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Abstract. The lack of effectiveness of the use of models of self-similar processes to the
analysis of queues telecommunications systems is presented. The evolution of the flow
models managed by Markov’s chain is considered. The specifics of the use of Markov’s
flows as models of telecommunications traffic systems are considered. Models of single-
channel queueing systems with input flows that have an arbitrary correlation are present-
ed. Generalizations of the Khinchin-Pollaczek formula are given for these systems. The
perspective of the application of interval methods developed by the author for queue anal-
ysis in queueing systems with correlated input flows is shown. It is suggested to use the
group Poisson extraordinary flow as a model of telecommunication traffic. Interval char-
acteristics of the given flows are reviewed and the prospects of their application are
shown. The issues of multiplexing these flows during processing in queueing systems are
considered. It is demonstrated that the resulting flow is also a group Poisson flow when
summing up several group Poisson flows. The conclusions are confirmed by the simulation
modeling results. The examples show the validity of such models to the characteristics of
real video traffic flows.

Keywords: queueing systems, group models, queues, video traffic, correlations, Khinchin-
Pollaczek formula.

Introduction

The emergence of data networks with packet commutation showed that Poisson
flow models were not adequate and the development of new models based on non-
Poisson distributions is required. Flows with Weibull, Erlang, Pareto, gamma distribu-
tions, etc. are investigated. All-time intervals represented by these probability distribu-
tions were still considered to be mutually independent. This enabled the use of a well-
designed queue theory apparatus for analyzing packet-switched networks. Description
of complex correlated flows in modern telecommunications networks was often per-
formed using "fractal” processes. Hundreds of works are devoted to the analysis of
"self-similar" traffic. However, these studies did not bring significant practical results.

Insufficient efficiency of traffic representation by " self-similar" process models
led to the creation of an entire class of thread models controlled by the Markov chain.
The development stages of the above models are presented in the review [1]. In Russia,
they were called MS-streams, while in the USA they evolved from "versatile” threads
through "N-threads” (Nyuts flows) [2] to Markovian input threads (MAR - Markovian
Arrival Process) and their generalization - Markov group input threads (BMAR - Batch
Markovian Arrival Process) [6-13].
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The impetus for the development of BMAR-models was their matrix representa-
tions, proposed in the works of M. Nyuts. The transition to the matrix representations
of the probability characteristics of BMAP flows made it possible to describe their
work and opened a wide scope for analytical research. However, the determination of
the input stream characteristics was often done separately from the characteristics of its
processing system. At the same time, such a characteristic as the time of batch pro-
cessing in telecommunications systems depends not only on the system capacity but
also is closely related to the size of the batch, which is one of the characteristics of the
input flow. The most significant work in the field queueing systems analysis with such
flows can probably be considered [3]. In our point of view, one of the promising direc-
tions of studying batch traffic is the interval method that we are developing [4], allow-
ing us to replace the analysis of time intervals between neighboring requests and time
intervals of processing requests with the analysis of one random value - the number of
requests received during successive time intervals of processing each of the requests. It
is demonstrated that the dispersion and correlation properties of the specified random
value, at a specified load, fully describe the average queue size in queueing systems
[4]. For single-channel SMOs, a ratio was obtained (1) that generalizes the known
Khinchin-Pollaczek formula for the average queue value and is fair for any stationary
application flows at a given load factor p :

a0p) = Dy, (p) +2Cov[g,(p)mi(p)] _p _ ME(p) p
21- p) 2 21-p) 2 (1)
The analysis of the numerator mE(p) of formula (1) shows that the average
queue value for flows of any kind depends on two components: the first component is a
dispersion D, () of the number of requests (packets) M;(p) received during the

processing time interval of one request, and the second is a component due to the pres-
ence of correlation relations in the specified flow. Correlation relationships are taken

into account by the covariance Cov[qi _1(p);mi (p)] between values M; (p) and gueue

values @, ,(p) in the previous analysis interval.
In a particular case, for Poisson flow, the specified component is equal to zero, and

the variance is equal to D, (p)=p.The generalized formula (1) then becomes ordinary

when the service time is constant:
2

a(p)=—L—. 2
a(p) 20 p) @)

Group Poisson extraordinary flow

One of the varieties of BMAR flows is an extraordinary Poisson flow of events. In
such a flow, the stationarity property is executed and no consequence is produced, but
the ordinariness property is not performed. Let us take a look at the Poisson flow of
independent events with the parameter A . Each event consists of a simultaneous ap-
pearance at the moment t,_ of a "batch" of ., independent randomly distributed num-

bers of applications, with the distribution P|z =k|= f, . Such a flow is called a Pois-

son extraordinary (group) flow of independent events and is considered in [5].

