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Abstract. The paper deals with the issues of the operational measurement of a single pulse 
intensity, as well as the determination of its approximation model. The radar impulse enve-
lope, as well as the peak signal of the analytical instrument, was chosen as the pulse. The 
pulse square and dispersion were chosen as a measure of intensity. To solve the problem, 
we use a spline - approximation of discrete samples of the pulse signal. The error of the 
spline - approximation of the pulse signal discrete values, as well as the error of approxi-
mation in the presence of random interference is determined. It is shown that the use of 
spline approximation reduces the effect of random noise. The characteristics of the proposed 
method are determined using parabolic¸ as well as cubic spline approximation. The analysis 
of the error of the considered method caused by the presence of a random additive interfer-
ence is given. The characteristics of the considered method are determined when analyzing 
the Gaussian signal. The dependence of the error of the considered method on the intensity 
of the random noise is determined. The study was conducted for a uniform distribution of 
random noise. The structure of the system that implements the described method of spline - 
approximation of the signal samples is described. It is proposed to use the considered ap-
proximation method of measuring the pulsed Gaussian signal intensity when solving prob-
lems of its detecting against a noise background, as well as determining its boundaries. It is 
proposed to use the described methods, if necessary, to promptly determine the effective 
value of a periodic non-harmonic signal (during no more than half of its period) by deter-
mining the dispersion of its one half-wave. It is also proposed to use the described methods 
to determine the informative parameters of a pulse signal (the position of its beginning, end, 
amplitude). 

Keywords: signal dispersion, approximation, random noise, discretization, instantaneous 

Introduction 
Pulse signals are used for the measurements of information parameters of different 

processes in many applied tasks. Such typical tasks include radio location and hydrolo-
cation, chromatographic, and spectrometer systems for analysis of different substance 
compositions, as well as nondestructive test pulse systems and systems for liquid and 
gas flow parameter determination. In most cases, the pulse signal is detected against the 
background of random interference for the solution of these problems; herein, the inten-
sity of this will be determined, as well as the shape and main parameters (amplitude, its 
position on the independent time variable, pulse beginning, and its end) defined. 

The same task is required for effective control, as well as for the detection of emer-
gency situations with powerful electrical equipment, when the parameters of periodic 
non-harmonic signals are determined with urgency within the time no more than half a 
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signal period. 
Attachments to radiolocation and hydrolocation consider the pulse signal as having 

a Gaussian shape, and the problem is to detect this against the background of random 
interferences [1]. In order to determine the information properties of the pulse signal, 
different methods of its approximation are used, for example, by means of the convolu-
tion of two triangular pulses [2]. 

In electrical engineering applications, the most reliable method used for the power 
electrical equipment control is the online measurement of such integral properties as 
effective voltage values and currents in the circuits of powerful electrical equipment, as 
well as active and reactive power [3–4]. Similar problems will be resolved for the control 
of powerful nonconventional sources of electric power, as well as of the electric drives 
of hybrid vehicles [5]. 

The online determination of emergency and pre-emergency modes of operation of 
power electrical equipment requires high speed and accuracy in the measurement of in-
tegral characteristics of the periodic signal. In this case, of particular importance are the 
tasks of measuring the effective value of current and voltage in the circuits of powerful 
electrical installations [6–8].  

Measuring systems using digital signal processors can implement direct measure-
ment by means of  a signal samples on the number of sampling intervals, a multiple of 
the period of its first harmonic.  

A disadvantage of this method is the significant error of changing the main signal 
frequency, as a result, the sampling interval may not be a multiple of its period. Further-
more, the use of digital methods with a small number of discrete values of the signal 
(about 6…10), as well as in the presence of the additive random interference, means that 
the error of determination of the signal’s effective value can be significant [9–12]. 

Signals formed by analytical measuring instruments (such as chromatographs and 
spectrometers) also usually represent a sequence of pulses of a certain shape. In some 
cases, it can be considered that such pulses have a Gaussian shape, while in others they 
have more complex shapes. When these pulses are approximated by certain functions, 
the problem of correcting the hardware function of the inertial detector of analytical in-
struments can be solved [13].  

When such signals are processed, their information properties can be determined: 
the position of the pulse’s beginning and end, amplitude on the axis of independent var-
iables (time or wavelength), and intensity (pulse area, dispersion, or root mean square 
value). 

The above tasks are complicated in the presence of additive random interference. 
In the most up-to-date systems, the analog-digital conversion signal is performed, 

while the methods of pulse signal samples approximation at the interval of its existence 
are used for the solution of the above problem. 

