
75 

ВЕСТН. САМАР. ГОС. ТЕХН. УН-ТА. СЕР. ТЕХНИЧЕСКИЕ НАУКИ. 2020. Том 28. № 3 
doi: 10.14498/tech.2020.3.5 

УДК 621.3911:621.395 

MODELS OF GROUP POISSON FLOWS IN TELECOMMUNICATION  

TRAFFIC CONTROL 

B.Ya. Likhttsinder, Yu.O. Bakay  

 

 
Povolzhsky State University of Telecommunications and Informatic,  

23, L. Tolstoy st., Samara, 443010, Russian Federation 

 
E-mail: lixt@psuti.ru 

 

Abstract. The lack of effectiveness of the use of models of self-similar processes to the 

analysis of queues telecommunications systems is presented. The evolution of the flow 

models managed by Markov’s chain is considered. The specifics of the use of Markov’s 

flows as models of telecommunications traffic systems are considered. Models of single-

channel queueing systems with input flows that have an arbitrary correlation are present-

ed. Generalizations of the Khinchin-Pollaczek formula are given for these systems. The 

perspective of the application of interval methods developed by the author for queue anal-

ysis in queueing systems with correlated input flows is shown. It is suggested to use the 

group Poisson extraordinary flow as a model of telecommunication traffic. Interval char-

acteristics of the given flows are reviewed and the prospects of their application are 

shown. The issues of multiplexing these flows during processing in queueing systems are 

considered. It is demonstrated that the resulting flow is also a group Poisson flow when 

summing up several group Poisson flows. The conclusions are confirmed by the simulation 

modeling results. The examples show the validity of such models to the characteristics of 

real video traffic flows. 

 

Keywords: queueing systems, group models, queues, video traffic, correlations, Khinchin-

Pollaczek formula. 

 

Introduction 

The emergence of data networks with packet commutation showed that Poisson 

flow models were not adequate and the development of new models based on non-

Poisson distributions is required. Flows with Weibull, Erlang, Pareto, gamma distribu-

tions, etc. are investigated. All-time intervals represented by these probability distribu-

tions were still considered to be mutually independent. This enabled the use of a well-

designed queue theory apparatus for analyzing packet-switched networks. Description 

of complex correlated flows in modern telecommunications networks was often per-

formed using "fractal" processes. Hundreds of works are devoted to the analysis of 

"self-similar" traffic. However, these studies did not bring significant practical results.  

Insufficient efficiency of traffic representation by " self-similar" process models 

led to the creation of an entire class of thread models controlled by the Markov chain. 

The development stages of the above models are presented in the review [1]. In Russia, 

they were called MS-streams, while in the USA they evolved from "versatile" threads 

through "N-threads” (Nyuts flows) [2] to Markovian input threads (MAR - Markovian 

Arrival Process) and their generalization - Markov group input threads (BMAR - Batch 

Markovian Arrival Process) [6-13]. 
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The impetus for the development of BMAR-models was their matrix representa-

tions, proposed in the works of M. Nyuts.  The transition to the matrix representations 

of the probability characteristics of BMAP flows made it possible to describe their 

work and opened a wide scope for analytical research. However, the determination of 

the input stream characteristics was often done separately from the characteristics of its 

processing system. At the same time, such a characteristic as the time of batch pro-

cessing in telecommunications systems depends not only on the system capacity but 

also is closely related to the size of the batch, which is one of the characteristics of the 

input flow. The most significant work in the field queueing systems analysis with such 

flows can probably be considered [3]. In our point of view, one of the promising direc-

tions of studying batch traffic is the interval method that we are developing [4], allow-

ing us to replace the analysis of time intervals between neighboring requests and time 

intervals of processing requests with the analysis of one random value - the number of 

requests received during successive time intervals of processing each of the requests. It 

is demonstrated that the dispersion and correlation properties of the specified random 

value, at a specified load, fully describe the average queue size in queueing systems 

[4]. For single-channel SMOs, a ratio was obtained (1) that generalizes the known 

Khinchin-Pollaczek formula for the average queue value and is fair for any stationary 

application flows at a given load factor  : 
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The analysis of the numerator ( )mE   of formula (1) shows that the average 

queue value for flows of any kind depends on two components: the first component is a 

dispersion ( )mD   of the number of requests (packets) ( )im   received during the 

processing time interval of one request, and the second is a component due to the pres-

ence of correlation relations in the specified flow. Correlation relationships are taken 

into account by the covariance [ ( ); ( )]
1

Cov q m
i i

 


 between values ( )im   and queue 

values 1( )iq   in the previous analysis interval. 

