УДК 66.045

МОДЕЛИРОВАНИЕ РАБОТЫ ПЛАСТИНЧАТЫХ ТЕПЛООБМЕННИКОВ В СИСТЕМЕ ДВУХКОНТУРНОГО ВОДОСНАБЖЕНИЯ

С.В. Иваняков, Ю.И. Игнатенков, Д.В. Коноваленко

Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244

E-mail: mahp@inbox.ru

Рассмотрена работа систем водоснабжения с естественным охлаждением. Выявлены достоинства и недостатки одноконтурных и двухконтурных систем оборотного водоснабжения. Проведен анализ параметров работы пластинчатых теплообменников рассматриваемой системы, и на основании полученных результатов сделан вывод о значительном преобладании термического сопротивления со стороны открытого контура над сопротивлением закрытого, что позволило конкретизировать общие уравнения теплопереноса в пластинчатых теплообменниках и получить математическую модель скорости нарастания загрязнений в каналах открытого контура водоснабжения. Результаты моделирования показали достаточную точность, что позволило использовать полученную модель для оптимизации работы системы водоснабжения.

Ключевые слова: двухконтурная система водоснабжения, пластинчатый теплообменник, загрязнения.

В производствах, требующих большого количества воды для охлаждения, используют блоки с естественным охлаждением в градирнях, обладающих низкой себестоимостью охлаждения [1].

Обычно используются два вида систем с естественным охлаждением:

- одноконтурные, в которых охлаждение осуществляется водой, непосредственно проходящей через градирни;
- двухконтурные, в которых охлаждение осуществляется хладагентом закрытого цикла, охлажденным водой открытого цикла, проходящей через градирни.

Одноконтурные системы позволяют получить хладагент (воду) с температурой на 3-6 °C выше температуры по влажному термометру, но при этом из-за непосредственного контакта воды с воздухом в градирне вода загрязняется, а также происходит испарение в атмосферу продуктов, попавших в воду из технологических аппаратов.

Применение двухконтурных систем снижает загрязнение хладагента закрытого контура, но при этом температура охлаждения обеспечивается на уровне 2—3 °C выше температуры, которая может быть достигнута в системах открытого типа. Кроме этого, наличие двух контуров хладагентов приводит к увеличению

196

Сергей Викторович Иваняков (к.т.н.), доцент кафедры «Машины и оборудование нефтегазовых и химических производств».

Юрий Иосифович Игнатенков (к.т.н., доцент), доцент кафедры «Машины и оборудование нефтегазовых и химических производств».

Денис Владимирович Коноваленко, старший преподаватель кафедры «Машины и оборудование нефтегазовых и химических производств».

потребления электроэнергии на перекачку.

На рассматриваемом предприятии реализована двухконтурная система оборотного водоснабжения с передачей тепла в пяти пластинчатых теплообменниках общей площадью 7320 m^2 .

Усредненные параметры работы теплообменников приведены в табл. 1.

Результаты замеров работы теплообменников показали, что гидравлическое сопротивление открытого водооборотного контура значительного выше, чем сопротивление закрытого. Это повышение давления вызвано образованием отложений (накипи) на стенках пластин.

Таблица 1 Усредненные параметры работы теплообменников

№ TO	Водооборотный контур	Температура входа, °С	выхода, °С	Расход, м ³ /ч	Перепад давления, кПа	Срок эксплуа- тации после очистки, месяцев				
Март 2016 г.										
1	Открытый	_	_	_	_	на очистке				
2		21,0	27,5	1962	132	2				
3		21,0	28,0	1872	153	2				
4		21,0	26,0	2520	142	1				
5		21,0	26,0	1368	120	11				
1		_	_	_	_	на очистке				
2		35,0	24,0	1411	28	2				
3	Закрытый	35,0	28,5	2304	138	2				
4		35,0	22,5	1008	26	1				
5		35,0	25,5	1153	48	11				
Июнь 2016 г.										
1		21,5	27,1	1892	181	3				
2		21,4	27,5	1853	180	5				
3	Открытый	21,5	28,8	960	200	5				
4		21,4	27,9	1456	178	4				
5		21,4	25,4	2026	184	2				
1		33,5	24,2	1053	38	3				
2	Закрытый	33,6	24,9	1549	22	5				
3		33,6	28,5	1621	30	5				
4		33,5	24,7	1121	16	4				
5		33,5	22,9	1007	8	2				

Анализируя значения перепадов давления на теплообменниках по открытому и закрытому водооборотным контурам, можно сделать вывод, что толщина загрязнений в закрытом контуре значительно меньше толщины загрязнений в открытом (перепад давления в 5–8 раз меньше при соизмеримых расходах, см. табл. 1). Следовательно, можно предположить, что все термическое сопротивление процессу теплопередачи сосредоточенно в загрязнениях открытого контура, а загрязнениями закрытого контура можно пренебречь.

