УДК 621.791.05 + 669

ФОРМИРОВАНИЕ СВАРНЫХ ШВОВ ПРИ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКЕ КОРРОЗИОННО-СТОЙКОЙ ЖАРОПРОЧНОЙ СТАЛИ 06X15H6MBФБ-Ш ТОЛЩИНОЙ 9 MM

С.Л. Исаев

Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Исследовано влияние режимов электронно-лучевой сварки коррозионно-стойкой жаропрочной стали 06X15H6MBФБ-Ш толщиной 9 мм на формирование сварных швов и склонность к образованию таких дефектов, как поры и шлаковые включения. Сварка выполнялась с технологической подкладкой толщиной 5 мм на различных значениях тока луча и тока фокусирующей линзы. Для оценки качества сварки каждый из образцов подвергался рентгенографическому контролю, разрезке и металло-графическому исследованию с определением параметров сварных швов, микротвердости и наличия дефектов. Полученные значения параметров сварки для стыкового соединения обеспечивают требуемое качество и размеры сварного шва.

Ключевые слова: электронно-лучевая сварка, коррозионно-стойкая жаропрочная сталь, скорость сварки, микротвердость, оптимальный режим сварки.

При изготовлении таких ответственных высоконагруженных узлов в машиностроении, как проставка газоперекачивающих двигателей, головка камеры сгорания и другие, широко применяются жаропрочные стали.

При этом часто используется электронно-лучевая сварка (ЭЛС), которая позволяет сваривать материалы в однородных и разнородных сочетаниях со значительной разностью толщин. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная – до 100 мм. Высокая концентрация энергии в электронном пучке, локальность нагрева металла, минимальные деформации обрабатываемого изделия, вакуумная защита зоны нагрева и низкие эксплуатационные расходы обеспечивают высокую конкурентоспособность электроннолучевых технологий. По сравнению с другими видами сварки при ЭЛС уменьшаются размеры околошовной зоны и зоны термического влияния [1].

Известно, что в процессе выполнения ЭЛС жаропрочных сталей жидкий металл движется по стенке ванны неравномерно, образуя выступы и впадины. Изменение угла встречи луча с передней стенкой приводит к повышению концентрации мощности луча на этой поверхности, интенсификации ее плавления и испарения, к увеличению реактивной отдачи паров и усиленному сносу жидкого металла выступа в хвостовую часть ванны. Это приводит к образованию таких характерных дефектов, как поры [2].

В настоящей работе исследовано влияние режимов ЭЛС коррозионностойкой жаропрочной стали 06Х15Н6МВФБ-Ш толщиной 9 мм без предварительного подогрева на склонность к образованию пор и шлаковых включений.

Сергей Леонидович Исаев, аспирант кафедры «Металловедение, порошковая металлургия, наноматериалы».

Материалы и методы исследования

Отработку режима сварки производили на образце – имитаторе натурного узла. Имитатор был выполнен в виде кольца с толщиной сварных кромок 9 мм и толщиной технологического подкладного кольца 5. Образец-имитатор был разбит на 17 равных участков (рис. 1).

Рис. 1. Эскиз сварного соединения

Материал свариваемого образца-имитатора – сталь 06Х15Н6МВФБ-Ш, поставляется по ТУ 14-1-2903-80. Химический состав стали должен соответствовать ГОСТ 5632-72 (табл. 1).

Таблица 1

Химический состав стали, % масс.

Vnoví	Цикот	Молибден	Марганец	Кремний	Углерод
лром	пикель		Не более		
13,5–15	5,5-6	0,35–0,6	≤0,4	≤0,4	≤0,06

Механические свойства листов в состоянии поставки должны соответствовать нормам (табл. 2).

