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Abstract. For an elastic distributed plant with parameters depending on the spatial variable, based
on the spectral method of distributed systems analysis and synthesis and considering the internal
resistance according to Voigt the transition is made from PDE to an infinite system of ODE in state
space form. The boundary conditions are additively included to the obtained spectral representa-
tion, which enables to control from the boundaries. The control law for suppression of oscillations
is synthesized and the closed system is analyzed. The obtained results can be used in the control
systems synthesis for aircraft with active dynamic compensation of elastic vibrations.
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Introduction

Elastic structures are widely used in the fields of aviation and rocket engi-
neering to increase flight speed, reduce weight, and increase aircraft length. Un-
der the appropriate flight conditions and particularly in terms of fuel consump-
tion, elastic oscillations of the carrying structure occur; these are commensurate
with the angular oscillations of an aircraft in terms of frequency and amplitude.

Elastic oscillations affect control system sensors and consequently, the con-
trol elements. These disturbances can result in the loss of accuracy and stability
of the flight control [1, 2]. This creates an issue in the development of the aircraft
control law to counteract external disturbances and elastic oscillations of the air-
craft’s body.

Modern spacecraft are equipped with both rigid members and elastic struc-
tures, such as antennae, solar batteries, and outboard rods with metering instru-
ments. These devices require passive or active stabilization for normal operation
of the spacecraft.

The major control operations of elastic structures and their stabilization are
based on the modern theory of analytical design of the best regulators for the
systems with distributed parameters [3, 4].

It should be noted that for the objects described with the help of the system
of differential or integro-differential equations with partial derivatives, the opti-
mization system of the control-determining equations comprises a non-linear sys-
tem of differential and integro-differential equations with partial derivatives [3].
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The resolution of this system is a rather complicated task in both the implemen-
tation of computation procedures and the search for algorithms that provide a
good convergence of the obtained solutions.

This study’s objectives are first, to perform a transition from differential
equations with partial derivatives to an infinite system of standard differential
equations in the form of the state space. This uses a spectral method of the theory
of control [5, 6] for an elastic distributed object (an aircraft fuselage or a rocket
body) with parameters dependent on the spatial variable and with regard to the
inner resistance according to Voigt [2]. The second objective is to synthesize the
law of control for the suppression of oscillations and perform an analysis of the
closed system.

1. Mathematical model of the controlled object

It is assumed in this study that the elastic oscillations of both the aircraft
fuselage and the rocket body are sufficiently accurately described by the equation
of the flexible beam of the variable cross section with regard to the inner re-
sistance as per Voigt, which, according to [2], appears as follows:

0 X0, (EJ( 9 2L ”J
ot ax x>

+h(x)—[i[EJ( )a2y(x t)nz F(%,9),
ox? ox?
feO o) Xe(0,1), Ye(0,1), EJ€(0, Egdy),

Fe(0,F), he(0,hg), Te(0,ty), 1)

where X is the spatial variable,

t20 js time,

y(x.f) is the beam-axis bending measured in a perpendicular direction to the
non-deformed beam axis,

1) s the length unit weight,

EJ(X) is the flexural stiffness,

E is the elastic modulus,

J is the moment of inertia of the beam cross section relative to the section’s
neutral axis perpendicular to the oscillation plane,

F(X.1) js the external distributed transversal load attributed to the beam-length
unit, and

h(x) is the coefficient of the inner resistance, as per Voigt.
Equation (1) is the following:
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Let (2) be considered as a mathematical model of the controlled object with
initial conditions

y(x,0) = fy (%), (%, 0)/ot = f,(X), x<[0,1] 3)

and boundary conditions

a*y(l,f)/ax? =U (), 8?y(0, f)/ox? = 8%y(0, ) /ox® = 6°y(l, f)/ox°> =0, t>0. @)

