Энергетика

УДК 532.546

ВЛИЯНИЕ НЕОДНОРОДНОСТИ ПЛАСТА ПО ПРОНИЦАЕМОСТИ НА ФИЛЬТРАЦИОННОЕ ТЕЧЕНИЕ ПЛАСТОВОЙ ЖИДКОСТИ К ДОБЫВАЮЩИМ СКВАЖИНАМ

Е.В. Андриянова, В.И. Астафьев

Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Рассмотрен процесс напорной установившейся фильтрации несжимаемой жидкости к конечной системе добывающих скважин в плоском горизонтальном пласте постоянной мощности h и проницаемости k_0 . В пласте также расположена узкая изолированная область с постоянной по величине проницаемостью k_f . В частности, при величине $k_f = 0$ эта неоднородность моделирует непроницаемую линзу (завесу), а при $k_f = \infty$ – бесконечно проницаемую каверну или трещину в пласте. Для различных значений проницаемости k_f исследован характер процесса фильтрации, определен коэффициент продуктивности скважины, получено аналитическое выражение для величины скин-фактора, отражающего влияние трещины на продуктивность скважины.

Ключевые слова: фильтрация жидкости, высокопроницаемые трещины, малопроницаемые завесы, коэффициент продуктивности скважины, скин-фактор скважины с трещиной.

Определенная часть запасов нефти сосредоточена в трещиноватых коллекторах [1]. Характерной особенностью процесса разработки таких месторождений является несоответствие продуктивности скважин и проницаемости породы, существенная зависимость индикаторной кривой от давления и т. п. На месторождениях с трещиноватыми коллекторами часто основной приток нефти к скважине происходит через одну трещину. Наличием трещин объясняется также быстрый прорыв воды в добывающую скважину при заводнении [1].

Изучение фильтрации нефти в трещиноватых коллекторах представляет интерес также и с точки зрения применения методов гидравлического разрыва пласта (ГРП). Гидравлический разрыв пласта в настоящее время является одним из самых эффективных методов повышения нефтедобычи [2, 3]. В результате ГРП повышается дебит добывающих или приемистость нагнетательных скважин, а также повышается конечная нефтеотдача за счет приобщения к выработке слабодренируемых зон и пропластков.

Трещины, находящиеся в продуктивных коллекторах, в ряде случаев могут быть заполнены малопроницаемым материалом. В этом случае они имеют меньшую проницаемость, чем основная порода (т. н. завесы).

Елена Валерьевна Андриянова, ассистент.

Владимир Иванович Астафьев (д.ф.-м.н., проф.), профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений».

В данной работе рассмотрены вопросы моделирования процесса фильтрации жидкости к скважине при наличии в пласте трещин (разломов) различной проницаемости, исследования влияния таких разломов на характер процесса фильтрации жидкости к добывающей скважине и на величину продуктивности такой скважины с высокопроницаемой/малопроницаемой трещиной/завесой.

Постановка задачи и математическая модель

Рассмотрим процесс установившейся фильтрации несжимаемой жидкости к конечной системе вертикальных добывающих скважин в изотропном по проницаемости плоском горизонтальном пласте. В плоскости (*x*, *y*) данный процесс описывается уравнением несжимаемости и законом фильтрации Дарси:

$$div V = 0, V = -(k_0 / \mu) gradp, \tag{1}$$

где $\vec{V}(x, y)$ – вектор скорости фильтрации жидкости;

p(x, y) – давление в жидкости;

 μ – вязкость жидкости;

 k_0 – проницаемость пласта мощностью h.

В данном пласте с круговым контуром питания радиуса R_c в точках $M_k(x_k, y_k)$ (k = 1, 2, ..., N) расположены N добывающих скважин с одинаковым радиусом r_w и с дебитами Q_k . Кроме этого внутри контура питания расположена трещина длиной 2l, толщиной 2δ ($\delta << l$) и проницаемостью k_f . Трещина ориентирована вдоль оси x, а центр ее совпадает с началом координат плоскости (x, y). Данная трещина моделирует присутствующую в пласте узкую протяженную неоднородность ($\delta << l$), проницаемость в которой k_f отличается от проницаемости пласта kв ту или иную сторону (при малых значениях k_f данная несплошность представляет собой слабопроницаемую линзу (завесу), а при больших значениях k_f – высокопроницаемую каверну).

