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Abstract

The purpose of the study is to extend to the spatial case proposed by
G. B. Sizykh approach to a two-dimensional vorticity evolution, which is
based on the idea of considering a vorticity evolution in the form of such a
motion of vortex lines and tubes that the intensity of these tubes changes
over time according to a predefined law. Method. Thorough analysis is
determined by describing the flow velocity field of an ideal incompressible
fluid and a viscous gas in the general case, using the idea of the movement
of imaginary particles. Results. For any given time law of change of ve-
locity circulation (i. e. for an exponential decay) of a real fluid along the
contours the method of evaluating the field of velocity of such contours and
vortex tubes is proposed (e. g. getting a field of imaginary particles, which
transfer them). It is established that for a given time law the velocity of
imaginary particles is determined ambiguously, and the method of how to
adjust their motion preserving defined law of circulation change is proposed.
Conclusion. A new Lagrangian approach to the evolution of vorticity in
three-dimensional flows is derived, as well as the expressions for the con-
tours’ velocity, which imply stated changing over the time of the velocity
circulation of a real fluid along any contour. This theoretical result can be
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utilized in spatial modifications of the viscous vortex domain method to limit
the number of vector tubes used in calculations.
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Introduction. In the middle of past century a meshless method for spatial
vortex flows of ideal incompressible fluid simulation (the discrete vortex method
[1-3]) was developed, which is based on Helmholtz vortex theorems. This ap-
proach has been successfully implemented (e. g., [4-6]). Later these theorems
were genera-lized to the case of viscous incompressible fluid, however only for
two-dimensional (plane-parallel [7] and irrotational axisymmetric [8]) flows, and
formulas for veloci-ty U of vortex tubes transfer while preserving their intensity
were derived. Using traditional notation for flow velocity and vorticity vectors as
well as for kinematic viscosity coefficient, both expressions from |7, 8| might be
formulated in the following way:

U=V - y(Q x 1ot Q)/Q2.

A numerical method proposed in [9] for studying two-dimensional viscous
flows, the so-called “viscous vortex domain method” (VVD), which uses the con-
cept of the motion of vortex tubes of constant intensity with a velocity of U,
obtained in [7, 8]. A comprehensive explanation of this method is given, for ex-
ample, in [10], and a short explanation in [11|. Being a meshless method, the
VVD possesses many advantages, in particular, one may fulfill the boundary con-
ditions for unbounded spatial flows [12]| that is essential regarding the modeling
of natural phenomena (cyclones, ocean streams, etc.). Nevertheless, the use of the
VVD method might cause some troubles such as unlimited growth of total num-
ber of considering domains that are generated during each computational step.
Nowadays a limitation of the total amount of domains is performed via rearrange-
ment of their position and intensity [13—15]. As one of the possible ways how to
“cope” with unlimited growth of their total number a new formula was proposed
in [16] for the velocity of vortex tubes transfer under any predefined time law
of change of their intensity, which, in the case of an exponential law of decay,
allows one to neglect each domain after some finite number of time steps and
thereby limit the number of domains taken into account during the calculation.
The implementation of above-mentioned velocity into the VVD method is a sep-
arate and comprehensive task of computational hydrodynamics to be dealt with,
whereas [16] was published recently. Therefore, despite the fact that there are no
examples where this velocity is used, the authors of the current paper are sure
that this absence is temporal only, and the result of [16] will contribute to the
development of the VVD method.

As it was previously said, the VVD method and the corresponding new ve-
locity, which is proposed in [16], are only applicable to two-dimensional streams.
Further-more, formulas for the velocity [16] are valid just for those flows, where
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the vorticity vector and its curl are orthogonal to each other. It is worth to be
mentioned that one managed to extend the ideas of |7, 8] to rotational axisym-
metric flows because of the independent analysis of vorticity evolution for both
radial-axial and transversal components of velocity in [17, 18]. This approach im-
plies that the curls of these vorticities are orthogonal to them. Consequently, one
may use formulas from [16] for each of two vorticity fields (in addition, it is also
possible to set different time laws of change of vortex tubes’ intensity for both of
them). In a general spatial case this extension is no longer valid, because (as it was
already pointed out) in two-dimensional flows the vorticity vector and its curl are
orthogonal to each other, which makes it possible to transform the Navier—Stokes
equations (used in |7, 8]) in a way that is impossible to perform in a general
spatial case, where the vorticity vector and its curl may not be orthogonal (for
details see |7, 8]). Thus, for a long time after |7, 8] had been published there was
a persuasion among the scientists known to the authors that in a general spatial
case there is no such velocity U. This opinion was ensured by [19], which has
“proven” the absence of the velocity U in a general spatial case. Then, however,
a mistake was found in [19]. That happened right after [11| has shown that there
is a velocity U in a general spatial case, moreover for flows of all kinds: starting
from ideal incompressible fluids and ending with viscous gas. This issue of [19] is
presented by the fact that a solution of one of the equations (numbered (22) in
this paper) is not unique, whilst one proposed by the authors is unique only for
the unbounded case, when it is natural to set the value of target function to zero
at infinity (the note of the mistake in [19] is published for the first time).