Task-setting 
In order to reduce the error caused by the additive random interference approxima-

tion method is proposed, smoothing the effect of the random interference imposed on 
the analyzed signal. 

Approximation method of determination of the Gaussian pulse signal’s effec-
tive value without the additive random interference 

Now, the method of determination of the Gaussian pulse signal’s intensity (in the 
form of dispersion), using its spline approximation, will be considered. Practically, sig-
nal dispersion is determined by its time implementation хс(t). 
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In a perfect case, the dispersion yd of signal хс is equal to: 

 

2

0

,
T

ideal
d cy x dt= ∫

 (1) 
where Т is the interval of the pulse signal’s existence. 

Let us consider the task of determination of the pulse signal dispersion on the basis 
of its discrete values. 

The signal can be recovered within the discretization intervals with the certain error 
by means of the approximation function. In this case, the approximation function coef-
ficients can be used for the determination of signal effective value. 

When the described task is resolved, different approximations are used. In [14], the 
methods of digital harmonic analysis of multicomponent random signals are used; [15] 
describes systems for the evaluation of the amplitude range of multicomponent random 
signals. 

The use of “smooth” spline functions for the approximation of discrete values of the 
pulse signal inside the range of its existence appears promising [16, 19], comprising the 
use of cubic splines for the approximation of noisy data. However, it is reasonable to use 
the approximation of discrete values not as an end in itself, but as a tool for the determi-
nation of the information parameters of the pulse signal (for example, in the pulse area 
and its dispersion). 

Let us consider the use of the parabolic spline function for this purpose, which is 
described by the following expression on the n-th sampling interval: 

 ( ) [ ] [ ] [ ]2
2 1 0parabx t a n t a n t a n= + + , (2) 

where a2[n], a1[n], and a0[n] are constant coefficients for the n-th interval. 

Coefficients [ ] [ ] [ ]nanana 012 ,,  are also determined by the relevant expressions 
described by one of the digital spline filters. For example, for the five-point par-
abolic spline filter, these expressions are determined by expressions [13, 18]: 
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When using expressions (3), the spline approximation Хparab(t) of the signal’s 

samples is determined by the following expression: 
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 (4) 

It is known that the parabolic spline function does not break down at the 0-th 
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and 1-st derivatives at the sampling intervals boundary; therefore, the use of ap-
proximation splines almost does not cause higher harmonic appearances in the 
signal spectrum recovered by means of such approximations. Furthermore, the 
digital filter implementing the approximation algorithm has the feature of signal 
smoothing, on which the additive interference is imposed [19]. 

The first initial moment of parabolic spline function, approximating a signal 
in one sampling interval, is determined by the expression:  
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 (5) 

If the parabolic spline approximation of the pulse signal on its period of ex-
istence is determined on the m of the sampling intervals, then her first initial mo-
ment is:  
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The expression for the second initial moment of the spline function (i.e., its 
dispersion) on n-th sampling interval is as follows: 
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 (7) 

If the parabolic spline approximation of pulse signal on its interval of exist-
ence is determined on m sampling intervals, then its dispersion will be expressed 
in the following way at the signal sampling   interval td: 
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 (8) 

If required, from here the root mean square value of the pulse signal can be 
determined as: 

 
.rms spl paraby D=
  

Expression (3) demonstrates that in order to determine the coefficients of 
spline approximation of signal хс on the interval of its existence, two additional 
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sampling intervals will be used to the left of the approximation interval (on at 
half signal period), as well as two additional sampling intervals to the right of the 
approximation interval. 

Thus, the spline approximation of the signal’s discrete samples is determined 
at the interval [2td, (T+2td)]. 

Expressions (3), (5), and (6) are implemented by means of microprocessor 
controllers for the determination of signal dispersion during its interval of exist-
ence. 

Let us consider the use of cubic spline approximations for this purpose, which 
is described by means of the following expression on the n-th sampling interval: 

 ( ) [ ] [ ] [ ] [ ]3 2
3 2 1 0cubx t a n t a n t a n t a n= + + + , (9) 

where a3[n], a2[n], a1[n], a0[n] are constant coefficients for n-th interval. 

