Краткие сообщения

УДК 681.5.015

МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ ПОТОКА С ПЕРЕМЕННОЙ СКОРОСТЬЮ В SIMULINK¹

И.А. Данилушкин, К.В. Кавкаев

Самарский государственный технический университет 443100, Самара, ул. Молодогвардейская, 244

Рассматривается задача моделирования температурного распределения потока, движущегося с переменной скоростью. Температурное распределение потока описывается гиперболическим уравнением первого порядка. Численная модель температурного распределения потока получена с помощью спектральной теории. Предложен подход к реализации модели в компьютерном пакете моделирования нелинейных динамических систем. Приведены результаты сравнения полученной модели с точными аналитическими решениями, полученными для постоянной скорости.

Ключевые слова: спектральная теория, объект с распределёнными параметрами, гиперболическое уравнение первого порядка, температурное распределение потока, переменная скорость потока

Некоторые технологические объекты могут быть описаны гиперболическим уравнением первого порядка [1], в частности аппараты воздушного охлаждения масла и газа [2, 3], проходные индукционные и газовые печи [4], химические реакторы [5].

В работах [2, 3] рассматривается задача управления температурой потока на выходе теплообменника при постоянной скорости потока. Объект описывается уравнением (1)

$$\frac{\partial Q(l,t)}{\partial t} + v \cdot \frac{\partial Q(l,t)}{\partial x} = \beta \cdot \left(Q_{cp}(t) - Q(l,t) \right), \quad 0 \le l \le L, \quad t > 0, \tag{1}$$

с краевыми и начальными условиями (2)

$$Q(l,0) = Q_0(l)$$
, $Q(0,t) = g(t)$, (2)

где v – скорость потока; β – коэффициент теплообмена; $Q_{cp}(t)$ – температура внешней среды; L – общая длина трубки теплообменника; $Q_0(l)$ – начальное распределение температуры; g(t) – функция изменения температуры потока на входе теплообменника.

¹Работа выполнена при финансовой поддержке грантов РФФИ №№ 15-08-01347-а, 15-08-01347-а.

Иван Александрович Данилушкин (к.т.н.), доцент кафедры автоматики и управления в технических системах.

Константин Валерьевич Кавкаев, магистрант.

В случае переменной скорости потока, v = v(t), уравнение (1) не имеет аналитического решения, поэтому исследование объекта управления при подобных параметрических возмущениях предполагает либо линеаризацию уравнения [4], либо использование спектральной теории распределённых систем [6–8].

Уравнение (1) в спектральной форме имеет вид [6]:

$$\frac{\partial \mathbf{\Phi}_0}{\partial t} = \mathbf{\Phi}_{10} \cdot \mathbf{\Phi}_0 + \mathbf{\Phi}_{11} \left(\mathbf{P}_1 \cdot \mathbf{\Phi}_0 + \mathbf{\Gamma}_1^{0a} \right) + \mathbf{\Phi}_1^{\beta} \cdot \mathbf{\Phi}_u \,, \tag{3}$$

где $\Phi_0 = \left[\varphi^Q(h,t) \right]_{\infty \times 1}$ – матрица спектральных характеристик функции Q(l,t), компоненты матрицы определяются как

$$\varphi^{Q}(h,t) = \int_{0}^{L} Q(\xi,t) P(h,\xi) d\xi, \quad h = 1, 2, ...;$$
(4)

$$\varphi^{Q_{cp}}(h,t) = \int_{0}^{L} Q_{cp}(t) P(h,\xi) d\xi, \quad h = 1, 2, \dots;$$
(5)

 Φ_{10} , Φ_{11} , Φ_{1}^{β} – квадратные матрицы, соответствующие коэффициентам дифференциального уравнения (1):

$$\boldsymbol{\Phi}_{10} = -\boldsymbol{\beta} \cdot \mathbf{E}, \quad \boldsymbol{\Phi}_{11} = -\boldsymbol{v}(t) \cdot \mathbf{E}, \quad \boldsymbol{\Phi}_{1}^{\boldsymbol{\beta}} = \boldsymbol{\beta} \cdot \mathbf{E};$$
(6)

 $\mathbf{P}_1 = [P_1(h, \bar{h})]_{\infty \times \infty}$ – операционная матрица дифференцирования первого порядка [6] функции Q(l,t) по пространственной переменной, компоненты которой определяются как

$$P_{1}(h,\bar{h}) = \int_{0}^{L} P(\bar{h},\xi) \left(\frac{\partial P(h,\xi)}{\partial \xi} \right) d\xi, \ h = 1,2,\dots, \ \bar{h} = 1,2,\dots;$$
(7)

