УДК 536.46

САМОРАСПРОСТРАНЯЮЩИЙСЯ ВЫСОКОТЕМПЕРАТУРНЫЙ СИНТЕЗ УЛЬТРАДИСПЕРСНЫХ И НАНОРАЗМЕРНЫХ ПОРОШКОВ КОМПОЗИЦИЙ ТІС-SІС И ТІС-NЬС

К.С. Криволуцкий, А.П. Амосов, А.Р. Самборук

Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Разработана методика проведения эксперимента по самораспространяющемуся высокотемпературному синтезу (СВС) композиционных порошков карбидов титана и кремния или ниобия. Проведен синтез в режиме горения композиций порошков с различным процентным соотношением исходных реагентов. Произведен замер температуры горения методом термопар. Конечные продукты синтеза проанализированы методами электронной микроскопии и рентгеновской дифрактометрии. Показано, что продукты СВС представляют собой композиции ультрадисперсных и наноразмерных частиц чистых целевых фаз TiC—SiC и TiC—NbC, объединенные в агломераты микронных размеров.

Ключевые слова: карбид кремния, карбид ниобия, карбид титана, СВС, композиционный материал, микро- и нанопорошки.

В наше время все большей популярностью пользуются композиционные материалы (КМ), свойства которых могут значительно превосходить свойства составляющих их индивидуальных компонентов. Быстрыми темпами идет развитие индустрии микро- и нанопорошковой металлургии с применением карбидов тугоплавких металлов. Они позволяют решать проблемы во многих областях техники и науки, например такие, как упрочнение высокоточного инструмента или изготовление керамики с высокой прочностью. Порошковые КМ могут использоваться в качестве армирующих элементов, покрытий с высокой износо- и термостойкостью. Было доказано, что композиционные материалы на основе двухкомпонентных карбидов позволяют компенсировать недостатки индивидуальных карбидов и что механические свойства КМ могут быть значительно выше свойств однокомпонентных аналогов [1–3].

Карбиды титана и кремния (TiC и SiC) являются достаточно распространенными материалами, используемыми в порошковой металлургии, в то время как карбид ниобия (NbC) используется значительно реже, в частности в качестве компонента композиционной смеси. Известны различные технологии получения порошков этих индивидуальных карбидов, важное место среди которых занимает энергосберегающая технология самораспространяющегося высокотемпературного синтеза (CBC) [4]. Технология СВС имеет большие возможности в регулировании размера синтезируемых порошков, в том числе в получении индивидуальных наноразмерных порошков ТiC и SiC [5, 6]. Композиционные СВС-порошки

Кирилл Сергеевич Криволуцкий, аспирант,

Александр Петрович Амосов (д. ф-м. н., проф.), заведующий кафедрой «Металловедение, порошковая металлургия, наноматериалы».

Анатолий Романович Самборук (д. т. н., проф.), профессор кафедры «Металловедение, порошковая металлургия, наноматериалы».

составляют особую группу [7]. Известны минералокерамические (тугоплавкое соединение + оксид алюминия или магния) и металлокерамические (тугоплавкое соединение + металл) композитные порошки. Замечательной особенностью композиционных СВС-порошков является высокая степень перемешивания компонентов (реализуемая даже в пределах одной частицы) [8]. Это обеспечивает их хорошую спекаемость. Технологические свойства композиционных СВСпорошков лучше, чем у механических смесей этих же компонентов. Интересно, что металлокерамические СВС-порошки успешно конкурируют с аналогичными плакированными порошками, тугоплавкое зерно которых состоит из СВСчастицы [9]. Материалы из них, полученные горячим прессованием, обладают высокими значениями твердости и износостойкости и используются для изготовления деталей, работающих в условиях сильного износа (например элементов пескоструйного аппарата) [9]. Представляет несомненный интерес исследование возможности применения метода СВС для получения нано- и микроразмерных композиционных порошков TiC-SiC и TiC-NbC, что может стать основой промышленной технологии производства недорогих композиционных порошков высокой дисперсности.

В данной работе рассмотрен процесс получения композиционных порошков из смесей элементных порошков (Ti+C) и (Si+C) или (Nb+C) методом СВС с последующим исследованием полученного продукта.

