напряженного состояния нефтяных резервуаров // Нефтегазовое дело [Электронный ресурс]. – Уфа: УГНТУ, 2006. – Режим доступа: http://www.ogbus.ru/authors/Lukyanova/Lukyanova_1.pdf.
- NACE Standard TM0177, Standard test method laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in h2s environments.

Статья поступила в редакцию 8 октября 2013 г.

APPLICABILITY EVALUATION OF THE METHOD OF DIRECT AND INVERSE IMPACT FOR DETERMINING THE PROPERTIES OF INTERNAL ANTI-CORROSION COATINGS PIPELINES

P.E. Yudin¹, A.A. Akulinin²

Samara State Technical University 244, Molodogvardeyskaya st., Samara, 443100

2 LTD «Research and Production Center» Samara» B letter, 3, Garage passage, Samara, 443022

The paper compares the methods of direct and reverse impact testing of internal anticorrosion coatings of oil and gas pipes and makes a conclusion on the applicability of the reverse-impact method for the quality evaluation of pipes with internal anticorrosion coatings.

Keywords: method of direct impact, method of reverse impact, anti-corrosion coatings, impact strength, standard size, pipeline, strength calculation.

Pavel E. Yudin, Postgraduate Student.