УДК 532.546

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ЗАВОДНЕНИЯ В ДВОЯКОПЕРИОДИЧЕСКОЙ ОБЛАСТИ: СЛУЧАЙ ПОРШНЕВОГО ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ *

А.Е. Касаткин

Самарский государственный университет 443011, г. Самара, ул. Академика Павлова, 1 E-mail: darantion_yar@mail.ru

Настоящее исследование посвящено моделированию процесса заводнения в двоякопериодической области, а именно решению задачи о продвижении фронта вытеснения нефти водой на площади элемента выбранной двоякопериодической (рядной, площадной) схемы расстановки скважин. Совместное течение жидкостей описывается моделью пориневого вытеснения: физические свойства воды и нефти полагаются различными, а слой водонефтяного контакта (BHK) – бесконечно тонким, в связи с чем BHK совпадает с фронтом вытеснения.

Ключевые слова: заводнение, двоякопериодическая решетка, поршневое вытеснение, водонефтяной контакт, обводнение скважин, коэффициент охвата по площади.

Введение и актуальность исследования, его цели и задачи

Заводнение – первый в истории вторичный метод нефтедобычи и одна из старейших технологий в нефтяном промысле, доказавшая свою эффективность за десятилетия применения: с ее помощью, к концу XX – началу XXI вв. осуществлялась добыча 90 % «черного золота» в РФ [1] и 50 % в США [2, 3]. Основная идея заводнения заключается в закачке в нефтеносный пласт так называемого вытесняющего агента (обычно воды): нагнетаемая с поверхности жидкость восстанавливает упавшее пластовое давление, в то время как между ней и ранее неосвоенной нефтью формируется фронт вытеснения, проталкивающий нефть в сторону добывающих скважин.

Одним из ключевых аспектов обсуждаемой технологии является геометрия взаимной расстановки добывающих и нагнетательных скважин на территории нефтеносного пласта, соотношение их числа и мощности: задачи, включающие подобный теоретический анализ, остаются актуальными и в наше время.

Прогнозирование хода заводнения, анализ его качественных и количественных характеристик при различных схемах расстановки скважин – цель настоящего исследования: для ее достижения была поставлена и решена задача о мониторинге водонефтяного контакта (ВНК) в процессе вытеснения нефти нагнетаемой водой. В результате был разработан программный комплекс для сравнительного анализа различных схем расстановки скважин: геометрия схем заводнения является одним из входных параметров программы. Основанный на решении задачи о мониторинге ВНК (фронта вытеснения), программный комплекс позволяет проводить как качественное, так и количественное сравнение схем расстановки скважин: в качестве выходных данных можно назвать картины заводненной об-

^{*} Работа поддержана грантом РФФИ 13-01-97008-р_поволжье_а.

Андрей Евгеньевич Касаткин, аспирант.

ласти, позволяющие оценить характер вытеснения нефти в различные моменты времени, а также время начала обводнения добывающих скважин и коэффициент охвата по площади (K_{0xB}¹). Необходимым условием предлагаемого решения является допущение о гладкости фронта вытеснения в процессе его мониторинга: в связи с этим получение результатов возможно только до момента начала обводнения добывающих скважин, т. е. окончания «безводного» периода добычи [1].

Задача о мониторинге ВНК: постановка и решение

Настоящее исследование основано на результатах, полученных в работе [4], и обобщает ранее построенное решение аналогичной задачи на случай так называемого поршневого вытеснения.

В рамках решаемой задачи нефтеносный пласт полагается однородным, плоским, бесконечным, фиксированной толщины; добывающие и нагнетательные скважины, разрабатывающие моделируемое месторождение, размещаются на его поверхности повторяющимися наборами, образующими ячейки двоякопериодической решетки. Благодаря двоякой периодичности совместная фильтрация жидкостей протекает одинаковым образом во всех ячейках решетки: в связи с этим область исследования может быть сужена до одной ячейки. Указанная модель пласта и схема размещения скважин были описаны в работах [4, 5] и использовались в рамках настоящего исследования без изменений: как и в предыдущем случае, все вычисления производятся в комплексной плоскости.