Материалы и методы экспериментального исследования

В качестве смесей для синтеза использовались смеси порошков в стехиометрическом соотношении и в различном пропорциональном соотношении. Ниже представлены реакции синтеза, которые изучались:

$$x(Ti + C) + (100-x)(Si + C) \rightarrow xTiC + (100-x)SiC;$$

 $x(Ti + C) + (100-x)(Nb+C) \rightarrow xTiC + (100-x)NbC,$

где x – массовый (весовой) процент содержания смеси компонентов, в каждой из которых бралось стехиометрическое соотношение компонентов, тоже в массовых процентах:

$$(Ti + C) = (80 \% + 20 \%), (Si+C) = (70 \% + 30 \%), (Nb + C) = (88,5 \% + 11,5 \%).$$

На первом этапе производились вычисления количества каждого реагента по атомарной массе в стехиометрической пропорции в расчете на $30\,$ г смеси с постепенным уменьшением количества Ti+C, то есть величины х. Для каждой композиции было рассчитано 7 смесей с различным содержанием исходных компонентов. В табл. 1 и 2 указаны эти смеси с массой каждого элемента.

 $\label{eq:2.2} \begin{picture}(20,20) \put(0,0){Taблица I} \end{picture}$ Расчет массы компонентов для реакции синтеза композиции TiC–SiC

Элемент	Масса элемента в смеси, г (x/100-x, %)								
	80/20	75/25	70/30	65/35	60/40	55/45	50/50		
Ti	19,2	18	16,8	15,6	14,4	13,2	12		
Si	4,2	5,25	6,3	7,35	8,4	9,45	10,5		
С	6,6	6,75	6,8	7,05	7,2	7,35	7,5		

Расчет массы компонентов д	пп	пеакшии	синтезя	композиции	TiC-NbC
Tacaci macchi komilonentob A		рсакции	cunicsa	композиции	110-1100

Элемент	Масса элемента в смеси, г (х/100-х, %)								
	80/20	75/25	70/30	65/35	60/40	55/45	50/50		
Ti	19,2	18	16,8	15,6	14,4	13,2	12		
Nb	5,3	6,6	8	9,3	10,6	11,95	13,3		
С	5,5	5,4	5,2	5,1	5	4,85	4,7		

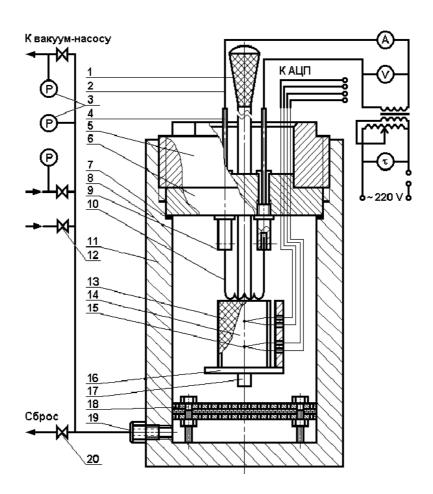


Рис. 1. Лабораторный СВС-реактор постоянного давления объемом 4,5 л: 1 – ручка; 2 – система воспламенения; 3 – приборы контроля (манометр, вакуумметр); 4 – электроконтакт; 5 – опорная гайка; 6 – грибковый затвор; 7 – уплотнительное резиновое кольцо; 8 – корпус; 9 – держатель спирали; 10 – инициирующая вольфрамовая спираль; 11 – корпус; 12 – вентиль М-14; 13 – фильтрующий стакан; 14 – образец исходной смеси; 15 – вольфрамрениевая термопара; 16 – подвижная предметная полочка; 17 – направляющая стойка; 18 – фильтрующая сборка; 19 – штуцер М-24 (для ввода и сброса газа); 20 – вентиль М-24

Далее согласно расчету готовились смеси компонентов. Изучение процесса синтеза композиций карбидов титана, кремния и ниобия проводилось в лабораторном трубчатом реакторе постоянного давления с рабочим объемом 4,5 л (рис. 1). Внутренний диаметр рабочего пространства реактора составляет 0,147 м, высота -0,255 м. Образец с насыпной плотностью исходной смеси имел диаметр 20 мм, высота образца составляла 50 мм. Он помещался в реактор на предметную подвижную полочку 16. В образец исходной смеси 14 вводились вольфрам-рениевые термопары 15 из проволоки BP-5 и BP-20 диаметром

200 мкм для измерения температуры горения. Глубина погружения термопар в образец соответствовала 5 мм, а база (расстояние между спаями горизонтально расположенных термопар) составляла 10 мм. Электрический сигнал от термопар регистрировался с помощью аналого-цифрового преобразователя, соединенного с персональным компьютером, и соответствующего программного обеспечения. К порошковому образцу подводилась вольфрамовая спираль накаливания 10 для инициирования химической реакции в форме горения.