Assume that 7 is a time interval for processing one application. We divide a suffi-
ciently large interval of time T, during which the flow of the specified events is active,
by N_ of such successive intervals. We suppose that m, (z) is the number of events that
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occurred during the i-th time interval 7. Then the probabilities of occurrence of exact-
ly n events in the interval are subject to the Poisson law:

P|m,(r) =n|=P,(17) = (’”)

Each of the events is accompanied by the appearance of a "batch" with the distri-
bution of probabilities of the number of requests f, . Let us introduce the producing

function f(z)=)  fz*. All ,, are mutually independent and equally distributed.
k=0

This means that the appearance of exactly m. (z) requests on the interval 7 corre-
sponds to probability (f,)" and the producing function [f(z)]", provided that n
events occurred on the specified interval.

The function producing the G, ,,(z) number of requests on the interval 7 is

(2‘7) —&r [f (Z)]n —

Gy (2) = ZP(M)[f(z)] -y

n=0

Z (ﬂz’f (Z)) —er(z)].eir[f(z)—l] _ gl

Determine the average number of requests for 7 :

=3 m@Rim @)1= ")

Arfi(z)er 'O | = arfi()

Considering that
(1) = iz fz" | =D kf =k,
dz = -

We get: m(z) = Ark , where k — the average number of requests in the "batch".
Defining the second starting point:

m(r)(z)

m(z)? i m, (Z’)P [m(7)] =

i=0

R R LICO | N B
=Arf(2)e |, =

z=1

—[Arf2)+ (Acf 1(z))2]e’~’“<z>*11|221 = Ark? + (Ark)? = Ark? +m(z) .

Determining the dispersion of D, (z) number of requests at intervals 7 :
D, (r) =m(z)’ ~m(z)’ = Ark? = Az(D, +K ) = pk(1+1?2)

©)

where p = Atk = m(z) — total load factor; 1 = (%2 — a square of the coefficient of

variation of requests numbers in batches. Dispersion D, (p) linearly depends on the
load factor p . Let us convert formula (1):
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—— _Du(p)-I(p) p

=Pl f) R 4

a0 == ()

where  J(p)=1+2r, ,(p) — is called a covariance dispersion index and
fm (P) = Covidi(p)im () is called normalized covariance function.

D,.(0)

Further on with the help of simulation modeling, we show that at low load factors,
the value of dispersion index for flows, with the Poisson distribution of requests num-
bers in batches, differs few from one. There the correlation component is practically
absent. At the same time, the formula (1) is simplified mE(p) =D, (p) = pE and

Dnlp) p_ PE p )

W 2 ) 2

where E =E(1+ vkz). Dispersion D, (p) in (5) is linearly dependent on the load factor
P, and its value is proportional to the average number of requests in a batch.

Allow us to consider private cases.

1. Ordinary Poisson flow: k. =1, Ezl, vk2 =0, E=1 — In this case, the formula
(2) is valid.

2. All batches have the same number of requests: k =k, v? =0, E=k

3. The numbers of requests in batches are distributed according to Poisson law:

k=k, v =%, E=k+1.
4. The numbers of requests in batches are integer and are distributed by exponen-
tial law: k=k, v/ =1, E=2k.

Group extraordinary Poisson flows with dependent number of requests

in the batch

We have analyzed group Poisson flows in which random, mutually independent
numbers of requests z, in batches also do not depend on time intervals between

neighboring events (neighboring batches). Now let us take a look at the flow in which
the specified numbers of requests in batches are proportional to the lengths of time in-

tervals 9 =t —t  between the neighboring batches g =E/119k. It is obvious that

4, =K. Since intervals 9, between neighboring batches are mutually independent and
have an exponential distribution, the numbers of requests 4, in batches are also mutu-
ally independent and have an exponential distribution with an average value of k , pa-
rameters v? =land E =2k.