Основное отличие настоящей задачи от ее предшественницы [4] заключается в применении модели поршневого вытеснения нефти водой, что позволяет учесть различия в физических свойствах жидкостей. Указанное изменение значительно усложняет процесс решения задачи о мониторинге ВНК, в то же время заметно приближая модельные представления к реалиям нефтедобытчиков. В рамках настоящего исследования допускается различие в вязкостях (μ) нефти (oil) и воды (water): из-за разницы в физических свойствах жидкостей наблюдается разрыв касательной компоненты V_t комплексной функции скорости V(z) (далее будет использована ее комплексно-сопряженная форма $\overline{V}(z)$) на ВНК. При этом нормальная компонента V_n скорости и давление p сохраняют непрерывность:

$$V_t^{oil}\mu_{oil} = V_t^{water}\mu_{water}; \quad V_n^{oil} = V_n^{water}; \quad p^{oil} = p^{water}. \tag{1}$$

В связи со скачком значений V(z), обусловленным разрывом касательной компоненты, возникла необходимость в определении функции скорости на ВНК. Также разумным представляется проводить дальнейшие рассуждения в системе координат (\vec{t}, \vec{n}) , образуемой векторами касательной и нормали, связанными с точками фронта вытеснения z(x,y) так, как показано на рис. 1*a*: здесь ВНК представлен замкнутым контуром *L*, разделяющим области, занятые водой (WATER) и нефтью (OIL). При этом комплексная функция скорости примет вид $\overline{V}(z) = V_x(z) - iV_y(z) = [V_t(z) + iV_n(z)]e^{-i\alpha}$, где угол α связан с точкой z (см. рис. 1*a*).

Рассмотрим вид $\overline{V}(z)$ на контуре *L*: она представляет собой полусумму значений скоростей фильтрации со стороны воды и нефти:

¹ Коэффициент охвата по площади позволяет оценить объемы осваиваемых нефтяных запасов и определяется как отношение $S_{_{зав.обл}}/S_{_{иссхед.oбл}}$ площадей $S_{_{зав.обл}}$ заводненной области и $S_{_{иссхед.oбл}}$ заводняемого участка [2].

$$\overline{V}(z) = \frac{1}{2} \left(\overline{V}^{oil}(z) + \overline{V}^{water}(z) \right) = \left(\frac{(1+\kappa)}{2} V_t^{water}(z) + i V_n^{water}(z) \right) e^{-i\alpha}, \qquad (2)$$

где $\kappa = \mu^{water} / \mu^{oil}$ – величина, обратная коэффициенту подвижности М. Вид функции скорости во многом определил необходимость учитывать как скачок значений касательной компоненты на ВНК, так и двоякую периодичность исследуемой области:

$$\overline{V}(z) = \Phi(z) + \frac{1}{2\pi i} \oint_{L} \zeta(\tau - z) \gamma(\tau) d\tau.$$
(3)

Рис. 1. Положение векторов (\vec{t}, \vec{n}) , связанных с выбранной точкой z(x,y), на ВНК (*a*) и схема разбиения контура L (δ) для вычисления сингулярного интеграла (см. уравнение 4)

Здесь $\Phi(z)$ представляет собой функцию скорости, полученную в [4] для двоякопериодической схемы заводнения:

$$\Phi(z) = -\sum_{u=1}^{n1} \frac{Q_u^{(prod)}}{2\pi h} (\zeta(z-z_u) + a(z-z_u) - \beta(\overline{z-z_u})) + \sum_{w=1}^{n2} \frac{Q_w^{(inject)}}{2\pi h} (\zeta(z-z_w) + a(z-z_w) - \beta(\overline{z-z_w})),$$