Комплексный потенциал данной задачи в комплексной переменной z = x + iy можно записать в виде [2]

$$\varphi(z) = \sum_{k=1}^{N} q_k \ln(z - z_k) + \sum_{n=0}^{\infty} c_n z^{-n}, \qquad (2)$$

где $q_k = \mu Q_k / 2\pi k_0 h$ – приведенные дебиты добывающих скважин (k = 1, 2, ..., N), c_n – неизвестные коэффициенты в разложении в ряд Лорана возмущения, вызываемого наличием в пласте неоднородности и затухающего на бесконечности.

Решение задачи

Для трещин гидроразрыва пласта (ГРП) с добывающей скважиной дебита Q, расположенной в начале координат, решение данной задачи строилось следующим образом [2]. Трещина аппроксимировалась эллипсом с полуосями l и δ . Для описания течения жидкости внутри эллипса строился свой собственный комплексный потенциал

$$\varphi_f(z) = q_f \ln z + \sum_{n=0}^{\infty} d_n z^n, \qquad (3)$$

где $q_f = \mu Q / 2\pi k_f h$, d_n – неизвестные коэффициенты в разложении в ряд Лорана возмущения, ограниченного внутри трещины. Неизвестные коэффициенты c_n и d_n в представлении потенциалов в виде (2) и (3) находились из условий непрерывности давления p и нормальной компоненты вектора скорости V_n на границе «пласт – трещина».

155

Учитывая, что $\delta << l$, в работе [4] было предложено заменить эллипс с полуосями l и δ прямолинейным разрезом нулевой толщины (-l < x < l, y=0). Процесс фильтрации жидкости в трещине (в предположении равенства давления на верхнем и нижнем берегах трещины) был смоделирован в виде следующего дополнительного граничного условия на разрезе:

$$F_{CD}\sqrt{1-(x/l)^2}\operatorname{Re}\varphi'(x) = \operatorname{Im}\varphi(x), \qquad (4)$$

где $F_{CD} = k_f \delta / k_0 l$ – безразмерный коэффициент проводимости трещины [3].

Тогда, отобразив с помощью функции Жуковского $z=l(v+v^{-1})/2$ внешность разреза -l < x < l, y=0 на внешность единичного круга |v|=1, потенциал (2) в новой переменной v можно записать в виде

$$\varphi(\nu) = \sum_{k=1}^{N} q_k \ln(\nu - \nu_k) + \sum_{n=0}^{\infty} C_n \nu^{-n},$$
(5)

где $l\nu(z) = z + \sqrt{z^2 - l^2}$, $l\nu(z_k) = z_k + \sqrt{z_k^2 - l^2} = l\nu_k$, $|\nu_k| > l$, (k=1,2,...N),

C_n – новые неизвестные коэффициенты при разложении в ряд Лорана возмущения в переменной *v*, вызываемого наличием в пласте неоднородности и затухающего на бесконечности.

Граничное условие (4) на прямолинейном разрезе -l < x < l, y=0 в новой переменной *v* можно представить в следующем виде [5, 6]:

$$Im(F_{CD}\nu\phi'(\nu) - \phi(\nu)) = 0, \nu = e^{i\theta}.$$
 (6)

Более общее граничное условие, учитывающее возможность разрыва давления на верхнем и нижнем берегах разреза, а также случай криволинейных разрезов, было предложено в работах [7, 8], а результаты, вытекающие из этого нового граничного условия, будут обсуждены в последующих работах.