In a particular case, for Poisson flow, the specified component is equal to zero, and 

the variance is equal to ( )mD   . The generalized formula (1) then becomes ordinary 

when the service time is constant: 
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Group Poisson extraordinary flow 

One of the varieties of BMAR flows is an extraordinary Poisson flow of events. In 

such a flow, the stationarity property is executed and no consequence is produced, but 

the ordinariness property is not performed. Let us take a look at the Poisson flow of 

independent events with the parameter . Each event consists of a simultaneous ap-

pearance at the moment 
kt  of a "batch" of 

k  independent randomly distributed num-

bers of applications, with the distribution 
k kP k f   . Such a flow is called a Pois-

son extraordinary (group) flow of independent events and is considered in [5].  

Assume that   is a time interval for processing one application. We divide a suffi-

ciently large interval of time T, during which the flow of the specified events is active, 

by N
of such successive intervals. We suppose that ( )im  is the number of events that 
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occurred during the i-th time interval  . Then the probabilities of occurrence of exact-

ly n events in the interval are subject to the Poisson law: 

( )
( ) ( )
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n
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Each of the events is accompanied by the appearance of a "batch" with the distri-

bution of probabilities of the number of requests 
kf . Let us introduce the producing 

function 
0

( ) k

k

k

f z f z




 . All 
k  are mutually independent and equally distributed. 

This means that the appearance of exactly ( )im   requests on the interval   corre-

sponds to probability ( )n

kf  and the producing function [ ( )]nf z , provided that n

events occurred on the specified interval.  

The function producing the ( )( )mG z  number of requests on the interval   is:  
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Determine the average number of requests for  : 
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We get: ( )m k  , where k – the average number of requests in the "batch". 

Defining the second starting point: 
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Determining the dispersion of ( )mD   number of requests at intervals  : 
2 22 2 2( ) ( ) ( ) ( ) (1 )m k kD m m k D k k            

,               (3) 

where ( )k m   
 
– total load factor; 2

2( )

k
k

D

k
   – a square of the coefficient of 

variation of requests numbers in batches. Dispersion ( )mD   linearly depends on the 

load factor  . Let us convert formula (1): 
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where 
1

( ) 1 2 ( )
i iq mJ r 
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   – is called a covariance dispersion index and 
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  – is called normalized covariance function. 

Further on with the help of simulation modeling, we show that at low load factors, 

the value of dispersion index for flows, with the Poisson distribution of requests num-

bers in batches, differs few from one. There the correlation component is practically 

absent. At the same time, the formula (1) is simplified ( ) ( )mmE D E     and 
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,        (5) 

where
2(1 )kE k   . Dispersion ( )mD   in (5) is linearly dependent on the load factor 

 , and its value is proportional to the average number of requests in a batch.  

Allow us to consider private cases. 

1. Ordinary Poisson flow: 
21, 1, 0i kk k    , 1E   – In this case, the formula 

(2) is valid.  

2. All batches have the same number of requests: 2 1
, , 1kk k E k

k
    

21, 1, 0i kk k    , E k . 

3. The numbers of requests in batches are distributed according to Poisson law:

2 1
, , 1kk k E k

k
    . 

4. The numbers of requests in batches are integer and are distributed by exponen-

tial law: 
2, 1, 2kk k E k   . 

Group extraordinary Poisson flows with dependent number of requests 

in the batch 

We have analyzed group Poisson flows in which random, mutually independent 

numbers of requests 
k  in batches also do not depend on time intervals between 

neighboring events (neighboring batches). Now let us take a look at the flow in which 

the specified numbers of requests in batches are proportional to the lengths of time in-

tervals 
1k k kt t    between the neighboring batches k kk  . It is obvious that 

k k  . Since intervals 
k  between neighboring batches are mutually independent and 

have an exponential distribution, the numbers of requests 
k  in batches are also mutu-

ally independent and have an exponential distribution with an average value of k , pa-

rameters 2 1k  and 2E k . 