Let differential equation (2), initial conditions (3), and boundary conditions
(4) be reduced to a dimensionless form. The dimensionless variables are intro-
duced as

w=E/mo, x=X/1, y=y/I, E} =EJ/(EgJo), f =f/fo,
h=h/hg, t=t/tg, fi=1/1, f,=ft5/1,U=U/I, 5)

where Hor EoJor To. Mo, to are some nominal values of appropriate variables.
In the new variables in (5), the differential equation of the controlled object
will be the following:

oty

2 2 2 3
oy aEJ6y+ 8EJ8y 3E‘]a_+
X

+a
P2 T ax? ok ol
oty

2 2 3
+hi[bla S A b3EJ—]=Cf,

G2 K o ox*
ne(0,1), xe(0,1), ye(0,1), EJ €(0,1), he(0,1). (6)

The coefficients of equation (6) are determined with expressions as
a, =as = Egdotd/(1*no), @, =2EqJ oto/(| Ho)
by =bg =hgEgdotd /(1*1o). b = 2hsEqd oto/(| to). = fotg /(o).

(7)
The initial conditions are
y(X’ 0) = fl(x)’ ay(Xv 0)/at = fz(x)! X€ [0! 1] (8)

The boundary conditions are

d2y(L, t)/ax? =U (t), 8%y(0,t)/ox* = 8%y (0, t)/ox® = 8%y (I, 1) /ox* =0, t > 0. 9)
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Then, based on the properties of the spectral features in [5], the expressions
for the matrix of spectral representation of the controlled object is obtained.

2. Spectral representation of the task

Let it be assumed that the function describing the controlled object’s condi-
tion YU s a substantial one-valued limited function with square integrability
in the area of the spatial variable *<[2:P] and boundary conditions are applied
at the points @=a+0 b =b-0 ang tel0to] to e,

The function Y(*) with regard to the boundary conditions can be presented
as follows:

Y1) =Y, (4 D +0/)-1@ -3+ (O -Ux=b), g,

where Yo 1) s the function coinciding with the function YD) at the interval
xe[a+0,b-0]

0
®a(t) s the value of the single jump function at the boundary X=2a+0,

0
?5 () s the value of the single jump function at the boundary X=b-0and
1, x<a+0 1, x>b-0,

Ka+0—x):{’ ’ Kx—b+0)={'

0, x>a+0, 0, x<b-0.
The generalized variable [7] of function (10) on x will be as follows:

5)’((;(, ) _ yo(x1) —l(t)-6(@—X) + @2 (t)-5(x~Db).
X OX

For the m- variable, the following expression can be written as

"y (1) amyo(x t) Z( J(t)am J§(a X) ‘(t)am Jg(x b)}

ox™

Yo (X! t)

Function shall be decomposed in the Fourier series according to the

system of orthonormal functions P, )} h =L 44 the variation interval
x e[a, b]

b
Yo, )= ® (R, 0 PR, X) ® (1, 1) = [ yo (% 1) P(R, X)dx
h= a

1)

Using spectral-feature properties and with regard to =9 D=1 the transi-
tion from the differential equation with partial variables (2) at the initial condi-
tions (3) and the boundary conditions (4) is performed to the system of standard
differential equations as follows:
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=

(12)

h m_
Where CDO eR y h —1, o0
with components

is the vector of the spectral feature of function Yo(x,1)

®,(h,t) = j Yo (x, t)P(h, x)dx, h =1, oo;

Fo Peas By are the infinite-dimensional square operational matrices of the first

multiplier of the spectral properties of functions M(): B30, (%) aecordingly,
whose elements are calculated with the expressions

Pp(ﬁ, h) = 'l[ P(h, x)P(h, x)u(x)dx, P, (h,h)= j. P(h, x)P(h, X)EJ (x)dX,

R,(h, h) :jP(ﬁ, x)P(h, x)h(x)dx, h,h=1 o;

1 2
Pes» Pe) are the infinite-dimensional square operational matrices of the multi-

OEI(x)/ox, D2EJ(x)/0x?

pliers , whose elements are determined with the expres-

sions
_ Lok _ _ _
PX (R, h)=J'F[P(h, 7)P(h, 7)|[EI(r)dr, k=12, h,h=1 w;
0 T
g
©peR% h=lw is the vector of the spectral property of function FOOD with
the components

@, (h,t) =j f(x, t)P(h, x)dx, h =1, o0

P is the infinite-dimensional square operational matrix of differentiation with
the elements calculated according to the expression

P (R, h) = '[P(h )‘ynp(h Nax, R he=loo m=L4,
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21 n o _ 1 _
T eR%, n=Loo, M=3,4 46 vectors of the spectral properties of the boundary

conditions with the elements

FE ) = [of , O™ 5(x 1)

0

P(h,x)dx, h=1 0, m=3, 4.

