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Abstract

This article is devoted to the study of an inverse source problem for
a mixed type equation with a fractional diffusion equation in the parabolic
part and a wave equation in the hyperbolic part of a cylindrical domain. The
solution is obtained in the form of Fourier—Bessel series expansion using an
orthogonal set of Bessel functions. The theorems of uniqueness and existence
of a solution are proved.
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1. Formulation of Problem

The importance of considering equations of mixed type, when an equation of
parabolic type is given on one part of the domain and an equation of hyperbolic
type on the other, was first pointed out by I. M. Gelfand in 1959 [1]. The study of
electrical oscillations in wires leads to a problem for a mixed parabolic-hyperbolic
type of equations. In a homogeneous medium, in the case of its low conductivity,
the strength of the electromagnetic field satisfies the wave equation, but in the
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case of relatively high conductivity, when displacement currents can be neglected
in comparison with conduction currents, the mentioned value satisfies the heat
equation (see |2, pp. 443-447]). Problems of this kind are also encountered in
studying the motion of a fluid in a channel surrounded by a porous medium; so,
in a channel, the hydrodynamic pressure of a liquid satisfies the wave equation,
and in a porous medium it satisfies the filtration equation, which in this case
coincides with the diffusion equation [3]|. In this case, some matching conditions
are satisfied at the channel boundary. Such equations arise in a number of other
areas of natural science.

Direct problems for mixed parabolic-hyperbolic equation types were studied
in [4-8]. Inverse problems about determining the right side or the initial func-
tion in the initial-boundary value problems for the equation of mixed parabolic-
hyperbolic type in a rectangular domain were considered in the monograph [9] (see
also references there). On the basis of the spectral method, criteria for uniqueness
and existence are established.

In this paper, we study direct and inverse problems related to finding a solu-
tion to an initial-boundary value problem for a mixed equation, when on one part
of the domain the fractional diffusion equation and on another part the wave equa-
tion are given, and the unknown right-hand side of this equation in a cylindrical
domain.

Consider in a cylinder G := {(z,y,t) : 0 <r < 1,—a <t < b}, r = /a2 +y?
the equation of mixed type

_Jofu—Au= f(r), t>0,
LU_{Utt—AUZf(T)a t <0, .

where a, b are given positive numbers, dfu is the Gerasimov-Caputo fractional
derivative of order o (0 < o < 1) in the time variable and it is defined by formula

(see [10, p. 90]):

1 ' -/
ig(t) = I‘(l—a)/o(t_T) g'(r)dr, 0<a<l,
g,(t)a a=1;

A is the Laplace operator in variables x and .
We pose the following problem: find in the domain G the functions u(x,y,t)
and f(r) satisfying the equation (1) and conditions

(@), Vu)|,_y=ul,_, =0, —a<t<b, (2)
u‘t:_a = 90(7‘)7 0<r<1i, (3)
u’t:b:w(r), 0<r<1 (4)

Here ((z,y), Vu) is scalar product of vectors (z,y) and Vu; () and (- ) are
given sufficiently smooth functions.

Denote G+ =GN {t >0}, G_ =GN {t <0}

DEFINITION 1. The solution of problem (1)—(4) are the functions u(z,y,t) and
f(r) from the classes Ci’;t(GJr U{t =0b})NC*G_U{t = —a}) and C0,1],
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respectively, satisfying relations (1)—(4) and the following conjugation conditions:

U((I}‘, Y, +0) = U(JZ, Y, _0)7 tE)I—il}O ata'LL(.I, Y, t) = 'U,t(l’, Y, _0)7 re (07 1) (5)

Here C2%,(Q) := {v(z,y,t) : v € C(Q), (Av,dpv) € C(Q)}.

x,y;t

If @ = 1, then conditions (5) mean the continuity of the solution u(z,y,t) and
its derivative with respect to ¢t on the line of change of equation type ¢t = 0.

In the parabolic part of the domain, the function u(x,y,t) satisfies the frac-
tional diffusion equation (1). Fractional differential equations become an impor-
tant tool in mathematical modeling many problems arising in applications. The
time fractional diffusion equations can be used to describe superdiffusion and
subdiffusion phenomena [11-13| (see also references there). Direct problems, i.e.
well-posed initial value problems (Cauchy problem), initial boundary value prob-
lems for one time-fractional diffusion equations and various inverse problems, have
attracted much more attention in recent years. For instance, on some uniqueness
and existence results we refer readers to works [14—17| on direct and inverse source
problems (see also references in [17]), and on direct and inverse coefficient prob-
lems to [18-23].

The paper organized as follows. Section 2 provides some definitions and known
results that will be used later in this article. In Section 3, by using the Fourier
method a formal solution of the inverse problem is obtained. In Section 4, the
existence and uniqueness of a solution to the inverse problem are proved. Finally,
a conclusion and a list of references are given.

2. Preliminaries

In this section, we provide some definitions and results that will be used later
in this article.