Таблица 2

Механические свойства листов

	Временное	Предел текучести	Относительное	
Марка стали	сопротивление $\sigma_{\rm B}$, H/мм ²	σ _{0,2} , Н/мм ²	удлинение $\delta_5, \%$	
	Не менее			
06Х15Н6МВФБ	960÷980	720÷740	16,0÷17,5	

Электронно-лучевая сварка выполнялась на установке ЭЛУ-9Б, укомплектованной универсальным сварочным манипулятором, электронно-лучевой аппаратурой ЭЛТА-60.15 мощностью 15 кВт, в которую входят электронная пушка с катодом косвенного подогрева и инверторный высоковольтный источник питания [3]. Контроль фокусировки электронного пучка производили на поверхности образца по наибольшей яркости пучка при токе луча 1мА (I_o). Рабочее расстояние от пушки до образца составило 200 мм.

Установка предназначена для сварки электронным лучом в вакууме кольце-

вых швов щелевой конструкции на изделиях, расположенных в вертикальной и горизонтальной плоскостях, а также сварки изделий с продольными швами. Она позволяет производить сварку цилиндрических изделий под углом наклона планшайбы относительно горизонтальной оси вверх на 90°. Установка позволяет сваривать углеродистые стали толщиной до 45 мм, титан и его сплавы до 55 мм, алюминий и его сплавы толщиной до 60 мм при скоростях сварки 0,5-40 мм/с.

Образец-кольцо для устранения остаточной намагниченности подвергали дополнительному размагничиванию, и оно поступало на сварку с уровнем намагниченности не более 300 мкТл. Контроль производили микротеслометром МФ-24ФМ.

Рентгенографический контроль сварного шва производили на установке «Экстравольт 225/Р3000» с рентгеновской трубкой ТНХ225. Рентгеновский аппарат предназначен для промышленной дефектоскопии и представляет собой стационарный аппарат, предназначенный для проведения анализа промышленных изделий методом рентгеновской дефектоскопии в промышленных и научных лабораториях, а также в цеховых условиях.

Поперечный шлиф для металлографического исследования получали путем распиливания слесарным инструментом сварного шва образца-имитатора. Далее в несколько этапов производилась подготовка поперечных шлифов для исследования:

- полирование на полировальном круге с использованием пасты ГОИ;

- полирование на бумаге с использованием алмазной пасты.

Для травления шлифов использовали реактив с составом, приведенным в табл. 3. Применяемый реактив позволяет выявить литую зону сварного шва, структуру основного материала и границы зерен аустенита. Травили путем погружения шлифа в реактив в течение 2-3 сек и затем промывали проточной водой, после чего сушили. Травление производили при температуре 20 °C.

Таблица 3

Компонент	Количество		
НСІ, мл	200		
H ₂ O, мл	200		
CuSO ₄ , г	40		

Состав реактива для травления шлифов

Для металлографического анализа микроструктуры образцов использовался оптический микроскоп МИМ-8М с фотонасадкой при различных увеличениях, а также электронный микроскоп JEOL-6390A. Исследования производили с 600-кратным увеличением.

Микротвердость измерялась на микротвердомере ПМТ-3, нагрузка на индентор составляла 50 г. Измерения микротвердости проводились в поперечном сечении начиная от верхнего края образца до нижнего края, со средним шагом между «уколами» 0,2 мм. На каждом участке проводили 3-4 измерения с шагом 150-200 мкм от левого края шва до правого края [4].

Рентгенофазовый анализ проводился на рентгеновском аппарате ДРОН-2.0 при ускоряющем напряжении Ua = 20 кВ, силе тока Ia = 20 mA, скорости сварки счетчика 2 0 /мин.

Результаты исследований

При исследовании замерялись геометрические параметры шва, полученного при различных значениях тока луча и тока фокусирующей линзы. Результаты измерения геометрических параметров относительно каждого режима сварки приведены в табл. 4.