Итак, в случае одной добывающей скважины решение краевой задачи (6), найденное в работах [5, 6], имело следующий вид:

$$\varphi(\nu) = q_1(\ln(\nu - \nu_1) + \sum_{1}^{\infty} \frac{1}{n} \frac{nF_{CD} - 1}{nF_{CD} + 1} (\bar{\nu}_1 \nu)^{-n} + const).$$
(7)

Ряд в представлении (7) слабо сходится, поэтому его удобнее представить в виде

$$\varphi(\nu) = q_1 \left(\ln \frac{\nu - \nu_1}{1 - 1/\nu_1 \nu} - 2 \sum_{1}^{\infty} \frac{(\nu_1 \nu)^{-n}}{n(nF_{CD} + 1)} + const \right).$$
(8)

Учитывая, что $\ln 2(z-z_1)/l = \ln(\nu-\nu_1) + \ln(1-1/\nu_1\nu)$, потенциал (8) в переменной *z* можно записать в виде, удобном для построения линий тока и нахождения скин-фактора:

$$\phi(z) = q_1 \left(\ln \frac{z - z_1}{(1 - 1/v_1 v(z))(1 - 1/v_1 v(z))} - 2\sum_{l=1}^{\infty} \frac{(v_1 v(z))^{-n}}{n(nF_{CD} + 1)} + \ln \frac{2}{l} + const \right).$$
(9)

Характер течения жидкости к скважине при различных расположениях трещины и скважины и различных значениях коэффициента проводимости трещины F_{CD} изображен на рис. 1 и рис. 2.

Рис. 1. Линии тока жидкости к скважине, расположенной в точке (0; 0,5) при значениях $F_{CD}=\infty$ (слева) и $F_{CD}=0$ (справа)

Обобщение приведенного решения на случай двух добывающих скважин с одинаковым дебитом ($Q_2 = Q_1$), расположенных в точках $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2 = x_1 - iy_1$ симметрично относительно трещины, будет выглядеть следующим образом:

$$\varphi(\nu) = q_1(\ln(\nu - \nu_1) + \ln(\nu - \overline{\nu_1}) + 2\sum_{1}^{\infty} \frac{\cos n\theta_1}{n} \frac{nF_{CD} - 1}{nF_{CD} + 1} (\rho_1 \nu)^{-n} + const),$$
(10)

где $v_1 = \rho_1 \exp(i\theta_1)$.

Как и в случае одной добывающей скважины ряд в представлении (10) плохо сходится, поэтому аналогично представлению (8) представление (10) перепишем

в следующем виде:

Рис. 2. Линии тока жидкости к скважине, расположенной в точке (1,05; 0) (слева) и (1,5; 0) (справа) при значении $F_{CD} = \infty$

Так же как и в случае одной скважины, при построении линий тока или для нахождения скин-фактора в случае двух скважин необходимо, воспользовавшись соотношением $\ln 2(z-z_1)/l = \ln(v-v_1) + \ln(1-1/v_1v)$, представить соотношения (11) в виде, аналогичном представлению (9):

$$\phi(z) = q_1(\ln(z - z_1)(z - \overline{z_1}) + 4F_{CD}\sum_{1}^{\infty} \frac{\cos n\theta_1}{nF_{CD} + 1}(\rho_0 v(z))^{-n} + const).$$
(12)

Данный подход можно обобщить и на случай большего числа добывающих скважин.

Пусть в случае двух скважин одинакового дебита величина $\rho_1 \rightarrow 1$. Это соответствует случаю одной скважины удвоенного дебита, расположенной на трещине в точке (x_1 , θ), т. е. трещине ГРП, у которой правая часть имеет длину $l - x_1$, а левая часть длину $l + x_1$. Для нахождения точки x_1 на трещине, где расположена скважина, нужно учесть, что $lv_1 = z_1 + \sqrt{z_1^2 - l^2}$. Из этого соотношения при $\rho_1 \rightarrow 1$ следует, что $x_1 = lcos\theta_1$.