Unlike the above example, the number of requests in each of the batches is pro-

portional to the lengths of the corresponding intervals 
k , and the queue that occurs 

with the appearance of each of the batches has time to end before the next batch of re-

quests arrives, even at a load factor equal to one.    

Let us demonstrate it, taking into account that k k kk      is the pro-

cessing time of all requests on the interval 
k . Using (1 )k k k k        , let us 
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define the stock by the processing time of all requests at a specified interval.  The rela-

tive time stock 1k

k





   remains constant at all intervals and depends only on the 

load factor. At maximum load 1  , the stock is equal to zero, but the processing of 

all the requests in the queue has time to complete before the next batch of requests ap-

pears (this is well illustrated by figures 7-8 in the section with simulation results). 

Even in the case of maximum load, when in the interval preceding the interval of a 

batch, the last request is processed, the queue of requests 
1( ) 0iq   , and, consequent-

ly: 
1( ) ( ) 0i iq m   . Considering that 

1 1[ ( ); ( )] ( )[ ( ) ]i i i iCov q m q m       , we 

transform formula (1): 
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The maximum value of a fraction in the obtained expression does not exceed 

0.125. Even with small values of the number of requests in batches, the characteristic 

( )q   is almost linear, as shown in Figure 9 in the simulation section. 

Equality to zero of the mathematical expectation 
1( ) ( ) 0i iq m    indicates that for 

this flow, the mutual covariance 
1[ ( ); ( )]i iCov q m 

 is not equal to zero. It is negative: 

1 1[ ( ); ( )] ( ) ( ) ( ) ( )i i i iCov q m q m q q            . 

 

By substituting ( )q   values from (6), we obtain: 
 

 

2
2 2

1

(1 ) 1
[ ( ); ( )] (1 )

2 2
i iCov q m k k

k


 
     

  
   

     (7) 
 

The covariance has almost a quadratic dependence on the load factor at sufficient-

ly large values of numbers of requests in batches. 

The ratio (7) allows us to determine the numerator values in the first fraction (1), 

which we identified in the simulation section in Figure 9 - through ( )mE  . 
 

 
( ) 2 (1 )(1 )

2
mE k

k


    

.         (8) 
 

The specified dependence has a maximum at values of 0,5  - see Fig. 9. The 

member N decreases when substituted in formula (1). It is the presence of the member 

(1 )  that leads to the almost linear dependence of the average queue size on the 

load factor shown in (6) for this flow. 

Group hyperpoisson flows  

The sum of independent simultaneously running parallel flows considered above 

is called a group hyperpoisson flow. Unlike most of the flows controlled by the Mar-

kov chain, all the summed up flows run not sequentially but continuously and in paral-

lel in time. When receiving a hyperpoisson flow there is a summing up of several Pois-
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son events flows, each of which represents a batch of simultaneously incoming re-

quests. However, the total flow of events (batches appearances) is a Poisson flow. 

Therefore, the total request flow is also a group Poisson flow. 
The linear dependence of the numerator in the formula (5) on the load factor at 

small loads greatly simplifies the determination of average sizes of the queues of the 
total hyperpoisson flow when multiplexing mutually independent group Poisson flows: 

1 1

;
M M

j

j j

j j

E E


 


 

  

   . 

For average values of the generated queues, the resulting total hyperpoisson flow 
is equivalent to the corresponding group Poisson flow. However, the characteristics of 
their instantaneous values may differ significantly. Further on, we will show that an 
aggregate hyperpoisson flow with characteristics very close to the actual modeled flow 
can be obtained by an appropriate selection of characteristics of the summarized flows. 

Simulation modeling 
In this section, we confirm our conclusions with the results of simulation model-

ing using the software system developed by us [4]. The system allows us to obtain and 
study the main interval characteristics of flows presented in .txt format as a sequence 
of moments of receiving requests. 

A group flow with the Poisson distribution of probabilities for independent 
numbers of requests in a batch.   Two group Poisson flows with the same values of 

intensity 1   per second were generated. The first flow contained batches of requests 

having a Poisson distribution of numbers of requests in a batch with the average value 

of 1 10k   requests in the batch and intensity of 
1 0,1  batches per second. 

1 1 1k    The second flow had the following characteristics: 

2 2 21 ; 1k k     . 

 

Fig. 1. Numbers of requests on service intervals for the first and second flows  

at load factor  0,1   
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That is, each batch consisted of exactly one request and, therefore, the second 

flow was a common Poisson flow with an intensity equal to  . 