In order to evaluate the velocity U in a general spatial case so-called non-local
method was proposed, which requires an integration along vortex lines. This makes
computation incredibly complex, so for a long time, the theoretical result [11] has
not been applied to the development of the VVD method, which remained two-
dimensional. Nevertheless, the first spatial version of VVD method [20] appeared
recently that is based on the generalization of [11]| two-dimensional viscous analo-
gues of the Helmholtz theorems |7, 8| to a general spatial case. A similar situation
has occurred here, which was resolved in the two-dimensional case with [16].
There is a problem of unlimited growth of the number of vortex tubes during the
simulation process, but in the spatial case now. In this paper, in order to overcome
this issue, an attempt is made in a general spatial case to find an analogue of the
velocity U (proposed in [16]) that provides the change of intensity of vortex tudes
during their motion according to a given law.

1. The dynamic equation of motion of fluid and gas. The velocity field
of fluid and gas (that are applicable from arbitrary media, from incompressible
fluid and to viscous gas) in a general spatial case is governed by the following
equation

IV/ot+QxV =F -V, (1)

where t is time, F is net non-conservative mass-specific force, and f is some
scalar field that contains mass-specific kinetic energy V2 /2. We assume all flow
parameters in below to be sufficiently smooth, so the corresponding fields are
differentiable in order to keep the validity of the following equations. Let v = «(¢)
be an arbitrary smooth function of time.

We will use the idea proposed and implemented by G. B. Sizykh in [11] to prove
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the existence of the velocity of vortex tubes transfer while keeping their intensity
constant (a contribution of the other author of [11] V. V. Markov is that he
established the ambiguity of such a velocity). In a spatial open region of rotational
flow (2 # 0) consider a plane region o, the normal vector of which shares an
acute angle with vortex lines crossing o within some time interval [t1,t2]. Let us
highlight a spatial simply connected fragment G, that lies at the intersection of
all vortex tubes passing through o at various timestamps t € [t1, 2], and such
that o belongs to G,. Suppose there is an arbitrary independent of time function
go with the domain of o. Using an integration along vortex lines for any ¢ from
[t1,t2] we continue g, from o to G, with the function g(z,v, z,t), which gradient

satisfies an equality
Q-Vg=Q-(F+aV). (2)

Consider a cross product
AxQx (F+aV-Vy) =28 (F+aV —-Vyg)) - (F+aV - Vg)Q?,
which, with the help of (2), results in

Qx (F+aV -Vyg)
Q2

Substituting (3) into (1) after some rearrangement one has

F=-Qx —aV +Vg. (3)

AV/It+QxU=—aV+V(g— f), (4)

where Q x (F V_vy)
X +aV —
U=V+ o 9. (5)

2. Zoravski’s criterion. We will then exploit a concept of motion of imagina-
ry fluid particles, which was initially proposed in [11, 21| and is being fruitfully
implemented recently [22-28|. For that let us formulate Zoravski’s criterion |29,
30], which is also known as Friedmann’s theorem [31], in terms of vortex tubes’
motion along with imaginary fluid particles.

Suppose G is an open region simultaneously filled with two distinct fluids that
do not interact with each other (and do not interfere with the movement of each
other). Particles of the first fluid move with the velocity U(z,y, 2z,t), whereas
particles of the second one — with velocity V(a:,y,z,t). In addition, the flow
represented by the second fluid is rotational (Q = rot V # 0) within some time
interval (t1,t2). Moreover, assume that during ¢ € (¢1,%2) in G the vorticity vector
of the second fluid Q and velocity field of the first one U are connected via the
equation

90/t + rot ( x U) = 0. (6)

Thus, as it follows from Zoravski’s criterion, for ¢ € (¢1,%2) vortex lines and

vortex tubes Q are transferred with the velocity U, and the intensity of vortex
tubes (which is equal to the circulation I" of the velocity V along any contour

that encircles a vortex tube of only once) is being preserved as long as these
particles are inside G.
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This consequence is going to be used below to investigate the link between
the vorticity of a real fluid © and velocity fields of some imaginary fluids.