Unlike the above example, the number of requests in each of the batches is pro-
portional to the lengths of the corresponding intervals .9, , and the queue that occurs

with the appearance of each of the batches has time to end before the next batch of re-
quests arrives, even at a load factor equal to one.

Let us demonstrate it, taking into account that ,ukrzE/?,TQk =p§ is the pro-
cessing time of all requests on the interval g, . Using A, =3 — p3 =3 (1-p), let us
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define the stock by the processing time of all requests at a specified interval. The rela-

tive time stock % =1-p remains constant at all intervals and depends only on the
k

load factor. At maximum load p =1, the stock is equal to zero, but the processing of
all the requests in the queue has time to complete before the next batch of requests ap-
pears (this is well illustrated by figures 7-8 in the section with simulation results).

Even in the case of maximum load, when in the interval preceding the interval of a
batch, the last request is processed, the queue of requests g, ,(0) =0, and, consequent-

ly: 6,(p)m(0)=0. Considering that Cov[q,,(p);m(0)]=0.(p)Im(p)-p], we
transform formula (1):

a9 =222 contg(pyim (o) - 242 - PelO) gy () - g - 222,
—— Du(p) p-p) Ep-pl-p)
a(p) == ;- 5 -

a(p) =kp _@, (6)

The maximum value of a fraction in the obtained expression does not exceed
0.125. Even with small values of the number of requests in batches, the characteristic

q(p) is almost linear, as shown in Figure 9 in the simulation section.

Equality to zero of the mathematical expectation g, ,(p)m;(p) =0 indicates that for
this flow, the mutual covariance Cov[q, ,(p);m,(p)] is not equal to zero. It is negative:

Cov[g,(p):m(P)]=ai.(P)M(p) —a(p) p=—a(p) p -

By substituting g(p) values from (6), we obtain:

_ 21— — 1—
Covla,(pym, (o) = —kp? + 202 _ e 122y
2 2k (7)
The covariance has almost a quadratic dependence on the load factor at sufficient-
ly large values of numbers of requests in batches.
The ratio (7) allows us to determine the numerator values in the first fraction (1),

which we identified in the simulation section in Figure 9 - through mE(p) .

mE(p) = 2kp(1- )1+ £2)

2k (8)

The specified dependence has a maximum at values of p ~0,5- see Fig. 9. The

member N decreases when substituted in formula (1). It is the presence of the member

(1- p) that leads to the almost linear dependence of the average queue size on the
load factor shown in (6) for this flow.

Group hyperpoisson flows

The sum of independent simultaneously running parallel flows considered above
is called a group hyperpoisson flow. Unlike most of the flows controlled by the Mar-
kov chain, all the summed up flows run not sequentially but continuously and in paral-
lel in time. When receiving a hyperpoisson flow there is a summing up of several Pois-
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son events flows, each of which represents a batch of simultaneously incoming re-
quests. However, the total flow of events (batches appearances) is a Poisson flow.
Therefore, the total request flow is also a group Poisson flow.

The linear dependence of the numerator in the formula (5) on the load factor at
small loads greatly simplifies the determination of average sizes of the queues of the
total hyperpoisson flow when multiplexing mutually independent group Poisson flows:

M M 0.
p=2p; E. =2 —LE,

=1 i=1 Ps
For average values of the generated queues, the resulting total hyperpoisson flow
is equivalent to the corresponding group Poisson flow. However, the characteristics of
their instantaneous values may differ significantly. Further on, we will show that an
aggregate hyperpoisson flow with characteristics very close to the actual modeled flow
can be obtained by an appropriate selection of characteristics of the summarized flows.

Simulation modeling

In this section, we confirm our conclusions with the results of simulation model-
ing using the software system developed by us [4]. The system allows us to obtain and
study the main interval characteristics of flows presented in .txt format as a sequence
of moments of receiving requests.