Pesin =1k v=12 are operational matrices describing the jumps of function

EIO) atinterval *€©D calculated with the expression

Pesi() = [P 0P )9 &) gy =1, i=TK
0

Expression (12) is reduced to the following:

K K
1 2 1
Oy =-F, {al(PEJ +ZP2EJi} P +a2[PEJ +ZP1EJi} Py +a3Pg PJ@O +

i=1 i=1

k
-] p1 21 21
+a2PH (PEJ+ZP1EMJF3 +agPe; I+
i=1

k k
+ Pu_l P |:b1(PE?] +ZP2EJiJ P, +b2[PE1J +ZP1EJij P; +b3Pe; F)4}130 +

i=1 i=1
k . .
+P 'R, bz(PElJ +ZP1EJi]r321+b3PEJF431 +cP Dy
i=1
(13)
The new variable ®1=%o s introduced and represented with equation (13)

in the form of the system of vector—matrix equations in Cauchy’s integral formula
as

d)o = (Dl'

K K
- 2 1
®,=-F, {al{PEJ +ZP2EJi] P +a2[PEJ +ZP1EJi] Ps+a3Pg; P4}Do +

i=1 i=1

+a, kB {PEJ +ZP1EJ|JF3 +agPey T+
i=1

K K
=l 2 1
+R R {bl{PEJ +ZP2EJi] P +b2{PEJ +ZP1EJiJ P;+b3Pg; P4}D1 +

i=1 i=1

k
+P* P{bz[PElj + Presi ]Ffl +b3Pg; rfl} +cP My
i=1

(14)
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The value of moment u1(0 and its derivative in time U2 () =ous 1)/t are
considered as control activities at the object’s right boundary. The following des-
ignations are introduced:

K K
A= al(PEZJ +ZP2EJiJP2 +32£PE1J +ZP1EJiJP3 +a3Pe; Py,

i=1

A= b{PEJ +ZP2EJ|]P2 +b [PE.] +ZP1EJ|JP3+b Pes Py,

i=1

(PElJ +ZP1EJ,} P|,_, +asPey OP/ox], _,
L k
bz[PEJ +ZP1EJ,J P| _ +baPe; P/OX|

B

(15)
Expressions (15) use the designations of vectors

oP/ox| = colon{ap(gl’ ) : 6P22, X) : }
= X X

P| _ =colon{P(L,x), P(2,x),..}{ 1

With regard to designations (15), the system (14) can be written in the vec-
tor—matrix form as
® = AD + Bu+ My, (16)

»® s the vector of the condition,

_ n h
where ® =colo{®,, P,;}eR", n=2h, h=
u=color{uy, uz} is the vector of control, and

v=color{0, ¢ } ¢ 1he vector of disturbance.

Matrices A, B, and M are the following:

A_{ 0 | }B{ 0 | } _{0 0}
-P'A -P'RA| -P'B -P'R,B| 0 cP*
(7)

Thus, the transition from the description of the controlled object of equation
with partial derivatives (2) with the set initial and boundary conditions (3) and
(4) is performed to the system of standard differential equations (16) in the form
of the state space with permanent coefficients.

Expression (16) is added with the following expression:
9=D®, D=[D 0} 18)

where 0€R" s the vector of measured variables — values y(x1) at the points
where the sensors are installed, and D is the matrix, whose lines are composed of

the orthonormal functions P (M%), h =10 yeaq for splitting into the Fourier se-
ries (11) and calculated at the points of measurement.
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An analysis of the spectral representation of the controlled object (14)
demonstrates that the boundary conditions are included in the object’s equation,
which allows control to be performed from the object’s boundaries. Both bending
moment and lateral force can be applied on the beam ends as the control activi-
ties; therefore, expressions (14) consider the members proportional to the second

and third derivatives of function Y1) per the spatial variable x at the object’s
right boundary.