После окончания горения и непродолжительной выдержки в течение 10–15 мин для охлаждения образец извлекался из реактора и легко разрушался до сыпучего порошкообразного состояния в фарфоровой ступке. Полученный порошок подвергался соответствующим методам анализа.

Проводился рентгенофазовый анализ (РФА) конечных продуктов синтеза. Съемку рентгеновских спектров осуществляли на автоматизированном дифрактометре марки ARL X'trA (Thermo Scientific) с использованием Си-излучения при непрерывном сканировании в интервале углов 20 от 20 до 80 град со скоростью 2 град/мин. Микроскопический и элементный анализ проводился на сканирующем электронном микроскопе JEOL JSM-6390A с приставкой для микроанализа JED-2200.

Обсуждение полученных результатов

На рис. 2 приведены результаты рентгенофазового анализа продукта синтеза композиции TiC (50 %) + SiC (50 %). Согласно результатам РФА, в продукте содержатся только целевые фазы TiC и SiC, то есть исходные реагенты прореагировали полностью без остатка. Конечный продукт получился чистым, без какихлибо примесей, чему способствовало проведение синтеза в изолированном реакторе. На рис. 3 приведены результаты рентгенофазового анализа продукта синтеза композиции TiC (50 %) + NbC (50 %). Здесь схожая картина с предыдущим исследованием. Продукт получился в результате полного реагирования исходных компонентов и не содержит посторонних примесей.

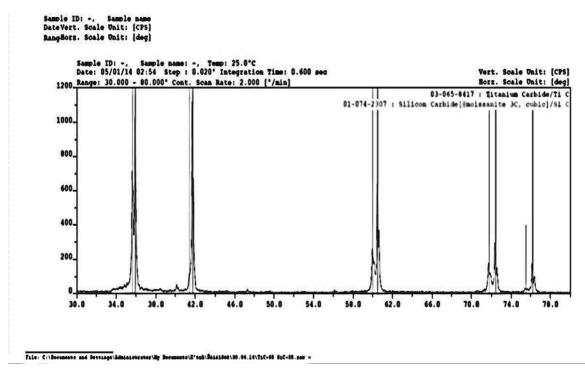
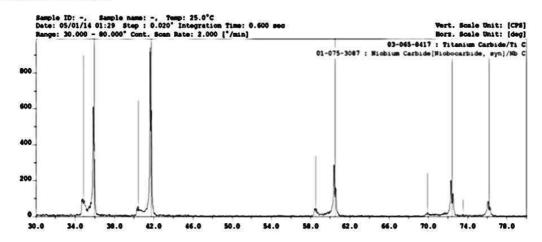



Рис. 2. Дифрактограмма конечного продукта синтеза TiC (50 %) + SiC (50 %)

Для реакций синтеза с использованием SiC производились замеры температуры горения. На рис. 4 показано влияние количества (Si + C) в исходной смеси на температуру реакции. При увеличении доли (Si + C) в исходной смеси порошков уменьшаются температуры горения, что связано с уменьшением суммарного теплового эффекта реакций CBC x(Ti + C) + (100 - x)(Si + C), который максимален у смеси (Ti+C). Соответственно это должно приводить к уменьшению размера синтезируемых порошков [10].

File: C:\Documente and Settings\Administrator\Ny Documents\E'taA\Stition\30.04.14\TiC-00 MbC-30.sex =

Рис. 3. Дифрактограмма конечного продукта синтеза TiC (50 %) + NbC (50 %)

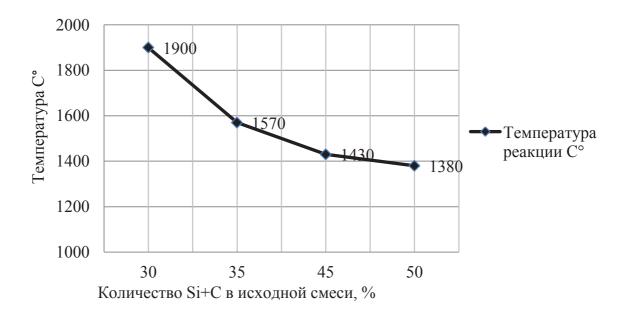


Рис. 4. Зависимость фактической температуры реакции от процентного содержания (Si + C)