где n_1 и n_2 – число добывающих (мощности Q_u) и нагнетательных (мощности Q_w) скважин соответственно, размещенных в точках z_u и z_w (u и w – индексы сумм) ячейки двоякопериодической решетки;

$$\zeta(z) = \frac{1}{z} + \sum_{n,m=-\infty}^{\infty} \left(\frac{1}{z-\omega} + \frac{1}{\omega} + \frac{z}{\omega^2}\right) - \text{дзета-функция Вейерштрасса;}$$
$$\beta = \frac{\pi}{\Delta} \text{ }_{\text{H}} \alpha = \beta - \frac{2}{\omega_1} \zeta(\omega_1/2) - \text{числовые параметры, обеспечивающие двоякую}$$

периодичность $\zeta(z)$ [6, 7];

$$\Delta$$
 – площадь ячейки;

h – толщина пласта;

 ω – узел двоякопериодической решетки ($\omega = m\omega_1 + n\omega_2/m, n \in \mathbb{Z}$).

Применяя для (3) формулы Сохоцкого – Племеля, можно получить выражения для $\overline{V}^{water}(z)$, $\overline{V}^{oil}(z)$ и далее для функции $\gamma(z) = \overline{V}^{water}(z) - \overline{V}^{oil}(z) = V_t^{water}(z)[1-\kappa]e^{-i\alpha}$. Согласно (2) для вычисления значений скорости $\overline{V}(z)$ на ВНК достаточно определить касательные V_t^{water} и нормальные

 V_n^{water} компоненты скорости со стороны воды, которые находятся из следующего интегрального уравнения:

$$\left\lfloor \frac{1+\kappa}{2} V_{\iota}^{water}(z) + i V_{n}^{water}(z) \right\rfloor e^{-i\alpha} = \Phi(z) + \frac{1-\kappa}{2\pi i} \oint_{L} \zeta(\tau - z) V_{\iota}^{water}(\tau) e^{-i\alpha'} d\tau,$$
(4)

где угол α' связан с точкой на контуре *L*, определяемой переменной τ .

При решении (4) следует перейти от контурного интеграла к определенному, для чего удобно воспользоваться естественной параметризацией, как показано на рис. 16: здесь каждой точке z_k соответствует значение s_k параметра длины дуги, т. е. $z_k = z(s_k)$. Для вычисления сингулярного интеграла, входящего в состав (4), использовался комплексный метод граничных элементов (схема разбиения границы *L* показана на рис. 16) с линейной аппроксимацией подынтегральной функции: при этом сингулярная часть бралась в смысле главного значения Коши, а для построения квадратурных сумм использовалась формула трапеций.

Мониторинг ВНК осуществлялся посредством вычисления траекторий z(t) отслеживаемых частиц (трассеров): объединение положений трассеров в выбранный момент времени t образует фронт вытеснения. Для определения траектории отдельной частицы z использовалась система уравнений из работы [4] (с учетом выражения (2) для определения функции скорости на ВНК):

$$m\frac{\partial \overline{z}}{\partial t} = \left[\frac{(1+\kappa)}{2}V_t^{water}(z) + iV_n^{water}(z)\right]e^{-i\alpha};$$

$$z_{t=0} = z_0 + r_w e^{i\theta}.$$
(5)

Здесь *m* – пористость пласта; z_0 – центр призабойной зоны радиуса r_w нагнетательной скважины, сквозь которую в месторождение поступает вода. Изначально все отслеживаемые частицы размещаются вокруг ствола скважины на равном удалении от центра: угол θ указывает на точное местоположение трассера относительно центра z_0 колонны, а величина $\Delta \theta$ определяет суммарное число трассеров. Для решения системы (5) применялись методы Рунге – Кутты, модифицированные для использования в комплексной плоскости.

Результаты расчетов

В рамках настоящего исследования были проведены два численных эксперимента: опыты проводились с целью сравнить результаты, получаемые в рамках моделей разноцветных жидкостей и поршневого вытеснения, а также оценить влияние различия в вязкостях воды и нефти на эффективность заводнения. Для экспериментов были задействованы пятиточечная, лобовая рядная, семиточечная и девятиточечная схемы расстановки скважин. Суммарные дебиты добычи и закачки принимались равными, число отслеживаемых трассеров составило 180, для численного решения основной задачи Коши (5) применялась схема Эйлера.