 $\Gamma_1^{0a} = \left[\varphi^g(h,t) \right]_{\infty \times 1}$ – матрица граничных условий, её компоненты определяются как

$$\varphi^{g}(h,t) = \int_{0}^{L} g(t)\delta(0-\xi)P(h,\xi)d\xi, \quad h = 1,2,\dots.$$
(8)

В качестве системы разложения выбрана система функций [7]

$$P(h,l) = \sqrt{2} \sin\left(\frac{(2h-1)\pi l}{2L}\right). \tag{9}$$

Уравнение в спектральной форме (3) может быть приведено к виду

$$\dot{\boldsymbol{\Phi}}_{0} = \left(\boldsymbol{\Phi}_{10} - \boldsymbol{\Phi}_{11}\boldsymbol{P}_{1}\right) \cdot \boldsymbol{\Phi}_{0} + \boldsymbol{\Phi}_{11} \cdot \boldsymbol{\Gamma}_{1}^{0a} + \boldsymbol{\Phi}_{1}^{\beta} \cdot \boldsymbol{\Phi}_{u} \,. \tag{10}$$

Решение уравнения (1) определяется выражением

$$Q(l,t) = \sum_{h=1}^{\infty} P(h,l) \cdot \varphi^Q(h,t) \,. \tag{11}$$

В случае, когда температура потока контролируется на выходе теплообменника, можно ввести обозначения

$$Q(L,t) = \sum_{h=1}^{\infty} P(h,L) \cdot \varphi^{Q}(h,t) = \mathbf{P}_{L}^{T} \cdot \mathbf{\Phi}_{0}, \qquad (12)$$

где $\mathbf{P}_L = [P(h,L)]_{\infty \times 1}$ – вектор, составленный из значений функций (9), для фиксированной точки расчёта *L*.

Введя обозначения $\mathbf{A} = \mathbf{\Phi}_{10} - \mathbf{\Phi}_{11}\mathbf{P}_1$, $\mathbf{x} = \mathbf{\Phi}_0$, $\mathbf{C} = \mathbf{P}_L^T$, $\mathbf{B} = \mathbf{\Phi}_1^\beta$, $\mathbf{u} = \mathbf{\Phi}_u$, $\mathbf{y} = [Q(L,t)]_{l\times l}$ и приняв нулевыми граничные условия, систему уравнений (10), (12) можно привести к виду

$$\int \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},\tag{13}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} \tag{14}$$

Таким образом, при изменении скорости происходит изменение матрицы **А** представления объекта в пространстве состояний (13)–(14), а изменение температуры среды приводит к изменению вектора **u**. Компоненты вектора **u**, согласно (5), могут быть рассчитаны как

$$\mathbf{u} = Q_{cp}(t) \cdot \mathbf{P}_{I} \,, \tag{15}$$

где **Р**₁ – вектор, состоящий из компонентов

$$P_{I}(h) = \int_{0}^{L} P(h,\xi)d\xi, \quad h = 1,2,\dots.$$
(16)

Система компьютерного моделирования динамических систем MATLAB Simulink позволяет реализовать модель произвольного объекта, представленного в пространстве состояний с помощью блока S-функция (S-function) [9].

Расчёт Simulink-модели осуществляется в несколько этапов [9]. На первом этапе производится инициализация модели, определяются: порядок обхода блоков, параметры блоков, размерности сигналов, шаг модельного времени. Затем Simulink переходит в режим выполнения циклов моделирования. На каждом цикле для каждого блока вызываются подпрограммы, которые вычисляют текущие значения переменных состояния, их производных и выходов блока. Процесс продолжается, пока не будет достигнут конец временного интервала моделирования.

При описании S-функции определяются соответствующие подпрограммы, куда в качестве параметров передаются: текущее время расчёта *t*, вектор состояний **x** и вектор входных значений.

Вектор входных значений S-функции, моделирующей поведение температуры потока на выходе теплообменника, состоит из двух компонентов: $Q_{cp}(t)$ и v(t)

– значения температуры среды на текущем шаге расчёта и скорости потока. Выходной вектор S-функции состоит из одного компонента – Q(L,t) – температуры потока на выходе теплообменника.