На рис. 5 показаны микрофотографии конечного продукта синтеза композиций порошков, полученные с использованием сканирующей микроскопии. На рис. 5, а и 5, б показаны результаты синтеза композиции TiC-SiC с минимальным и максимальным содержанием (Si + C) в исходной смеси. У композиции с 20 % Si + C размер отдельных частиц порошка находится в диапазоне от 280 до 1130 нм, а у композиции с 50 % Si + C - B диапазоне 70–284 нм, то есть синтезированный композиционный порошок можно считать ультрадисперсным. Видно, что с увеличением количества (Si + C) уменьшается размер частиц, что, как отмечалось выше, объясняется уменьшением температуры горения. Похожий эффект наблюдается по результатам исследования системы x(Ti + C) + (100 - x)(Nb+ C), у которой синтезированный композиционный порошок TiC-NbC получился заметно более мелким: 100-200 нм у композиции с 20% Nb + C и 60-350 нм у композиции с 50 % Nb + C. В последнем случае получилась смесь наноразмерных и ультрадисперсных частиц. Прямая зависимость размера частиц от количества Si + C и Nb + C указана на рис. 6 и 7 соответственно. Из рис. 5 видно, что полученные ультрадисперсные и наноразмерные частицы объединены в агломераты микронных размеров, что является типичным для высокодисперсных порошков, полученных методом СВС.

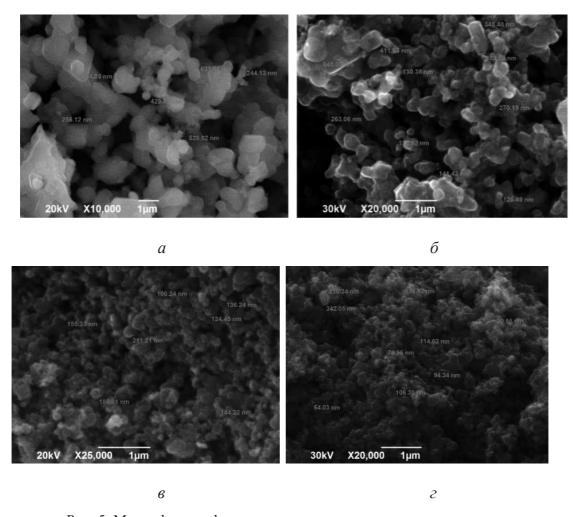


Рис. 5. Микрофотографии конечного продукта синтеза смеси порошков: $a-{\rm TiC}~(80~\%)+{\rm SiC}~(20~\%);~\sigma-{\rm TiC}~(50~\%)+{\rm SiC}~(50~\%);$ $e-{\rm TiC}~(80~\%)+{\rm NbC}~(20~\%;~z-{\rm TiC}~(50~\%)+{\rm NbC}~(50~\%)$

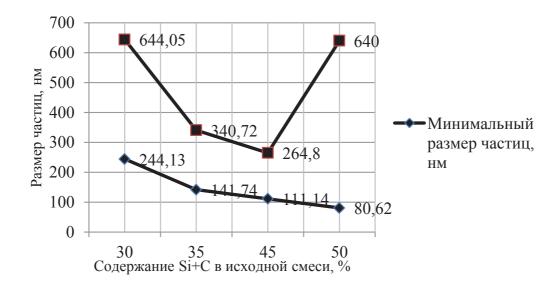


Рис. 6. Зависимость размера частиц конечного продукта от содержания (Si+C) в исходной смеси

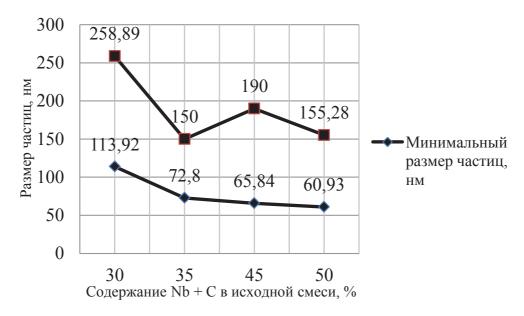


Рис. 7. Зависимость размера частиц конечного продукта от содержания (Nb+C) в исходной смеси