A group flow with the Poisson distribution of probabilities for independent
numbers of requests in a batch. Two group Poisson flows with the same values of
intensity A =1 per second were generated. The first flow contained batches of requests
having a Poisson distribution of numbers of requests in a batch with the average value

of k_l =10 requests in the batch and intensity of 2, =0,1batches per second.
A= Elﬂl =1 The second flow had the following characteristics:

A=2,=1;k, =k, =1.

20,932 A(t)

16,525
12,119

1712

3305

-191,963 0,000 191,963 383,926 575,888 767,851 959,814 1152 13
i foe

Fig. 1. Numbers of requests on service intervals for the first and second flows
at load factor p=0,1
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That is, each batch consisted of exactly one request and, therefore, the second
flow was a common Poisson flow with an intensity equal to 4 .

Figure 1 combines graphs of the number of requests at service intervals for the
first and second flows with the load factor p=0,1. The Poisson flow is quite uniform
and mainly has no more than one request, while the group batch flow in the same in-
terval has more than 10 requests, the numbers of which are distributed by the Poisson

law. The patchy nature of a group flow leads to the appearance of large queues during
its maintenance.

62,394 q(t)

49,58 |

36,123

22,987

ssflitid

| X |
243381667 400,965 863,016 1326 1789 2232 2714
it ticexd

il
|
|

Fig. 2. Queues arising from the maintenance of the group Poisson flow
in a single-line queuing system at a load factor of p =0,5

In Figure 2 you can see a graph of the queue change when servicing a group Pois-
son flow in a single-line queuing system at load factor, o =0,5. The maximum values

of request numbers in queues exceed 60, which is the result of high flow patchiness.
The most significant interval characteristic of the flows under consideration is the
dependence of dispersion D, (p) numbers of service interval requests on the load fac-

tor. We have shown that this dependence is linear and for the Poisson distribution of
probabilities of numbers of requests in batches, it is determined by the ratio (3). At the
specified parameters of the group flow:

:_ D _

=0,1; E=k(1+v?)=11,

Vi ==5=
(k)

= =

while for the common Poisson flowE =1. The dependencies of the dispersion of
D,,(p) numbers of requests at service intervals on the load factor, which were ob-
tained as a result of simulation of both flows, are shown in figure 3. The above diagram
corresponds to a group Poisson flow with an angle of slope E =11. The lower figure
represents a normal Poisson flow with an angle of slope E=1.
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Fig. 3. Dependencies of dispersion D, () numbers of requests at service intervals
on the load factor

The middle graph shows the flow obtained by summing up the specified flows.
You can see that all dependencies are strictly linear. Figure 4 shows the dependencies

of average sizes of m queues on the load factor derived from the simulation of both
flows.

7445
ma(p), ma(p) 0,500; 5,186
6,204
4,963
3722

2482

1241

0112 0,000 0.112 0,225 0337 0,449 0,562 0.674 0.786

pleal. plea

-1.241

Fig. 4. Dependencies of average queues sizes ((p) on load factor

The top graph is a group flow, the bottom graph is a Poisson flow. The upper cor-
ner shows the queue size value for the group flow, at load factor p =0,5 obtained di-

rectly from the graph, q(p)=>5,186. The theoretical value is determined by the formu-

la (4), q(p)=>5,25. The slight difference is explained by the simulation process error
and the influence of correlation relations.
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Queues at small loads. A group Poisson flow was generated with the value of in-
tensity A =100 per second. The flow contained batches of requests having the Poisson
distribution of numbers of requests in a batch with average value k_1 =100 of requests
in a batch and intensity of receiving batches 2, =1o0f a batch in a second,
A =ki4, =100.

Figure 5 shows the change of numerator D, (p)-J(p) values in formula (4)
(solid line) and the change of dispersion D_(p) (dot line) for load factors p not
exceeding 0,5.

75678 _
mE(p). dispA(p)

63,729

tal
3

-
-
-

51,780 e

g3 L

T
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27882
15932

3,983
-0,023 0,047 0117 0,187 0,257 0328 0398 0,468 0,538

-7.966 p[eﬂi]' p[eﬂi

Fig. 5. Change of numerator D_ (p)-J (o) values
and change of dispersion D, (o) values

In the areas where the lines coincide, the dispersion index is equal to one, which
means a small influence of the correlation component. The average value of the queue
is determined mainly by the dispersion.