Figure 1 combines graphs of the number of requests at service intervals for the 

first and second flows with the load factor 0,1  . The Poisson flow is quite uniform 

and mainly has no more than one request, while the group batch flow in the same in-

terval has more than 10 requests, the numbers of which are distributed by the Poisson 

law. The patchy nature of a group flow leads to the appearance of large queues during 

its maintenance. 
 

 

Fig. 2. Queues arising from the maintenance of the group Poisson flow  

in a single-line queuing system at a load factor of 0,5   

 

In Figure 2 you can see a graph of the queue change when servicing a group Pois-

son flow in a single-line queuing system at load factor, 0,5  .  The maximum values 

of request numbers in queues exceed 60, which is the result of high flow patchiness. 

The most significant interval characteristic of the flows under consideration is the 

dependence of dispersion ( )mD  numbers of service interval requests on the load fac-

tor. We have shown that this dependence is linear and for the Poisson distribution of 

probabilities of numbers of requests in batches, it is determined by the ratio (3). At the 

specified parameters of the group flow: 

2 2

2

1
0,1; (1 ) 11

( )

k
k k

D
E k

k k
       , 

while for the common Poisson flow 1E  . The dependencies of the dispersion of 

( )mD   numbers of requests at service intervals on the load factor, which were ob-

tained as a result of simulation of both flows, are shown in figure 3. The above diagram 

corresponds to a group Poisson flow with an angle of slope 11E  . The lower figure 

represents a normal Poisson flow with an angle of slope 1E  . 
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Fig. 3. Dependencies of dispersion ( )mD  numbers of requests at service intervals  

on the load factor 

 

The middle graph shows the flow obtained by summing up the specified flows. 

You can see that all dependencies are strictly linear. Figure 4 shows the dependencies 

of average sizes of ( )q   queues on the load factor derived from the simulation of both 

flows. 
 

 

Fig. 4. Dependencies of average queues sizes ( )q  on load factor 

 

The top graph is a group flow, the bottom graph is a Poisson flow. The upper cor-

ner shows the queue size value for the group flow, at load factor 0,5   obtained di-

rectly from the graph, ( ) 5,186q   . The theoretical value is determined by the formu-

la (4), ( ) 5,25q   . The slight difference is explained by the simulation process error 

and the influence of correlation relations. 
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Queues at small loads. A group Poisson flow was generated with the value of in-

tensity 100  per second. The flow contained batches of requests having the Poisson 

distribution of numbers of requests in a batch with average value 
1 10k  0 of requests 

in a batch and intensity of receiving batches 
1 1  of a batch in a second, 

1 1 100k   . 

Figure 5 shows the change of numerator ( ) ( )mD J   values in formula (4) 

(solid line) and the change of dispersion ( )mD   (dot line) for load factors   not 

exceeding 0,5. 

 

 

Fig. 5. Change of numerator ( ) ( )mD J  values  

and change of dispersion ( )mD  values 

 

In the areas where the lines coincide, the dispersion index is equal to one, which 

means a small influence of the correlation component. The average value of the queue 

is determined mainly by the dispersion. 

Figure 6 illustrates the change in average queue size and the change in dispersion 

( )mD   (straight line) for load factors   not exceeding 0.5. In this section, the differ-

ence is about 30%. Let us study this parameter in more detail: 

( ) ( ) ( ) .
2(1 ) 2

m

E
D q E

 
   


     


 

The point of lines crossing represents 
0

1
0,5

2

E

E



  loading. The maximum dif-

ference value represents 
1

0,25
2(2 1)

m

E

E



 


 loading. 

The maximum difference ( ) 8,3m   exceeds the value of queue ( )mq   also by 

approximately 30%. 
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Fig. 6. The change of average values of the queue size and dispersion  

for load factors   not exceeding 0.5 

 

A group flow with an exponential distribution of probabilities of numbers  

of requests in batches, depending on time intervals between batches 

The modeling was carried out in comparison with a group flow with the Poisson 

distribution of the probability of independent requests in batches. Two flows of batches 

with the same intensity 1   and an exponential distribution of probability intervals 

between neighboring batches were generated. The numbers of requests in batches of 

the first flow have an exponential distribution of probabilities, with an average value of 

1 100k  , and are proportional to the lengths of intervals between batches. The num-

bers of requests in batches of the second flow are distributed according to the Poisson 

law with the average number of requests in batch 2 200k  . This enabled both flows to 

make the same dispersion of the number of requests at service intervals. 10
5 

requests 

were generated for each of the flows. 