3. Vortex tubes’ motion. In this chapter in order to use Zoravski’s criterion,
we will regard two imaginary fluids at once and the velocity field of a real fluid
V. Assume that particles of the first imaginary fluid move with the velocity U
determined by (5) in terms of V whilst particles of the second one — with the

t t
velocity V. = Vexp (/ a(T) d7'>. Substituting V. = Vexp (—/ a(r) dT>1
¢ t

1 1
into (4), one obtains

aa\;]+ﬂxUzV(g—f)exp(/tta(T)ah'). (7)

1

Applying the curl operator both to the left and the right sides of (7) we achieve
an equation in the form of (6) dQ/dt + rot (Q x U) = 0. Hence (Zoravski’s
criterion), vortex tubes Q are transferred by particles of the first imaginary fluid,
which move with the velocity (5). And a circulation T' of the velocity V of the
second imaginary fluid along the contours moving together with particles of the
first imaginary fluid with the velocity (5) is preserved over the time and is equal
to T'(t) = D(ty).

Taking into account the fact that the vorticity vector of the second imagi-
nary fluid Q and the vorticity vector of the real fluid € are connected by @ =

- t
Qexp <—/ a(T) dT), we establish the main result. The vorter lines and vor-
t1

tex tubes of the velocity field of a (real) fluid transport along with particles of an
imaginary fluid moving with the velocity (5), and besides that the intensity of all
the vortex tubes changes according to

I(t) = (k) exp (- /t o) d7>. (8)

1

Consequently, one has determined that in a spatial case there is an analogue of
the velocity [16], with which vortex tubes are driven, and the intensity of these
tubes changes according to the certain law (8). If function o = «(t) is known,
this velocity is defined by (5) with an integration of (2) along the vortex lines.
The rational choice of g, allows one to adjust the magnitude and direction of
the velocity of imaginary fluid particles U within some range. Various a and g,
conform to different velocities U and, therefore, different points of view on the
evolution of vorticity, which are all equivalent, according to [11].

As in [16], the proposed new method for calculating the velocity U is a gen-
eralization of the [11] method, since it coincides with the latter at a = 0.

4. A viscous incompressible fluid. The Navier—Stokes equation for incom-
pressible fluid has the form of (1), in which the scalar field f might be expressed

- t
!Therefore, = Qexp <—/ a(T) dr).
t1
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as f = p/p+V2/2-|-H, where p/p is the pressure-to-density ratio, II is the volume
forces potential, and F = —vrot 2. Then, according to (5), we have

U=V —v(Q xrotQ)/Q%* + a(Q x V)/Q? + (Q x Vg)/Q°.

If the contours (domains) move with this velocity, their intensity changes accord-
ing to the law (8). During the implementation of the VVD method with the use
of such velocity, the functions « and g, must belong to a certain smoothness class
within one time step. Generally speaking, these smoothness requirements are un-
known, and their establishment is of current interest in mathematical physics.
However, for the validity of the presented equations, as follows from the course of
PDE, these functions must be at least continuously differentiable in the studied
flow region. Moreover, these functions can change abruptly when passing from
one time step to another, since this will correspond to the change of the “old” La-
grangian point of view “new”. The words “old” and “new” are in quotation marks
because these points of view existed and continue to exist at all time steps, but
one of them is applied earlier, and the other later. Possible options for « are
suggested, for example, in [16].

5. The ambiguity of the velocity U. From the mathematical point of view
(5) reflects not all possible velocities of (decaying) vorticity transfer U, which
satisfy (4). Namely, one should add the term 2 that is collinear to the vorticity
vector Q (here 7 is an arbitrary smooth function of space and time), since it does
not affect the general form of (4).

Despite that, the fundamental ambiguity in the computation of (5) arises be-
cause of the term containing the function g(z,y, z,t), which is a result of function
Jo being integrated along the vortex lines € into the open region of vortex frag-
ment at any moment of time, and thus is determined up to some scalar field
W (z,y, z) that is constant along these vortex lines: Q - VIW = 0 (similar reason-
ing was discussed in [11]). Therefore, omitting intermediate results, (5) might be
generalized as

Q F V-V vWw
N x (F+« g+ )+

U=V o

~Q.