Потенциал (11) при $\rho_1 \rightarrow 1$ будет иметь следующий вид:

$$\varphi(v) = 2q_1(\ln v - 2\sum_{1}^{\infty} \frac{\cos n\theta_1 v^{-n}}{n(nF_{CD} + 1)} + const).$$
(13)

В частности, при $\theta_l = \pi/2$, т. е. при $x_l = 0$ (скважина в центре трещины длиной 2*l*) потенциал (13) примет вид

$$\varphi(\nu) = 2q_1(\ln\nu - \sum_{1}^{\infty} \frac{(-1)^n \nu^{-2n}}{n(2nF_{CD} + 1)} + const), \qquad (14)$$

в то время как при $\theta_I=0$, т. е. при $x_I=1$ (скважина в правом конце трещины) потенциал (13) будет

$$\varphi(\nu) = 2q_1(\ln\nu - 2\sum_{1}^{\infty} \frac{\nu^{-n}}{n(nF_{CD} + 1)} + const).$$
(15)

Коэффициент продуктивности скважины

Основным фактором, характеризующим эффективность проведенного ГРП, является скин-фактор (определяется исключительно по результатам ГДИС) после ГТМ. Скин-фактор, определяемый при исследовании скважин, отражает любой физический или механический феномен, ограничивающий приток в скважину [9]. Впервые Van Everdingen A. F. и Hurst N. (1949) ввели понятие скин-эффекта для оценки состояния призабойной зоны скважины. Согласно авторам, изменение забойного давления в результате ухудшения или улучшения проницаемости пласта в околоскважинной области пропорционально скин-фактору. Таким образом, скин-фактор выражает величину дополнительного падения давления в результате отклонения от плоскорадиального течения [10]. В основном загрязнение призабойной зоны в процессе бурения вызывает уменьшение проницаемости вблизи скважины, однако в случае с ГРП проницаемость скин-зоны будет увеличена в результате создания высокопроводимой трещины в породе, поэтому значения скин-фактора будут отрицательные. Эффективность работы скважины выражается через безразмерный коэффициент продуктивности, обычно записываемый в виде [3]

$$J = \frac{q}{p_c - p_w} = (\ln \frac{R_c}{r_w} + S)^{-1},$$
 (16)

где *p*_c – давление на контуре питания;

*p*_w – давление на забое скважины;

 R_c – радиус контура питания;

 r_w – радиус скважины;

S – скин-фактор скважины.

В случае расположения одной скважины в пласте вне трещины определим из выражения (9) для потенциала $\varphi(z)$ значения p_c и p_w из следующих условий:

$$p_{c} = \operatorname{Re} \varphi(z), z = z_{c} = z_{1} + R_{c} e^{i\theta}, \ p_{w} = \operatorname{Re} \varphi(z), z = z_{w} = z_{1} + r_{w} e^{i\theta}.$$
(17)

Учитывая, что $l/R_c \supseteq 1$, т. е. $l\nu(z_c) = z_c + \sqrt{z_c^2 - l^2}$ z_c , из выражения (9) запишем величину p_c в виде

$$p_c = q_1(\ln(2R_c/l) + const).$$

Аналогично, учитывая, что $l/r_w \square 1$, т. е. $l\nu(z_w) = z_w + \sqrt{z_w^2 - l^2}$ $\square v_{\bullet}$, также из выражения (9) для величины p_w получим следующее выражение:

$$p_{w} = q_{1}(\ln(2r_{w}/l) + \ln|1 - v_{0}^{-2}| + \ln(1 - \rho_{0}^{-2}) + 2\sum_{1}^{\infty} \frac{\rho_{0}^{-2n}}{n(nF_{CD} + 1)} + const).$$

Следовательно, величину скин-фактора $S = 1/J - \ln(R_c/r_w)$ можно записать как

$$S = \ln \left| 1 - \nu_0^{-2} \right| + \ln(1 - \rho_0^{-2}) + 2\sum_{1}^{\infty} \frac{\rho_0^{-2n}}{n(nF_{CD} + 1)}.$$
 (18)

В частности, из представления (18) следует, что при $\theta_0 = 0$ (см. рис. 2), когда $v_0 = \rho_0$, величина скин-фактора будет

$$S = 2\ln(1-\rho_0^{-2}) + 2\sum_{1}^{\infty} \frac{\rho_0^{-2n}}{n(nF_{CD}+1)} = -2F_{CD}\sum_{1}^{\infty} \frac{\rho_0^{-2n}}{nF_{CD}+1} < 0, \quad (19)$$