Первый эксперимент был посвящен сравнению результатов, полученных для моделей «разноцветных жидкостей» и поршневого вытеснения: физические свойства воды и нефти полагались одинаковыми. Часть результатов эксперимента представлена в табл. 1: здесь перечислены значения времени τ прорыва воды в добывающие скважины, а также коэффициента (K_{oxe}) охвата по площади. Для большей наглядности таблица дополнена столбцом данных о K_{oxe} из монографии Ф. Крэйга [8] для коэффициента подвижности, равного единице.

Сравнительный анализ показывает хорошее соответствие количественных результатов, полученных в рамках применения обеих моделей; также было зафик-168 сировано визуальное сходство картин заводненной области для всех четырех исследованных схем расстановки скважин. Полученные графические данные качественно соответствуют результатам как математического моделирования [9], так и физических экспериментов [10], описанных другими авторами.

Таблица 1

Схема заводнения	Данные о $\tau u K_{\text{охв}}$, полученные из разных источников					
	Разноцветные жидкости		Поршневое вытеснение		Ф. Крэйг	
	τ	К _{охв, %}	τ	К _{охв, %}	К _{охв, %}	
Пятиточечная обращенная	2288	72	2304	72,5	70	
Лобовая рядная	1815	57	1820	57,2	58	
Семиточечная обращенная	1539	74,6	1548	75,2	73	
Девятиточечная обращенная	1108	52,3	1108	52,7	55	

Результаты подсчетов τ и К_{охв} для нескольких схем заводнения

Целью второго эксперимента стала оценка влияния различия в вязкостях на эффективность процесса заводнения: в рамках опытов физические свойства воды и нефти полагались различными. Известно [1, 8], что с увеличением разницы в вязкостях воды и нефти наблюдается уменьшение нефтеотдачи из-за растущей нестабильности процесса заводнения. Кроме того, возможно проявление эффекта, называемого «вязким пальцами» [11, 12], при котором нагнетаемая вода «пронзает» нефтяную область острыми мысами (пальцами), оставляя за собой неосвоенные нефтяные запасы. Рис. 2 демонстрирует указанный эффект для четверти элемента пятиточечной (обращенной) схемы заводнения: изображение слева соответствует картине «вязких пальцев», полученной в рамках настоящего исследования, изображение справа – данным из работы [12] (Figure 6a в цитируемой работе). Таким образом, описанный эффект был обнаружен в ходе второго численного эксперимента при определенных значениях параметра к, индивидуальных для каждой схемы заводнения. Следует отметить, что вопрос неустойчивости ВНК не является предметом настоящего исследования и может быть изучен в будущем.

Часть результатов второго эксперимента представлена ниже. На рис. 3 изображена заводненная область для семиточечной и девятиточечной (обращенных) схем расстановки скважин в момент прорыва воды τ и для различных отношений вязкостей к: на картинах представлены окрестности добывающих скважин (белые круги), в сторону которых движется фронт вытеснения (траектории частиц жидкости обозначены белым). При сравнении изображений виден схожий характер изменений в форме мысов, образуемых нагнетаемой водой: подобный характер изменений наблюдается для всех четырех исследованных схем заводнения.

Значения K_{ox6} , подсчитанные в рамках второго эксперимента для всех четырех схем заводнения, приведены в табл. 2; для наглядности столбцы данных также дополнены результатами Ф. Крэйга [8] для коэффициента подвижности M=1. В рамках настоящего исследования $M = 1/\kappa$. Аббревиатура VF (viscous fingers) указывает на появление «вязких пальцев» для выбранной схемы заводнения, изза чего дальнейший мониторинг ВНК для данного значения κ невозможен.