Conclusion. A new point of view on the evolution of vorticity in liquid and
gas flows, proposed in [16] for two-dimensional flows, is extended to a general
spatial case. This point of view consists in representing the vorticity evolution in
the form of such a motion of vortex lines and vortex tubes, in which the intensity of
the vortex tubes changes according to any predetermined time law, in particular,
at a = 1 it decreases exponentially. Of course, different laws of intensity variation,
i. e., various a = «(t) will correspond to different velocities of vortex lines and
vortex tubes. From the point of view of the complexity of the implementation
of the proposed approach, associated with the need for integration along vortex
lines, no additional issues arise compared to [11], since in both cases an equation
of the type (2) is integrated along vortex lines.

The proposed new point of view on the evolution of vorticity in spatial mod-
ifications of the VVD method can be used to limit the number of vector tubes
taken into account in the calculations.
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3aBUXPEHHOCTHU B IIPOCTPAHCTBEHHBIX T€YE€HUAX
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2

AnHHOTan M

Ilesb nuccsemoBaHus COCTOUT B PACIPOCTPAHEHUN HA TPOCTPAHCTBEHHBIH
caydait pazpaborantoro I. B. Cusbix 1moJixo/1a K 9BOJIONUH 3aBUXPEHHOCTH
JJIsT IBYMEPHBIX T€UeHUl, 6a3upyomerocst Ha MPeJICTABICHIN SBOJIIOINN 33~
BUXPEHHOCTU B BHU/IE€ TaKOI'O JBUZKEHHNS BUXPEBDIX JIMHUNA 1 BUXPEBLIX TPY-
00K, IIpU KOTOPOM HMHTEHCHUBHOCTH ITHX TPYOOK MEHSIETCH CO BPEMEHEM IIO
JiroboMy Hanepes 3aJanaoMy 3akony. Meroqa. Crporuit aHa/m3 ypaBHEHUIA,
OIIMCHIBAIOIIUX II0JI€ CKOPOCTHU Te€YEHUS HIeaIbHO HECXKIMAEMOI 2K TKOCTU
7 BSI3KOT'O Ta3a B ODIIEM IIPOCTPAHCTBEHHOM CJIyYIae C UCIOJIB30BAHUEM IIPE/I-
CTaBJIEHUS O JBUXKEHUN BOOOparkaeMbIx dacTull. Pe3ynbrarsei. st 1r060ro
3aJIAHHOTO BPEMEHHOTO 3aKOHa M3MEHEHUs! [UPKYJIANNA CKOpocTH (Hampu-
Mep, JIJIsl 9KCIIOHEHIIMAJIBLHOIO yObIBAHMSI) PEAJIbHOMN XKUJIKOCTHU 110 KOHTYDaM
MIPEJIOZKEH CIIOCO0 MOCTPOEHUsI TOJIsi CKOPOCTH JIBUXKEHUsI 9TUX KOHTYPOB U
BUXPEBBIX TPYOOK (T. €. HOCTPOEHHE HOJIsi CKOPOCTH HEPEHOCHINUX HX BO-
00pazkaeMbIX YaCTHIL). YCTAHOBJEHO, YTO [PH 33JaHHON (DYyHKIMU BpEMEHU
CKOPOCTb BOOOPaYKaEMBIX YaCTHI] OIPEENIAETCS HEOHO3HAYHO, U IIPEJI0-
JKeH CI1ocod KOPPEKINH UX JIBUKEHUs IIPU COXPAHEHUU BBIOPAHHOIO 3aKO-
Ha U3MEHEHUs IUPKY/Isiun. 3aKJiodenue. [Ipemoxken HOBbI JlarpaHkeB
ITOJIXOJ], K BOJIIOIMY 3aBUXPEHHOCTH B IIPOCTPAHCTBEHHBIX TEUYEHUSAX W I10-
JIyd€HbI BbIPAXKEHUS JJIs CKOPOCTHU JIBM?KEHUsI KOHTYPOB, 00€CIIeUnBAIOININe
3a/IAHHOE M3MEHEHNE CO BPEeMEeHeM IUPKYJ/ISIINN CKOPOCTH PEAbHOMN JKUIKO-
cru 110 JiI00oMy KOHTYpY. JlaHHBIN TeopeTnyecKuili pe3ybraT MOXKeT ObITh
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HCIIOJIB30BAH B IIPOCTPAHCTBEHHBIX MOINMUKAINSAX METO/IA BAIKUX BUXPE-
BBIX JIOMEHOB J[JIsi OTPaHUYEHHST KOJUIECTBA YINTHIBAEMBIX B PaCUeTax BEeK-
TOPHBIX TPYOOK.
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