а при $\theta_0 = \pi/2$ (рис. 1), когда $v_0 = i\rho_0$, она примет следующее значение:

$$S = \ln(1 - \rho_0^{-4}) + 2\sum_{1}^{\infty} \frac{\rho_0^{-2n}}{n(nF_{CD} + 1)}.$$
 (20)

Из соотношения (18) также следует, что для непроницаемых трещин (завес), когда $F_{CD}=0$, величина S будет

$$S = \ln \left| 1 - \nu_0^{-2} \right| - \ln (1 - \rho_0^{-2}), \qquad (21)$$

а в высокопроницаемом случае, когда $F_{CD}=\infty$, она примет значение

$$S = \ln \left| 1 - \nu_0^{-2} \right| + \ln(1 - \rho_0^{-2}) < 0.$$
⁽²²⁾

Заключение

В работе дана постановка и решена задача о фильтрации жидкости к скважине при трещине различной проводимости F_{CD} . Для различных значений F_{CD} и различных расположений скважины и трещины исследован характер течения жидкости к скважине, построены линии тока, а также определен скин-фактор скважины, определяющий величину дополнительного перепада давления в результате отклонения течения от плоскорадиального из-за наличия трещины.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Фазлыев Р.Т.* Площадное заводнение нефтяных месторождений. М.-Ижевск: ИКИ, 2008. 256 с.
- 2. *Каневская Р.Д.* Математическое моделирование разработки месторождений нефти и газа с применением гидравлического разрыва пласта. М.: Недра, 1999. 212 с.
- 3. Экономидес М., Олини Р., Валко П. Унифицированный дизайн гидроразрыва пласта: от теории 160

к практике. - М.-Ижевск: ИКИ, 2007. - 236 с.

- 4. *Астафьев В.И., Федорченко Г.Д.* Моделирование фильтрации жидкости при наличии трещины гидравлического разрыва пласта // Вестник Самарского государственного университета. Сер. Физ.-мат. науки. 2007. № 2 (15). С. 128-132.
- Астафьев В.И., Каримов Н.А., Федорченко Г.Д. Влияние разломов пласта на характер процесса фильтрации жидкости к добывающей скважине // Труды XVI Международного симпозиума МДОЗМФ-2013, Харьков – Херсон, 10-15 июня 2013. – С. 53-56.
- 6. *Каримов Н.А*. Влияние разломов пласта на характер процесса фильтрации жидкости к добывающей скважине // Вестник Самарского государственного университета. 2013. № 9/2 (110). С. 191-195.
- Андрианова Е.В. Моделирование процесса фильтрации жидкости к скважине при наличии несплошностей в пласте // Математическое моделирование в естественных науках: Материалы XXIII Всероссийской школы-конференции молодых ученных и студентов – Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2014. – С. 20-23.
- Astafiev V., Andriyanova E. 2015. Influence of reservoir's discontinuities on the process of oil filtration to the production well. New Geotechnology for the Old Oil Provinces. 23-27 March 2015. Tyumen, Russia. – DOI: 10.3997/2214-4609.201412034.
- 9. Мукерджи Х. Производительность скважин. Москва, 2001. 183 с.
- Michael J. Economides, A. Daniel Hill, Christine Ehlig. Petroleum production systems. Economides, 1994 by Prentice Hall PTR. 609 p.

Статья поступила в редакцию 27 мая 2015 г.

THE INFLUENCE OF RESERVOIR PERMEABILITY HETEROGENEITY ON FILTRATION OF RESERVOIR FLUID TO PRODUCTION WELLS

E.V. Andriyanova, V.I. Astafiev

Samara State Technical University 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

The steady-state flow process of incompressible fluid to the system of production wells in horizontal reservoir of constant height and permeability is considered in this paper. There is a thin area in the reservoir with constant permeability k_f , which models highly permeable cracks or low permeability barrier. The characteristic of filtration process for various k_f value is studied, well productivity index and the analytical expression for skin are defined.

Keywords: fluid filtration, highly permeable cracks, low permeability barriers, well productivity index, skin.

Elena V. Andriyanova, Assistant.

Vladimir I. Astafiev (Dr. Sci. (Techn.)), Professor.