Тело S-функции состоит из трёх подпрограмм:

1) подпрограмма инициализации S-функции, осуществляет расчёт компонентов матриц \mathbf{P}_I , \mathbf{P}_L , \mathbf{P}_1 , $\mathbf{\Phi}_{10}$, $\mathbf{\Phi}_1^{\beta}$ в соответствии с заданным количеством членов ряда разложения по выражениям (16), (9), (7), (6);

2) подпрограмма расчёта производных вектора состояний, вычисляет значения компонентов матрицы **A** в зависимости от текущего значения скорости v(t) с учётом (6) и (7), а также значения компонентов вектора **u** в зависимости от текущего значения температуры среды $Q_{cp}(t)$ по формуле (15) и рассчитывает значения производных вектора состояний по формуле (13);

 подпрограмма расчёта выходных значений, рассчитывает значение температуры на выходе согласно выражению (14).

Качество полученной модели оценивалось по сравнению с аналитическими решениями, полученными для уравнения (1) при постоянной скорости потока. При нулевых начальных и граничных условиях решение уравнения (1) имеет вид [2]

$$Q(L,p) = \frac{\beta}{p+\beta} \left(1 - \exp\left(-\frac{p+\beta}{\nu}L\right) \right) Q_{cp}.$$
(17)

Параметры модели: $v_1 = 0.1$ м/с, $v_2 = 0.05$ м/с, $\beta = 0.1$ с⁻¹, L = 1 м, $Q_{cp} = 100$ °C, g(t) = 0 °C, N = 100. Графики изменения температуры на выходе потока приведены на рисунке.

Переходные процессы моделей на основе операторного и спектрального методов

Анализ переходных процессов показывает, что в установившемся режиме при одинаковых значениях скорости потока обе модели имеют одинаковое значение температуры на выходе. Длительность переходного процесса при смене скорости соответствует времени прохождения потока по длине теплообменника. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Рей У.* Методы управления технологическими процессами: Пер. с англ. М.: Мир, 1983. 368 с.
- Данилушкин И.А., Россеев Н.Н. Синтез системы автоматического управления температурным полем трубчатого теплообменника // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Выпуск 40: Самара: СамГТУ, 2006. – С. 5–11.
- Алимов С.В., Данилушкин И.А., Мосин В.Н. Моделирование установившихся процессов теплообмена в аппаратах воздушного охлаждения газа // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Выпуск №2(26)–2010: Самара: СамГТУ, 2010. – С. 178–186.
- Данилушкин А.И., Panonopm Э.Я. Алгоритмы функционирования процесса непрерывнопоследовательного индукционного нагрева // Алгоритмизация и автоматизация технологических процессов и промышленных установок: Межвузовский сборник научных трудов. Вып. VII. – Куйбышев: КПтИ, 1976. – С. 118–124.
- 5. *Мандра А.Г.* Математическое моделирование процесса диффузии как распределенного объекта управления с переменной структурой // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Выпуск №4(32)–2011: Самара: СамГТУ, 2011. – С. 229–232.
- 6. *Коваль В.А.* Спектральный метод анализа и синтеза распределенных управляемых систем. Саратов. Изд-во Сарат. гос. техн. унт-та. 1997.
- 7. Коваль В.А., Торгашова О.Ю. Синтез дискретных регуляторов пониженной размерности для распределенной следящей системы // Автоматика и телемеханика. 2011. №10.
- Данилушкин И.А., Снеговой В.В. Построение математической модели процесса охлаждения потока движущейся среды в пространстве состояний // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Выпуск №2(34)–2012: Самара: СамГТУ, 2012. – С. 218–221.
- 9. *Черных И.В.* SIMULINK: среда создания инженерных приложений / Под общ. ред. к.т.н. В.Г. Потемкина.– М.: ДИАЛОГ-МИФИ, 2003. 496 с.

Статья поступила в редакцию 19 января 2017 г.

SIMULATION OF THE TEMPERATURE FIELD OF FLOW WITH VARIABLE VELOCITY IN SIMULINK

I.A. Danilushkin, K.V. Kavkaev

Samara State Technical University 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

The paper considers the problem of simulation the temperature distribution of a flow moving with variable velocity. The temperature distribution of the flow is described by a first-order hyperbolic equation. A numerical model of the temperature distribution of the flow is obtained using the spectral theory. An approach to implementing the model in a computer simulation package for nonlinear dynamic systems is proposed. The comparison results between obtained model and exact analytical solutions, taken for a constant velocity, are shown.

Keywords: spectral theory, plant with distributed parameters, first-order hyperbolic equation, temperature distribution of flow, variable flow rate

Ivan A. Danilushkin (Ph.D.(Techn.)), Associate Professor. Konstantin V. Kavkaev, Graduate Student.