Figures 7-8 show graphs of queue changes at load factor 0,9  for the first and 

second flows, respectively. From figure 7 you can see that the queues, which occur 

with the appearance of batches of requests, do not intersect in time. There is also no 

queue before the appearance of each next batch.  However, for the second flow, shown 

in Figure 8, the queues intersect. Moreover, the maximum values of the queues far ex-

ceed the maximum values of the first flow. 

In Figure 9, some characteristics of the flows are combined for comparison. The 

dependencies of dispersions ( )mD  for both flows are combined and represented by 

the top (solid) straight line. The dependency of the queue ( )q   for the first flow is also 

linear; it is represented by a lower (dotted) straight line having an angle of slope twice 

smaller than the dispersion line, which fully coincides with (6). 
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Fig. 7. Resizing queues in time for the first flow 

 

Fig. 8. Resizing queues in time for the second flow 

 
 

 

Fig. 9. Dependencies of dispersions ( )mD   
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Both flows are combined (top solid straight line). Queue dependency ( )q   for the 

first flow (dotted straight line); queue dependency for the second flow (dotted curve 

line); numerator dependency ( )mE   in formula (1) for the first flow (arc, solid line). 

Approximation of average values of real traffic queues 

Analysis of two threads considered above showed that they have fundamentally 

different characteristics of queue dependencies on load factor. Characteristics of a flow 

with dependent requests are strictly linear, and the characteristic of a flow with inde-

pendent numbers of requests in batches increases non-linearly at large loads. Using 

these differences, we can create a group hyperpoisson flow from two such flows. By 

selecting the appropriate parameters of this flow, we can get dependencies of the aver-

age size of queues ( )q   on the load factor, which are very close to the appropriate 

characteristics of real traffic. 
 

 

Fig. 10. Dependencies of the average size of queues ( )q    

for real video traffic (dotted line) and for group flow (solid line)  

 

Figure 10 shows the dependencies of average queue sizes ( )q   on the load factor 

for real video traffic and for a group flow that has a Poisson distribution of request 

numbers in batches with the value 420k  . We observe a satisfactory coincidence. 

Nevertheless, the reasons for queues in both cases are significantly different. In the 

case of video traffic, the major contribution to queue formation is made by correlation 

relations. In the second case, the major contribution to the queue formation is caused 

by dispersion, with a slight influence of correlation relations.  

This is well illustrated by the dependencies of dispersions of both flows on the 

load factor presented in Figure 11. 

The dispersion sizes of the group Poisson flow request numbers at the same loads 

considerably exceed the corresponding dispersion values of the real video traffic flow. 
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Fig. 11. Dispersion dependencies for real video traffic (dotted line)  

and for group flow (solid line) 

 

Conclusions 

1. The insignificant influence of correlation connections in the group Poisson flow 

makes it attractive as a model of telecommunication traffic. 

2. If several group Poisson flows are summed up, the resulting flow is also a 

group Poisson flow. 

3. The group Poisson flow proposed in this work with the dependent number of 

requests in batches has a linear characteristic of the average queue size ( )q  . 

4. In a group flow with an independent number of requests in batches distributed 

by Poisson law, the covariance component of the numerator in the generalized 

Khinchin-Pollaczek formula is practically absent, and the average queue size is deter-

mined by the dispersion values ( )mD   linearly depending on the load factor. 

5. The principal difference of characteristics in multiplexing of the mentioned 

above flows allows to us get the total dependence, which approximates well the 

characteristic of real telecommunication traffic. 

REFERENCES 

 
1. Vishnevskiy, V.M.; Dudin, A.N. Mass service systems with the correlated input flows and their appli-

cation for the telecommunication network modeling (in Russian) // Automatics and telemechanics. 

2017. Vol. 8. P. 3–59. 

2. Neuts M.F. Versatile Markovian point process // Journal of Applied Probability. 1979. Vol. 16, Issue 

4. P. 764-779. DOI: https://doi.org/10.2307/3213143. 

3. Dudin A.N., Klimenok V.I. Mass service systems with correlated flows (in Russian). Minsk: BSU, 

2000. 175 p. 