Таблица 4

№ образца	Скорость сварки, мм/с	Ток луча І _л , мА	Ток фокусирующей линзы І _ф , мА	Ускоряющее напряжение, кВ	Ширина верхней области сварного шва, мм	Глубина сварного шва, мм
1		35	728		7,5	7,7
2		35	732		6,0	7,7
3		35	736		6,1	7,2
4		40	728		5,6	8,3
5		40	732		5,7	8,0
6		40	736		6,3	8,4
7		40	744		7,0	8,4
8		40	740		6,9	8,5
9	3	45	740	60	6,2	8,6
10		45	736		6,0	8,8
11		45	732		6,1	9,0
12		45	728		5,7	9,0
13		48	728		6,0	Более 9,0
14		48	732		6,1	Более 9,0
15		48	736		6,2	Более 9,0
16		52	728		6,0	Более 9,0
17		52	732		6,3	Более 9,0

Результаты измерения геометрических параметров

Из таблицы видно, что с ростом тока фокусирующей линзы ширина сварного шва увеличивается, а глубина уменьшается. Глубина сварного шва возрастает с увеличением тока луча, который определяет мощность электронного пучка [5].

На образцах № 16 и 17 получили прожог, что обусловлено завышенным током луча. В дальнейшей работе их не рассматривали.

Исследование физико-механической однородности сварного соединения на образце № 15 в целом оценивали методом измерения микротвердости основных его составляющих: основного металла, сварного шва и околошовной зоны (ОШЗ). Результаты замера представлены в табл. 5.

Таблица 5

D				, 2
Результаты	замера:	микротве	рдость,	кгс/мм~

№ образца	Сварной шов	Околошовная зона	Основной материал
15	326	361	302

Из таблицы следует, что характер распределения значений микротвердости по зонам сварного соединения из стали 06Х15Н6МВФБ-Ш качественно одинаков. Микротвердость основного металла имеет минимальные значения, максимальная микротвердость обнаружена в ОШЗ, что обусловлено образованием структур закалочного характера.

Для изучения распределения элементов в сплаве после сварки был проведен микроанализ образца. На сварном шве и околошовной зоне были выделены 9 областей. Распределение элементов считывалось слева направо. Результаты представлены в табл. 6.

Участок		С	Si	Cr	Fe	Ni	Total ~
Основной ма-	011	3,41	0,21	18,12	72,55	4,59	100,00
териал	012	3,82	0,26	17,83	72,01	4,96	100,00
Околошовная	013	3,92	0,27	17,60	72,75	4,53	100,00
зона	014	3,03	0,26	17,52	74,14	4,15	100,00
	015	2,23	0,18	17,50	75,02	4,10	100,00
Сварной шов	016	1,98	0,30	18,03	75,11	4,63	100,00
	014	2,41	0,31	16,96	75,07	4,65	100,00
	018	2,40	0,26	17,37	75,15	3,94	100,00
	019	2,21	0,34	17,36	74,82	3,93	100,00

Распределение элементов

Исходя из проведенного микроанализа можно наблюдать, что все элементы в сварном шве относительно основного металла распределены равномерно, что указывает на высокое качество сварного соединения.

Все образцы были проверены на наличие в них дефектов. Дефекты выявлялись двумя способами: визуально на оптическом микроскопе МИМ-8М при увеличении в 600 крат и рентгеновскими снимками.

Отсутствие ярко выраженной, характерной зоны термического влияния (3TB) на исследуемом образце свидетельствует о достаточно высокой структурной и физико-механической однородности сварных соединений из исследуемых сталей.

На электронном микроскопе была исследована микроструктура сварного шва на участке № 15 (рис. 2).

Рис. 2. Микроструктура образца после сварки основного металла (a) и сварного шва (δ)

На рис. 2, *а* видим структуру мартенситного класса, а на рис. 2, *б* заметны крупные зерна в околошовной зоне, характерные для высоколегированных сталей.

Таблииа 6

После ЭЛС структура представлена двумя фазами: аустенит (гранецентрированная кубическая решетка) и α-Fe (объемно-центрированная кубическая решетка). Сталь 06Х15Н6ВМФБ относится к аустенитно-мартенситному классу [6].

В табл. 7 представлены дефекты на каждом из образцов.