The classical Mittag—Leffler E,(z) function with one parameter is defined by
the following series:

Eo(z) = kZ:O Tak+ 1)’

where «a, z € C with Re(a) > 0. This function and its generalizations play an
important role in describing solutions to fractional-order differential equations.
The Mittag—LefHler function has been studied by many authors who have proposed
and studied various generalizations and applications. A very interesting work that
has received many results on this function is due to Haubold et al. [24].

If z = At*, with A > 0 and ¢ > 0, then

O Eo(—AtY) = —AEq(—AtY).
Moreover, The Mittag-Leffler function E,(—At%) is bounded [24]:
0 < Eqo(—AtY) < 1. (6)
Here and throughout this article, M denotes a positive constant.
In studying the problem under consideration, we also need the Bessel function

and the conditions for the convergence of the Fourier—Bessel series. The linear
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differential Bessel equation (or the equation of cylindrical functions) with a pa-
rameter A of order or index v > 0 with respect to the function z of the real
variable x has the form [25, ch. 8]

2
2+ 1z’ + (x\2 — %)z = 0. (7)

x T
The solution of Equation (7), except for very particular values v, is not ex-
pressed in terms of elementary functions (in the final form) and leads to the
so-called Bessel functions, which have large applications in the natural sciences
[26]. When v is an integer number, then Equation (7) has the following solution:

z(x) = C1J,(A\x) + CY, (\x),

where J, and Y, are the Bessel functions of the first and second kind of order v,
respectively. Bessel functions of the second kind are not bounded near the point
x = 0, so for a bounded solution near zero it is necessary that Cy = 0, i.e. solution
(7) has the following form:

z(x) = CJ,(\x).

Furthermore, if the boundary condition z(1) = 0 is imposed, then the param-
eter A\ must satisfy J,(A\) = 0, i.e. the values of A are the zeros of the Bessel
function J,(z), which has the following asymptotic representation [25, p. 213|:

Jy(x) = \/zsin(x_ ”7” n %) n 7;\(/965)

where the function r,(x) is bounded for x — oco. Therefore, for any large k, the
zeros of J,(x) are given by the expression [25, p. 214]:

72y
k —_—— .
T+ 5 1

We define the Fourier—Bessel expansion of the given function f(z) as follows:
for any function f(z), absolutely integrable on [0, 1], one can compose a Fourier
series in the system J,(A\gx), k = 1,2,..., or, in briefly, the Fourier—Bessel series

oo
k=1
where the constants ¢; are determined by the formula:

2 1
ck = / xf(x)J,(A\px)de, k=1,2,...
Ak) Jo

Tol

and are called the Fourier—Bessel coefficients.

Let us give without proof the most important criteria for the convergence of
the Fourier—Bessel series to the function for which it is composed. These criteria
are similar to those known to us for the convergence of trigonometric Fourier
series.
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THEOREM 1 [25, P. 282]. If v > 0 and for all sufficiently large k, we have the
estimate M

|Ck’ < N
ALE

where € > 0 and M > 0 are constants, then series (8) converges absolutely and
uniformly on [0, 1].

THEOREM 2 [25, PP. 289-291]|. Let the function f(x) is defined and 2s times
continuously differentiable on the interval [0,1] (s > 1), and

) f(0) = £1(0) = - = 7D () = 0
2) f(29) (x) is bounded (this derivative may not exist at some points),
3) f()=f(1)="---=fE=2(1)=0.

Then, for the Fourier—Bessel coefficients of the function f(x), the inequality is
valid: o

m (M = CODSt).
Ak

lex| <

We now turn to the study of the problem (1)—(4).

3. Formal Construction of the Solution
Note that since the right-hand side of equation (4) and the functions of (6) and
(7) depend on the distance r, then u(x,y,t) = u(r,t), i.e. we have an axisymmetric
case. Then the operator Laplace on the function u(x,y,t) in polar coordinate
systems will not depend on the angle and has the form:

u  10u
A t)= — +——.
w@,y,1) or? * r Or
Therefore, equation (4) in these coordinate systems is written as follows:
10u 92
Ofu:—fu+7g+f(r), t>0,
rdr  Or (9)
0%u 13u+62u+f() £ <0
— =+ — r .
otz ror  or? ’

Conditions (2)—(4) take the following form:

0
[TEU(T’ t)L:O =0, u‘rzl =0, —a<t<hb, (10)
u(r,—a) =p(r), 0<r<l, (11)
u(r,b) =(r), 0<r<1 (12)

Thus, the inverse problem (2)—(4) is reduced to the problem definitions of the
functions u(r,t), f(r) from equalities (9)—(12).
According to the Fourier method, searching partial solutions of equation (9)

for the case f = 0 in form
u(r,t) = R(r)T(t),

we get the following relations:
1
OFT(t)R(r) = ;T(t)R’('r) +T@)R"(r), t>0,
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1
T"(t)R(r) = ;T(t)R’('r) +Tt)R"(r), t<O.
Therefore, separating the variables, we have

o0T(H) 1R(r) R'(r)

- :_2
W) r R TR - 120

T'(t) 1R'(r)  R'(r
Tt) rR(r) R(r)

where A is an arbitrary real parameter. Hence, to find the function R(r) we get
the problem of the equation

~\2, t<0,

1
R"(r) + ;R'(r) +MR(r)=0
with boundary conditions

: / _ —
which is a self-adjoint problem.
The solutions of equation (10) are the following zero-order Bessel functions of
the first kind:
Rk(T) :J()()\kr), k= 1,2,3,...