Coefficients [ ] [ ] [ ] [ ]3 2 1 0, , ,a n a n a n a n  are determined using the relevant ex-
pressions for one of the digital spline filters. For example, these expressions are 
determined by the following expressions for the five-point cubic spline filter [13, 
18]: 
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When using coefficients (10), the cubic spline approximation Хcub(t) of the 
signal’s samples is defined by the expression: 
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where  
The initial moment of the cubic spline function, the approximation signal on 

n-th sampling interval is expressed as follows: 
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If the cubic spline approximation of pulse signal in its interval of existence is 
determined on m discrete areas, then its initial moment is equal to: 
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The expression for the second initial moment of the cubic spline function (i.e., 
its dispersion) on n-th sampling interval is determined by the expression: 
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After conversion, this expression takes the following form: 
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If the cubic spline approximation of the pulse signal in its interval of existence 
is determined in m samples, then for the sampling interval td its dispersion is 
determined by the expression:  
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Analysis of the characteristics of the considered method without ran-
dom interference 

Let us consider the task of determining the Gaussian signal dispersion of unit 
amplitude as an example: 
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presented with 12 samples. 
A graph of this signal is presented in Fig. 1. 
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Fig. 1. Diagram of a Gaussian pulse signal. 

 
The graphs of the parabolic and cubic spline approximations of the pulse sig-

nal’s samples, plotted using expressions (4) and (11), are presented in Fig. 2. 
 

 
Fig. 2. Diagrams of parabolic Хparab and cubic Хcub spline approximations of Gaussian pulse 

signal xс(t): samples   
 signal xс(t); 
 parabolic approximation Хparab; 
 cubic approximation Хcub 

 
Dependencies of the errors of pulse signal approximation with parabolic and 

cubic spline are presented in Fig. 3. 



106 

 
Fig. 3. Dependence of the error of the Gaussian pulse signal samples approximation of par-

abolic and cubic splines (δparab and δcub accordingly). 
 
Examination of these diagrams demonstrates that with about 10 samples of 

selected pulse signal, the error of approximation with parabolic spline does not 
exceed 5%, and cubic - 2%.  

If required, spline approximation of the pulse signal’s samples can be recov-
ered in continuous form by means of the structures based on integrators, scaling 
amplifiers, and an analogous shift register [20]. 

Let us consider the possibility of determining the pulse signal moments of the 
first and second order (16). 

The true value of the Gaussian pulse signal moment of the first order, i.e., its 
area, is determined with the following expression: 

 

13

0

( ) 3,07.ideal cM x t dt= =∫
 (17) 

The true value of the pulse signal’s moment of the second order, i.e., its dis-
persion, is determined with the expression: 

 

13
2

0

( ) 2,171.ideal cD x t dt= =∫
 (18) 

When using the parabolic spline approximation of the pulse signal’s discrete 
values (11), its first-order moment is determined with expression (6) and is equal: 

 3,071,parabM =   
while its dispersion determination with (8) is equal: 

 2,111.parabD = 2,111.parabD =  (19) 

Errors of determination of the pulse signal moments M1 and D2 with parabolic 
spline approximation of its samples are expressed as follows: 
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 (20) 

and are equal respectively: 

 δ 0,03%, δ 2,7%.parab parabM D= =  (21) 

When using the cubic spline approximation of the Gaussian pulse signal’s 
samples (11), its first-order moment is determined with expression (13) and is 
equal: 

 3,071,cubM =   
and its dispersion defined by the expression (15) is: 

 2,111.cubD =   
Errors of determination of the Gaussian pulse signal moments M1 and D2 with 

cubic spline approximation of its samples are defined with expressions similar to 
(20) and are equal respectively: 

 δ 0,013%, δ 1,5%.cub cubM D= =  (22) 

Analysis of the characteristics of the considered method with random 
interference 

In determining the Gaussian signal dispersion (16) of unit amplitude with 
random interference of range 0.1 having the equipartition law, the graph of such 
a signal is presented in Fig. 4.  

 
Fig. 4. Gaussian pulse signal with interference. 

 
As in the previous example, the signal is presented with 12 samples with im-
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posed additive random interference. Diagrams of parabolic and cubic spline ap-
proximation of such signals are presented on Fig. 5. 

 
Fig. 5. Diagram of parabolic Хparab and cubic Хcub spline approximations of Gaussian pulse 

signal x(t) samples with additive random interference: 

signal x(t); 

approximation Хparab; 

approximation Хcub 

Diagrams of errors of spline approximation of signal samples with interfer-
ence are presented on Fig. 6. 

 
Fig. 6. Dependence of the error of Gaussian pulse signal samples approximation with para-

bolic and cubic splines error (δparab and δcub accordingly). 