Таблица 7

№ образца	Скорость сварки, мм/с	Ток луча І _л , мА	Ток фокусирующей линзы І _ф , мА	Ускоряющее напряжение, кВ	Выявленные дефекты
1		35	728		Непровар 7 %, зашлакованность
2		35	732		Зашлакованность
3		35	736		Непровар 15 %, зашлакованность
4		40	728		Зашлакованность
5		40	732	Γ	Зашлакованность
6		40	736		Зашлакованность
7		40	744		Непровар 8 %
8	3	40	740	60	Зашлакованность, поры
9		45	740		Отсутствуют
10		45	736		Отсутствуют
11		45	732		Отсутствуют
12		45	728		Отсутствуют
13		48	728		Отсутствуют
14		48	732		Отсутствуют
15		48	736		Отсутствуют
16		52	728		Прожог
17		52	732		Прожог

Дефекты образцов

В результате исследования образцов были выявлены такие дефекты, как непровар, неоднородности в виде шлака, несплавления и поры. Все эти дефекты присутствуют в нижней области шва.

Заключение

По результатам проведенных исследований влияния режимов ЭЛС на формирование шва и образование дефектов в нем можно сделать следующие выводы:

 с ростом тока фокусировки увеличивается ширина ванны сварного шва, а глубина уменьшается;

 – глубина сварного шва увеличивается с увеличением тока луча, который определяет мощность в электронном пучке;

 – рентгенофазовый анализ показал, что фазы по всей области однородны и относятся к аустенитно-мартенситному классу;

– рентгенографический контроль и исследование сварных швов на микроскопе позволили выявить такие дефекты, как непровар, несплавление, неоднородность и трещины. Дефекты имеют все образцы с током луча Iл = 35, 40 и 52 мА;

- результаты измерения микротвердости показали, что в отличие от основно-

го металла в сварном шве твердость изменилась от 302 до 360 кгс/мм²;

– результаты проведенного микроанализа показали, что химические элементы сплава 06Х15Н6ВМФБ в сварном шве и в основном металле распределены одинаково, что говорит о высоком качестве ЭЛС;

– оптимальными режимами электронно-лучевой сварки являются Iл = 48 мA и Iф = 728 мA.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Драгунов В.К., Гончаров А.Л.* Современное развитие электронно-лучевой сварки // Ритм. 2009. № 8. С. 28-30.
- 2. *Нестеренков В.М.* Применение сканирующего сварочного электронного луча для устранения корневых дефектов на сталях большой толщины // Автоматическая сварка. 2003. № 9. С. 7-12.
- 2. Драгунов В.К., Гладышев О.М., Беневольский Е.С. Инверторный источник питания сварочной электронной пушки // Сварочное производство. 2009. № 7. С. 42-46.
- 3. *Глазов В.М., Вигдорович В.Н.* Микротвердость металлов и полупроводников. Изд. 2-е, перераб. и доп.– М.: Металлургия, 1969. 248 с.
- 4. *Мурыгин А.В.* Контроль распределения плотности тока электронного пучка в процессе электронно-лучевой сварки // Сварочное производство. 2006. № 7. С. 8-14.
- 5. *Жадан В.Т., Полухин Л.И., Нестеров А.Ф и др.* Материаловедение и технология материалов: Учебник для вузов. М.: Металлургия, 1994. 624 с.

Статья поступила в редакцию 25 мая 2015 г.

WELD FORMATION AT ELECTRON BEAM WELDING OF CORRO-SION-RESISTANT HEAT-RESISTANT STEEL 06CR15N16M01W1V1NB1 OF 9 MM THICK

S.L. Isaev

Samara State Technical University 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

The influence of the modes of electron beam welding corrosion-resistant heat-resistant steel 06Cr15Ni6Mo1W1V1Nb1 9 mm thick on the formation of the welds and the tendency to form defects such as pores and slag inclusions was investigated. Welding was performed with technological lining thickness of 5 mm at different values of the beam current and the focusing lens current. To assess the quality of welding each of the samples was subjected to X-ray inspection, cutting and metallographic investigation with the definition of the parameters of welds, microhardness and the presence of defects. The obtained values of the weld.

Key words: electron-beam welding, corrosion-resistant heat-resistant steel, welding speed, microhardness, the optimal welding conditions.

Sergey L. Isaev, Postgraduate Student.