Для определения скорости нарастания загрязнений в каналах открытого контура была использована математическая модель работы пластинчатых теплообменников, основанная на следующих уравнениях:

- критериальное уравнение теплоотдачи в каналах пластинчатых теплооб-

менников [2, 3, 4]:

$$Nu = A \operatorname{Re}^{n} \operatorname{Pr}^{0.43} \left(\frac{\operatorname{Pr}}{\operatorname{Pr}_{m}} \right)^{0.25},$$
 (1)

где *Nu* – критерий Нуссельта;

Re – критерий Рейнольдса; Pr – критерий Прандтля:

Pr — критерий Прандтля; Pr_{cn} — критерий Прандтля при температуре стенки;

A, n — эмпирические коэффициенты;

– уравнение гидравлического сопротивления пластинчатого теплообменника, рассчитывается по выражению [2, 3, 5]

$$\Delta P = \left(\frac{B}{\text{Re}^{0.25}} + \Sigma \xi\right) \frac{w^2 \rho}{2},\tag{2}$$

где $\Sigma \xi$ – сумма местных сопротивлений;

w — скорость движения среды в канале, м/с;

 ρ – плотность среды, кг/м³;

В – эмпирический коэффициент.

Таблица 2

Сравнение экспериментальных и расчетных параметров работы теплообменников

№ TO	Цикл	Эксперимента	льные данные	Расчетные параметры		
		Температура выхода, °С	Перепад давле- ния, кПа	Температура выхода, °С	Перепад давле- ния, кПа	
1	Открытый	27,1	181,8	26,9	181,5	
2		27,5	180,0	27,7	178,5	
3		28,8	200,0	29,3	208,0	
4		28,0	178,3	28,7	174,0	
5		25,4	183,8	25,0	183,1	
1	Закрытый	24,2	38,2	23,8	9,0	
2		24,9	22,0	25,1	19,5	
3		28,5	29,5	28,7	20,5	
4		24,8	15,5	25,1	10,1	
5		22,9	8,4	22,9	8,3	

Варьируемыми параметрами математической модели пластинчатых теплообменников являются эмпирические коэффициенты $A,\,B,\,n$. Обработка замеров работы пластинчатых теплообменников позволила определить значения варьируемых параметров: $A=0,135;\,B=15;\,n=0,73$. В этом случае скорость нарастания загрязнений в каналах открытого контура может быть описана уравнением

$$\delta = \frac{0.065t}{26t + 73},\tag{3}$$

где t – срок эксплуатации после очистки, месяцев.

Сравнение экспериментальных данных и расчетных параметров по полученной математической модели с учетом скорости нарастания загрязнений приведено в табл. 2.

Из результатов сравнения видно, что полученная математическая модель обладает достаточной точностью. Это позволило использовать ее при проведении работ по оптимизации технологических параметров системы двухконтурного водоснабжения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Пономаренко В.С., Арефьев Ю.И.* Градирни промышленных и энергетических предприятий: Справ. пособие / Под общ. ред. В.С. Пономаренко. М.: Энергоатомиздат, 1998. 376 с.
- 2. *Барановский Н.В., Коваленко Л.М., Ястребенецкий А.Р.* Пластинчатые и спиральные теплообменники. М.: Машиностроение, 1973. 288 с.
- 3. Пластинчатые теплообменники. Каталог. М:. ЦИНТИХИМНЕФТЕМАШ, 1974. 61 с.
- 4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учеб. пособие для вузов / Под ред. П.Г. Романкова. 10-е изд., перераб. и доп. Л.: Химия, 1987. 576 с.
- 5. *Идельчик И.Е.* Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992. 672 с.

Статья поступила в редакцию 4 февраля 2017 г.

MODELING OF THE PLATE HEAT EXCHANGERS IN THE DOUBLE-CIRCUIT WATER-SUPPLY SYSTEM

S.V. Ivanyakov, Y.I. Ignatenkov, D.V. Konovalenko

Samara State Technical University 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

This paper consideres the water-supply systems with a natural cooling. The advantages and disadvantages of the single- and double-circuit water-supply systems are revealed. The analysis of the plate heat exchangers revealed that thermal pollutions in open circuit is much higher than pollutions a closed circuit. It allowed to set up heat transfer equations for the plate heat exchangers and a mathematical model of the heat pollutions increase in open circuit water-supply systems. An accuracy of a modeling allowed to use this model for water-supply system optimization.

Keywords: double-circuit water-supply system, plate heat exchangers, thermal pollutions.

Denis S. Konovalenko, Senior Teacher.

Sergey V. Ivanyakov (Ph.D. (Techn.)), Associate Professor. Yuri V. Ignatenkov (Ph.D. (Techn.)), Associate Professor.