Figure 6 illustrates the change in average queue size and the change in dispersion
D,, (o) (straight line) for load factors p not exceeding 0.5. In this section, the differ-

ence is about 30%. Let us study this parameter in more detail:

_ —a—oE__PE P
A(p)=D,(p)-d(p) = pE 0_p) 2

The point of lines crossing represents p, = EZ_J: ~ 0,5 loading. The maximum dif-
E+1 .
ference value represents p, = ~0,25 loading.
2(2E-1)

The maximum difference A(p, ) ~8,3 exceeds the value of queue q(p,,) also by
approximately 30%.
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Fig. 6. The change of average values of the queue size and dispersion
for load factors o not exceeding 0.5

A group flow with an exponential distribution of probabilities of numbers

of requests in batches, depending on time intervals between batches

The modeling was carried out in comparison with a group flow with the Poisson
distribution of the probability of independent requests in batches. Two flows of batches
with the same intensity A =1 and an exponential distribution of probability intervals
between neighboring batches were generated. The numbers of requests in batches of
the first flow have an exponential distribution of probabilities, with an average value of
k. =100, and are proportional to the lengths of intervals between batches. The num-
bers of requests in batches of the second flow are distributed according to the Poisson

law with the average number of requests in batch k. = 200 . This enabled both flows to
make the same dispersion of the number of requests at service intervals. 10° requests
were generated for each of the flows.

Figures 7-8 show graphs of queue changes at load factor o =0,9 for the first and

second flows, respectively. From figure 7 you can see that the queues, which occur
with the appearance of batches of requests, do not intersect in time. There is also no
queue before the appearance of each next batch. However, for the second flow, shown
in Figure 8, the queues intersect. Moreover, the maximum values of the queues far ex-
ceed the maximum values of the first flow.

In Figure 9, some characteristics of the flows are combined for comparison. The
dependencies of dispersions D, (p) for both flows are combined and represented by

the top (solid) straight line. The dependency of the queue m for the first flow is also

linear; it is represented by a lower (dotted) straight line having an angle of slope twice
smaller than the dispersion line, which fully coincides with (6).
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Fig. 7. Resizing queues in time for the first flow

Fig. 8. Resizing queues in time for the second flow

223048 | | ;
dispA{p). mE(p). ma(p). ma(p)
173438 a
133,829 o
89219 " RRRTTL LN
44510 Eome T T
--u-n‘.ﬁ:::"'-"
60 0,000 0769 033 0506 7! NEH 01
plen]. pleal. pleal pl

Fig. 9. Dependencies of dispersions D, (o)
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Both flows are combined (top solid straight line). Queue dependency q(p) for the

first flow (dotted straight line); queue dependency for the second flow (dotted curve
line); numerator dependency mE(p) in formula (1) for the first flow (arc, solid line).

Approximation of average values of real traffic queues

Analysis of two threads considered above showed that they have fundamentally
different characteristics of queue dependencies on load factor. Characteristics of a flow
with dependent requests are strictly linear, and the characteristic of a flow with inde-
pendent numbers of requests in batches increases non-linearly at large loads. Using
these differences, we can create a group hyperpoisson flow from two such flows. By
selecting the appropriate parameters of this flow, we can get dependencies of the aver-

age size of queues g(p) on the load factor, which are very close to the appropriate
characteristics of real traffic.

ma(p), ma(p)

732,859 '
558,369
383,878
209,368

e -....-,...-.n........--n--l“'
5 -0.060 0,075 0210 0,345 0479 0,614 0749 .
pleal. olen

Fig. 10. Dependencies of the average size of queues q(p)
for real video traffic (dotted line) and for group flow (solid line)

Figure 10 shows the dependencies of average queue sizes q(p) on the load factor
for real video traffic and for a group flow that has a Poisson distribution of request

numbers in batches with the value k =420. We observe a satisfactory coincidence.
Nevertheless, the reasons for queues in both cases are significantly different. In the
case of video traffic, the major contribution to queue formation is made by correlation
relations. In the second case, the major contribution to the queue formation is caused
by dispersion, with a slight influence of correlation relations.