Выводы

- 1. Проведение процесса CBC композиций карбидов TiC–SiC и TiC–NbC из смесей элементных порошков в изолированном реакторе обеспечивает полные реакции между исходными компонентами и позволяет на выходе получить чистые целевые композиции без каких-либо посторонних примесей.
- 2. При увеличении доли (Si+C) либо (Nb+C) в исходной смеси порошков уменьшаются температуры горения, что приводит к уменьшению размера синтезируемых порошков.
- 3. Полученные ультрадисперсные и наноразмерные частицы порошков целевых композиций TiC–SiC и TiC–NbC объединены в агломераты микронных размеров, что является типичным для высокодисперсных порошков, полученных методом CBC.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Yongming Luo, Shuqin Li, Wei Pan, Liu Li*. Fabrication and mechanical evaluation of SiC–TiC nanocomposites by SPS // Materials Letters. 2003. № 58. C. 150–153.
- 2. *Jing Chen, Wen Jun Li, Wan Jiang.* Characterization of sintered TiC–SiC composites // Ceramics International. 2009. № 35. C. 3125–3129.
- 3. Офицерова Н.В., Савина В.И., Шабанов Ш.Ш., Сафаралиев Г.К. Исследование структур карбидкремниевой керамики с добавлением карбида ниобия // Вестник Дагестанского государственного университета. 2008. Вып. 6. С. 34–36.
- 4. *Амосов А.П., Боровинская И.П., Мержанов А.Г.* Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М.: Машиностроение-1, 2007. 567 с.
- 5. Амосов А.П., Самборук А.Р., Самборук А.А., Ермошкин А.А., Закамов Д.В., Криволуцкий К.С. Самораспространяющийся высокотемпературный синтез нанопорошка карбида титана из гранулированной шихты // Известия вузов. Порошковая металлургия и функциональные покрытия. − 2013. − № 4. − С. 31–38.
- 6. *Московских Д.О., Мукасьян А.С., Рогачев А.С.* Самораспространяющийся высокотемпературный синтез нанопорошков карбида кремния // ДАН. 2013. Т. 449. № 2. С. 176–179.
- 7. *Merzhanov A.G.* Advanced SHS ceramics: Today and tomorrow morning. In Ceramics: Toward the 21st Centry: Proc. of Symp. On Ceram. Commemorating the Centenual of the Ceram. Soc. Of Japan, 16–18 Oct., 1991. Yokohama, Japan / Eds S Siga, A. Kato. Tokyo: Ceram. Soc. Jap. Publ., 1991, p. 378–403
- 8. *Мамян С.С.* Самораспространяющийся высокотемпературный синтез с восстановительной стадией порошкообразных неорганических материалов: Дисс. ... докт. техн. наук. Черноголовка, 1993.
- 9. *Вершинников В.А., Мамян С.С., Георгиев В.В.* Синтез некоторых композиционных порошков и керамических материалов на их основе // X Нац.-техн. конф. с междунар. участием «Стекло и керамика», 18-20 окт., 1990, Варна. Тез. докл. Варна, 1990. С. 54–55.
- 10. Амосов А.П., Боровинская И.П., Мержанов А.Г., Сычев А.Е. Принципы и методы регулирования дисперсной структуры СВС-порошков: от монокристаллов до наночастиц // Изв. вузов. Цвет. металлургия. 2005. N 0.20. 0.20.

Статья поступила в редакцию 20 августа 2016 г.

SELF-PROPAGATING HIGH-TEMPERATURE SINTHESIS ULTRADIS-PERSED AND NANOSIZED THE POWDER COMPOSITION TIC-SIC AND TIC-NbC

K.S. Krivolutsky, A.P. Amosov, A.R. Samboruk

Samara State Technical University 244, Molodogvardeyskaya str., Samara, 443100, Russian Federation

The experimental technique on self-propagating high-temperature synthesis (SHS) of composite titanium carbide and silicon or niobium powders was developed. The synthesis in a mode of burning powder compositions with different percentages of initial reagents was made. The combustion temperature measurement was given. The final products of synthesis were analyzed by electron microscopy and X-ray diffractometry. As is shown SHS products are compositions of ultrafine and nanosized particles of pure target phases TiC-SiC and TiC-NbC, combined into micron size agglomerates.

Keywords: silicon carbide, niobium carbide, titanium carbide, SHS, composite material, micro- and nano-powders.

Kirill S. Krivolutsky, a postgraduate student. Alexander P. Amosov (Dr. Sci. (Techn.)), Professor. Anatoly R. Samboruk (Dr. Sci. (Techn.)), Professor.