4. Likhttsinder B.Ya. Traffic of multiservice access networks (interval analysis and design) (in Russian). 

Moscow: Hotline - Telecom, 2018. 290 p. 

5. Variants of Poisson flow of events (in Russian). URL: https://studfile.net/preview/7316586/ page:7/ 

(Accessed: 26.09.2019). 

6. Ramaswami V. The N/G/1 queue and its detailed analysis // Advances in Applied Probability. 1980. 

Vol. 12. Issue 1. P. 222–261. DOI: https://doi.org/10.2307/1426503. 

https://doi.org/10.2307/3213143
https://studfile.net/preview/7316586/%20page:7/
https://doi.org/10.2307/1426503


88 

7. Lakatos L., Szeidl L., Telek M. Introduction to Queueing Systems with Telecommunication Applica-

tions // Springer Science+Business Media. 2013. 388 p. DOI: https://doi.org/10.1007/978-1-4614-

5317-8. 

8. Lema M.A., Pardo E., Galinina O., Andreev S., Dohler M. Flexible Dual-Connectivity Spectrum Ag-

gregation for Decoupled Uplink and Downlink Access in 5G Heterogeneous Systems // IEEE Journal 

on Selected Areas in Communications. 2016. Vol. 34. Issue 1. P. 2851–2865. DOI: 

https://doi.org/10.1109/ JSAC.2016.2615185. 

9. Niknam S., Nasir A.A., Mehrpouyan H., Natarajan B. A Multiband OFDMA Heterogeneous Network 

for Millimeter Wave 5G Wireless Applications // IEEE Access. 2016. Vol. 4. P. 5640–5648. DOI: 

https://doi.org/10.1109/ ACCESS.2016.2604364. 

10. Vishnevsky V., Larionov A., Frolov S. Design and Scheduling in 5G Stationary and Mobile Commu-

nication Systems Based on Wireless Millimeter-Wave Mesh Networks // Distributed Computer and 

Communication Networks. 2014. Vol. 279. P. 11-27. DOI: https://doi.org/10.1007/978-3-319-05209-

0_2. 

11. Vishnevsky V.M., Larionov A.A., Ivanov R.E., Dudin M. Applying graph-theoretic approach for time-

frequency resource allocation in 5G MmWave backhaul network // Advances in Wireless and Optical 

Communications (RTUWO). 2016. P. 221–224. DOI: 

https://doi.org/10.1109/RTUWO.2016.7821888. 

12. Leland W.E., Taqqu M.S., Willinger W., Wilson D.V. On the Self-Similar Nature of Ethernet Traffic // 

IEEE/ACM Transactions on Networking. 1994. Vol. 2. № 1. P. 1–15. 

13. Tsybakov B. S. Teletraffic model based on the self-similar random process (in Russian) // Radio engi-

neering. 1999. Vol. 5. P. 24–31. 

Статья поступила в редакцию 2 июля 2020 г.  
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Аннотация. В статье рассмотрены различные алгоритмы управления потоковым видео 

трафиком. Анализируются особенности трафика видеокодеков, который имеет явно выра-

женный пачечный характер. Рассматриваются модели одноканальных систем массового об-

служивания с входными потоками, имеющими произвольную корреляцию. Для данных систем 

приведена обобщённая формула Хинчина-Поллачека. Показана перспективность применения 

интервальных методов анализа очередей в системах массового обслуживания с коррелиро-

ванными входными потоками. В качестве модели телекоммуникационного трафика предла-

гается использовать групповые неординарные пуассоновские потоки. Рассмотрены интер-

вальные характеристики указанных потоков и показана перспективность их применения. 

Рассмотрены вопросы мультиплексирования групповых потоков при обработке в системах 

массового обслуживания. Показано, что при суммировании нескольких групповых 

пуассоновских потоков, результирующий поток также является групповым пуассоновским 

потоком. Сделанные выводы подтверждены результатами имитационного моделирования. 

Рассмотрены основные причины задержек пакетов в очередях телекоммуникационной сети и 

показано влияние этих задержек на процессы управления потоковым видео трафиком. 

 
Ключевые слова: видеотрафик, управление, задержки, очереди, битрейт, алгоритм, видео-

кодеки, групповые потоки, моделирование. 
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