This is well illustrated by the dependencies of dispersions of both flows on the
load factor presented in Figure 11.

The dispersion sizes of the group Poisson flow request numbers at the same loads
considerably exceed the corresponding dispersion values of the real video traffic flow.
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Fig. 11. Dispersion dependencies for real video traffic (dotted line)
and for group flow (solid line)

Conclusions

1. The insignificant influence of correlation connections in the group Poisson flow
makes it attractive as a model of telecommunication traffic.

2. If several group Poisson flows are summed up, the resulting flow is also a
group Poisson flow.

3. The group Poisson flow proposed in this work with the dependent number of

requests in batches has a linear characteristic of the average queue size q(p) .

4. In a group flow with an independent number of requests in batches distributed
by Poisson law, the covariance component of the numerator in the generalized
Khinchin-Pollaczek formula is practically absent, and the average queue size is deter-
mined by the dispersion values D, (o) linearly depending on the load factor.

5. The principal difference of characteristics in multiplexing of the mentioned
above flows allows to us get the total dependence, which approximates well the
characteristic of real telecommunication traffic.
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mpagurom. Ananusupyiomes 0ocobeHHocmu mpapura udeoK00eKos8, KOMopblll UMeem 16HO 6blPa-
JiCeHHbIll naveunvlll xapakmep. Paccmampuearomes mooenu 0OHOKAHANIbHBIX CUCIEM MACCO8020 06-
CIYIACUBAHUSL C BXOOHBIMU NOMOKAMU, UMEIOWUMU NPOU3BONLHYIO KOppeasyulo. [ OaHHbIX cucmem
npusedena 0606wennas gopmyra Xunyuna-Tlonnauexa. Ilokazana nepcnekmugHoCms NPUMEHeHUs.
UHMEPBATIbHBIX MEMO008 AHAIU3A odepedell 8 CUCMeMAX MACCO8020 OOCLYICUBAHUSL C KOPPEIUPO-
BAHHBIMU 6XOOHBIMU NOMOKAMU. B Kauecmee mooenu menekoMMYHUKAYUOHHO20 mpaghuka npeoia-
2aemcsi UCnob308amMb 2PYNNOSbIE HEOPOUHAPHbIEe NYACCOHOSCKUe nomoku. Paccmompenvt unmep-
8AIbHbIE XAPAKMEPUCMUKY YKA3AHHBIX NOMOKO8 U NOKA3AHA NePCNEeKMUGHOCMb UX NPUMEHEHUS.
Paccmompenvl 60npocvl MynbmunieKcupo8ans 2pynnoguix nomMoKos npu 06pabomke 6 cucmemax
Maccosoeo  obcayscusanus.  Tlokazano, umo npu  CYMMUpPOBAHUU  HECKONbKUX — ZPYNHOBLIX
NYACCOHOBCKUX NOMOKO8, Pe3YIbmUupylouuti NOMoK makice s6semcsi SpynnogbiM nyaccoHO8CKUM
nomoxom. CoenanHvie 6b1600bl NHOOMBEPI’COCHBL PE3YTLMAMAMU UMUMAYUOHHO20 MOOEAUPOBAHUSL.
Paccmompenvi 0CHOBHbIE NPUYUHBL 3A0EPIACEK NAKEMO8 8 0YePeOsiX MEeNeKOMMYHUKAYUOHHOU cemu U
NOKA3AHO GIUSIHUE IMUX 3A0EPICEK HA NPOYECChbl YNPAGLeHUsL HONMOKOGbIM 6U0e0 MPAapuUKoM.

Knruesvie cnosa: sudeompaghux, ynpasnenue, 3a0epicku, ovepeou, bumpeim, aneopumm, uoeo-
KOOeKU, 2PYNnogule NOMOKU, MOOETUPOBAHUE.

Juxmyunoep bopuc Axosnesuy (0.m.n., npog.), npogeccop xapedpwr « Cemu u cucmemul

CBA3U).
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baxaii FOnust Onezoena, cmyoenmka.
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