Рис. 2. Пример «вязких пальцев» для четверти элемента пятиточечной обращенной схемы заводнения

 $\kappa = 1 \tau = 1108$ $\kappa = 1/4 \tau = 928$

Рис. 3. Картины заводненной области для семиточечной и девятиточечной (обращенных) схем расстановки скважин при различном отношении к вязкостей воды и нефти

Таблица 2

Схема заводнения	Величина K_{oxo} при различных значениях κ						
	Ф. Крэйг	<i>κ</i> = 1	$\kappa = 1/2$	$\kappa = 1/3$	$\kappa = 1/4$		
Пятиточечная	70	72,5	63,5	60	VF		
Лобовая рядная	58	57,2	47	VF	VF		
Семиточечная	73	75,2	68,5	65,3	63,3		
Девятиточечная	55	52,7	48	45,5	44		

Значения Кохв при различном отношении вязкостей воды и нефти, %

Результаты эксперимента подтверждают выводы, сделанные другими авторами: с увеличением разницы в вязкостях наблюдается сокращение «безводного» периода нефтедобычи и уменьшение площади, охватываемой заводнением, что негативно сказывается на нефтеотдаче.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Желтов Ю.П.* Разработка нефтяных месторождений: учеб. для вузов. 2-е изд., перераб. и доп. М.: Недра, 1998. 465 с.
- 2. *Уолкотт Д.* Разработка и управление месторождениями при заводнении. М.: ЮКОС-Schlumberger, 2001. 144 с.
- 3. *Уиллхайт Г. Пол.* Заводнение пластов. М.–Ижевск: Институт компьютерных исследований, 2009. 788 с.
- 4. *Касаткин А.Е.* Сравнительный анализ схем расстановки скважин при заводнении // Вестник Самарского государственного университета. Естественнонаучная серия. 2013. № 9/2 (110). С. 197-208.
- 5. *Касаткин А.Е.* Моделирование процессов заводнения с помощью эллиптических функций Вейерштрасса // Вестник Самарского государственного технического университета. Сер. Технические науки. – 2013. – № 3 (39). – С. 43-49.
- 6. Астафьев В.И., Ротерс П.В. Моделирование двоякопериодических систем добывающих скважин // Вестник Самарского государственного университета. Естественнонаучная серия. 2010. № 4 (78). С. 5-11.
- 7. Астафьев В.И., Ротерс П.В. Моделирование двоякопериодических систем добывающих скважин. 2. Коэффициент продуктивности // Вестник Самарского государственного университета. Естественнонаучная серия. 2011. № 8 (89). С. 118-127.
- 8. *Крэйг Ф.Ф.* Разработка нефтяных месторождений при заводнении. М.: Недра, 1974. 192 с.
- 9. Корнилина М.А., Самарская Е.А., Четверушкин Б.Н., Чурбанова Н.Г., Якобовский М.В. Моделирование разработки нефтяных месторождений на параллельных вычислительных системах // Математическое моделирование: математические модели и вычислительный эксперимент. – 1995. – Т. 7. – № 2. – С. 35-48.
- 10. *Маскет М.* Течение однородных жидкостей в пористой среде. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004. 628 с.
- 11. *Dapira P., Glimm J., Lindquist B., McBryan O.* Polymer Floods: A Case Study of Nonlinear Wave Analysis and of Instability Control in Tertiary Oil Recovery // SIAM Journal on Applied Mathematics, 1988. Vol. 48. № 2. P. 353-373.
- 12. *Chen C., Meiburg E.* Miscible porous media displacement in the quarter five-spot configuration. Part 1. The homogeneous case // J. Fluid Mech, 1998. Vol. 371. P. 233-268.

Статья поступила в редакцию 27 ноября 2013 г.

WATERFLOODING PROCESS MODELING IN DUAL-PERIODICAL AREA USING BY PISTONLIKE OIL DISPLACEMENT PATTERN

A.Y. Kasatkin

Samara State University 1, Pavlov academician st., Samara, 443011

The main content of that research is waterflooding process modeling in dual-periodical area: to reach that goal there was defined and solved oil displacement task in element's area of dual-periodical waterflooding scheme. It was used pistonlike displacement pattern to describe joint water-oil filtration process: according to that pattern the water-oil contact's thickness is supposed infinity thin and the both liquids are defined physically different.

Keywords: waterflooding, dual periodical lattice, pistonlike displacement, oil-water contact, production well filling, areal sweep efficiency.

Andrew Y. Kasatkin, Postgraduate Student.