Fig. 3 and Fig. 6 demonstrate that despite the significant interference, the er-
rors of the signal spline approximation insignificantly increased. 
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When using the parabolic spline approximation of the pulse signal’s samples 
(11) with interference, its first-order moment is determined with expression (6) 
and amounts to: 

 3,182,parabM =   

while its dispersion determination with (8) amounts to: 

 2,147.parabD =   
Errors of determination of the pulse signal moments Mparab and Dparab with 

parabolic spline approximation of its samples are determined with expressions 
(20) and are equal respectively: 

 δ 3,6%, δ 1,1%.parab parabM D= =  (23) 

When using the cubic spline approximations of the pulse signal’s samples 
(11), its first-order moment is determined with expression (13) and amounts to: 

 3,186,cubM =   
while its dispersion determining with (15) amounts to: 

 2,17.cubD =   
Errors of determination of the pulse signal moments Mcub and Dcub with par-

abolic spline approximation of its discrete values with imposed additive random 
interference are determined with expressions similar to (20) and are equal respec-
tively: 

 δ 3,8%, δ 0,03%.cub cubM D= =   (24) 

Let us consider the properties of the direct digital method of determination of 
moments М and D of the pulse signal with imposed additive random interference. 

These are determined with the following expressions: 

 
[ ] [ ]2

1 1
, .

m m

n n
M x n D x nΣ Σ

= =

= =∑ ∑
 (25) 

For this example, these values are equal respectively:  

 3, 24; 2,21.M DΣ Σ= =   
Errors of determination of pulse signal moments Mcub and Dcub with imposed 

additive random interference when using expression (25) are equal respectively: 

 δ 5,5%, δ 1,7%.M DΣ Σ= =   (26) 
Conclusions 
In this paper, it was shown that: 
1. The use of spline approximation of the Gaussian pulse signal samples al-

lows recovery of the signal shape with relatively small errors and a fairly 
small number of samples (about 10). 

2. The Spline approximation of the pulse signal’s samples allows for the 
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determination of the values of the first and second initial moments (ex-
pectation and dispersion) of the pulse signal with a small error. 

3. In the case of the random additive interference, the spline approximation 
of the pulse signal’s samples restores its shape-correcting interference, 
which makes the determination of the signal’s information parameters 
fairly easy (position of the pulse signal at the beginning, top, and end of 
the independent variable axis). 

4. A comparison of errors (24), (25), (26) of different methods allows one 
to conclude that in the case of random interference, the direct method (25) 
of determination of the pulse signal moment has a significantly higher 
error in comparison to the methods of parabolic and cubic spline approx-
imation of the signal’s samples. 

Article submitted 22 March 2019.  
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АППРОКСИМАЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ФОРМЫ  
И ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ ИМПУЛЬСНОГО СИГНАЛА 
ПРИ НАЛИЧИИ СЛУЧАЙНОЙ ПОМЕХИ 

П.К. Ланге, Е.Е. Ярославкина   
 
Самарский государственный технический университет  
Россия, 443100, г. Самара, ул. Молодогвардейская, 244 

Аннотация. Рассмотрены вопросы оперативного измерения интенсивности одиноч-
ного импульса, а также определения его аппроксимационной модели. В качестве им-
пульса выбрана огибающая радиолокационного импульса, а также пик сигнала ана-
литического прибора. В качестве меры интенсивности выбрана площадь, а также 
дисперсия импульса. Для решения поставленной задачи используется сплайн-аппрок-
симация дискретных значений импульсного сигнала. Определена погрешность 
сплайн-аппроксимации дискретных значений импульсного сигнала, а также погреш-
ность аппроксимации при наличии случайной помехи. Показано, что использование 
сплайн-аппроксимации снижает влияние случайной помехи. Определены характери-
стики предложенного метода при использовании параболической, а также кубиче-
ской сплайн-аппроксимации. Приведен анализ погрешности рассмотренного метода, 
вызванной наличием случайной аддитивной помехи. Определены характеристики 
рассмотренного метода при анализе гауссового сигнала. Определена зависимость по-
грешности рассмотренного метода от интенсивности случайной помехи. Исследо-
вание проведено для равномерного закона распределения случайной помехи. Описана 
структура системы, реализующей описанный метод сплайн-аппроксимации дис-
кретных значений сигнала. Предложено использовать рассмотренный аппроксима-
ционный метод измерения интенсивности импульсного гауссового сигнала при реше-
нии задач обнаружения сигнала на фоне помех, а также определения его границ. 
Предложено использовать описанные методы при необходимости оперативного 
определения эффективного значения периодического негармонического сигнала (за 
время не более половины его периода) путем определения дисперсии его одной полу-
волны. Предложено также использовать описанные методы для определения инфор-
мативных параметров импульсного сигнала (его положения начала, конца, ампли-
туды).  

Ключевые слова: дисперсия сигнала, аппроксимация, случайная помеха, дискретиза-
ция, мгновенное значение, cплайн, импульсный сигнал.  
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