3. Calculation of the matrix of the controlled object’s spectral represen-
tation and regulator synthesis

Let the distributed controlled object (2)—(4) with coefficients that are the
functions of spatial coordinates with the following baseline data be considered
as:

*

1, h(X)=0.001(1+%), f(x,[)=e2%5(x-%x"), X =0.8,
V(Y 0) =-0.84 +sin X, oy/of|._, =0

(19)
The distribution of weight and rigidity is
105, 0< X <0.45, 88, 0<Xx<0.45,
Zi(X) =4705 0.45<x<0.65  EJ(X)=1{146, 0.45< X <0.65,
141, 0.65<Xx <1 117, 0.65<X<1],

(20)

The dimensionless coefficients are obtained from (7) after the selection of
the following nominal values:

11, =146, EjJ, =705, f, =1, h =1, t, =1.

The relative distribution of weight and rigidity will be the following for the
selected values (20):

0.60, 0<x<0.45, 0.15, 0<x<0.45,
n(x)=+1, 0.45<x<0.65 EJ(X)=<1, 0.45< x<0.65,
0.80, 0.65<x<1], 0.2, 0.65<x<1],

and the numerical values of the coefficients in (7) will be the following:
al = 8.3 = bl = b3 = 02071, 8.2 = b2 = 04142, C= 00014

The following will be used as the system of orthonormal functions:

P =+/2{cos (2i —~1)x/2}, i =1, . (21)

The values of the controlled-object matrix are provided, which consider (17).
The calculations of matrix D also consider the fact that measurements are con-

ducted at point X=0.7:
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|t ol g (O Ona)
Poy A22 B ! B2,

(22)
[ 571 —7446 52.84 .. [0.01 —0.05 —0.10
031 -233.71 87212 .. 0 -035 158 ..
Agy = y Az = !
039 1092 383.40 ... 0 009 -255 ..
[ _284 ~0.01 0.76 0.24 0.09
o _| 840| 5 _| 002 . .,|024 058 O
2171 1005 "2 | —0.02]  #~ 009 0 068 ..|
D, =[0.64 -1.40 1.00 ..]
(23)

The synthesis of the continuous control unit is conducted for the controlled
object (16) with matrices (22) and (23) based on LQ-optimization and the theory
of supervising devices in accordance with the procedure described in [6]. The

control unit equation is expressed as

éa: AE+ B,

u=C,&+D,6, o)

where §eR% a=n-r is the vector of the control unit conditions and

A B G Dr constitute the numerical matrix. The calculations consider the
five amplitudes of the spatial modes.
The values of the control unit matrix are provided as

Oaxoc ;_'?‘r_l_Z
A= {A;;;T }
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~050 208 -0.78 -0.17 0.98
055 -1.20 186 019 -1.08
271 _027 059 -043 091 054
~040 087 -063 -0.14 179

[-0.16 002 358 11.96]

007 096 -0.83 14.05
A, =10%.1-036 -156 180  3.41|,

037 094 -7.27 7,70
|-0.34 -0.39 0.61 -14.54]
[ 50.32 98.08 -72.84 -14.11 94.65 |
207 2875 -1188 336  62.72
A ,, =|-51.07 67.38 —60.32 -19.58 38.05

251 3325 -1376 -470  63.60
| 1169 -7550 4249 -056 -118.97]

B =10°.[-0.09 0.17 -004 -0.14 -1.74 472 -397 -1.95 -1.26],

0.2

| 0.06 0.01 0 011 0 0 0 0 0

Figures 1 and 2 present the results of the closed-system analysis.
y(0.7, t)
0.5

0 0.5 1 Jd

(]

Fig. 1. Value of regulated variable at point x = 0.7

The diagram of the transition process presented in Fig. 1 demonstrates that
the disturbance effect is compensated with error that does not exceed 3%. The
control activities applied at the elastic object’s right boundary are active for 1.5
sec and do not exceed the module’s allowable values.
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(3]

0 0.5 1 1.5

u,y(t
0.01 |
0.005
0
-0.005
-0.01

-0.015

-0.02 _ . 1

0 0.5 1 1.3

]

o

Fig. 2. The control actions. a: moment us(t) at the object’s right boundary and 6:

time derivative ux(t) = duy(t)/ct at the object’s right boundary

Conclusion

Based on the spectral method of the theory of control, this study performed
a transition from an equation with partial derivatives to an infinite system of
standard differential equations in Cauchy’s form. The partial derivatives describe
an aircraft’s elastic oscillations with regard to the inner resistance as per Voigt
with irregular distribution of weight and rigidity in the structure.

Using LQ-optimization and the theory of supervising devices, the control
unit was synthesized, and the watch unit was constructed with correction of the
recovery error.

The obtained results can be used for the construction of aircraft control sys-
tems with active dynamic compensation of elastic oscillations. The application
of these findings can facilitate an improvement in aircraft dynamics, a decrease
in navigation errors, and a reduction in structural loads and stresses.
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CUHTE3 PACHPEJEJIEHHOMW CUCTEMBI YIIPABJIEHUS
YHOPYIOMl KOHCTPYKIIMEN

B.A. Kosanw, O.10. Topzawosa, M.®D. Cmenanos

CapatoBckuil TocyIapCTBeHHBIN TeXHHYECKHi yHUBepcuTeT uMenu F0.A. I"arapuna
Poccust, 410054, r. Capatos, yi. [TonmurexHudeckast, 77

Annomayus. J[is ynpy2o2o pacnpeoenenino2o o6vekma ypaeieHus ¢ napamempamis, 3a6ucs-
WUMU OM NPOCMPAHCIGEHHOU NEPEMEHHOU, U C YHUemOM GHYMPEHHe20 CONPOMUGIEHUs NO
Doiiexmy Ha OCHOBe CHEKMPATILHO2O MEMOOd AHANU3A U CUHME3A PACHPEOCTEHHbIX CUCIMEM Gbl-
NOJHEH nePexo0 om OUpepeHyUuaIbHbIX YPAGHEHUT C YACHMHBIMU NPOU3B00HBIMU K ODECKOHEUHOU
cucmeme 0ObIKHOBEHHbIX OUPDEPEHYUATLHBIX YPAGHEHUIL 8 (POpMe NPOCIPAHCINEA COCIMOSIHULL.
B sexmopro-mampuunble YpasHeHus NOIYYEHHO20 CNeKMPAIbHO20 NPeOCmAsNeHUsT A0OUMUGHO
GXO0IM SPaHUtHble YCI08Us 3a0atl, Ymo No3601sem ocywecmeums ynpagienue ¢ epanuy. Cun-
Me3UPOBAH 3aKOH YAPAGNEHUS OIS NOOAGNCHUS KONCOAHUIL U 6bINOTHEH AHAIU3 3AMKHYMOU CU-
cmembl. [Tonyuennvle pe3ytomamot Mo2ym 6blmb UCKONIL308AHbL BPU NOCIPOCHUY CUCIEM YNPas-
JIeHUSL IeMAMETbHBIMU ARRAPATMAMU C AKMUBHOU OUHAMUYECKOU KOMACHCAYUEl YIpyaux Koneoa-
HUL.

Knroueevie cnosa: ynpyeas b6anka, ypagrerue xonebanutl, psio @ypve, CHeKmMpanbHbill Memoo,
ONepayUOHHAS MAMpUYd, OUHAMUYECKULL PE2VIIAMOP, CUHMES, AHAU3.

Braoumup Anexcanoposuu Kosanw (0.m.n., npog.), npogeccop kageopot « Paduosnekmpo-
HUKA U MENeKOMMYHUKAYUULY.

Muxaun @edoposuy Cmenanos (0.m.x., 00y.), npogheccop Kagedpwr « Paduosnexmponuxa
U MeNeKOMMYHUKAYUUY.

Onvea Opvesna Topeawosa (0.m.H., 0oy.), npogpeccop kagedpwr «Paduosnexmponuxa

U MeNeKOMMYHUKAYUUY.
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