They also are eigenfunctions. We find the eigenvalues using the second boundary
condition of (13) (the validity of the first boundary condition in (13) is obvious),
positive roots of the equation Jy(A;) = 0. As noted in the previous section, they
look like:

0
1

Expand now all functions in a Fourier—Bessel series in terms of eigenfunctions

Jo()\kr) i.e.

Ak:knr—%:(élkz—l)

u(ryt) = guk(t)Jo()\kr), (14)
flr) = ifk%()\k?“)v (15)
where 7
wlt) = JIQ(QM /0 rulr, ) Owr)drsf = JIQ(QM /0 () T )

Substituting (14), (15) into (9), we obtain

8f‘uk(t) = —Azuk(t) + fk, t> 0,
up(t) = —)\zuk(t) + fr, t <O.
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It is not difficult to find that these differential equations have general solutions:

uk(t) = CkEa(—)\%ta> + )f\g, t >0,
F f (16)
ug(t) = dj cos(Agt) + eg sin(Agt) + &t<o,

where E,( -) is the Mittag—Leffler function; di, ey, ¢ are arbitrary constants.
To find the coefficients dy, e, ¢, we use conditions

up(0+0) = up(0 —0),  9uk(0+ 0) = uy(0—0),
which follow from conditions (5). In view of this, from (16) we have
drp =cp, ep= —ApCk.

From the initial and additional conditions (11), (12), we get:

di, cos(Aga) — ey sin(Aga) + {\% = Ok,
E )\Qba fk .
ckEa (=N )+ﬁ—1/)k:,
k

where ¢, Y are Fourier—Bessel coefficients of functions ¢, 1, respectively:

o(r) =Y oedo(Akr),  $(r) =D brJo(Aer).
k=1

k=1
Substituting the values d, e found through cg, into the previous equations and
solving the resulting system with respect to ¢ and fi, we find

Yk — Pk
Eo(—A2b%) — (cos(Aka) + Agsin(Aga))’ (17)
[ = A2 (Yr — cBa(=230%)).

cp =

Introduce the notation

Aap(k) = Eo(—A7b%) — (cos(Aga) + Ag sin(Aga)). (18)

4. Existence and Uniqueness of the Solution

We find the values of a and b for which (18) takes values not equal to zero.
To do this, we rewrite (18) in the following form:

Aw(k) = E, (—<4k_1)2ﬂ2b0‘> — \/1 + (4k = 1) sin<4k4_ 1a7r + 7k>, (18"

16 16
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where v, = arcsin (1/ 1+ W) . Obtain the values of a for which A, (k) = 0.

It equals
2.2
1 o[ Ea )
a = m (arcsm( T ) + 7™ — ’yk> .

1+( 16

We now find the values of a and b, for which the following condition is met:
|Aap (k)| = Cy > 0. (19)

For this, we calculate

|Aap(k)| = ‘Ea (—Wba> - \/1 + (4k _161)27T2 Sin(4k4_ 1a7r+’yk) ’

If a =4n, n € N, then

B (4k —1)%x2 \/ (4k —1)272 4k —1
(W] = |Fa (=g —0%) =1+ g sin(——am ) >

> (T ) ] o ()

According to (6) we have 0 < Ea(—Wba) < 1, for all k = 1,2,..., then

. 972 1 o
a = . I - BT
|[Aas(k)| = Co > 0. As Cp, it can be taken 1 — E,(—%5b*) as the largest of all
possible such constants.
Thus, we have obtained the following uniqueness criterion:

THEOREM A. If there exists a solution to problem (1)—(4), then it is unique for
the values a = 4n, n € N for any b > 0.

We now investigate the existence of a solution. To this end, we prove the
following assertion:

TureoreM B. Assume that {¢(r),(r)} € C®[0,1] and, in addition, condition
(19) and the equalities

oDy =0, ¢v@P0)=0, i=0,1,,...,5,

(1) =0, ¢O(1)=0, j=0,1,....4
are satisfied.

Then there is a unique solution to problem (1)—(4), which is defined (20)—(22),

where gp(i), VD are i—th derivatives of the functions v, ¥, and @k, Y are the
Fourier—Bessel coefficients of the functions ¢ and 1, respectively.

To prove the theorem, substituting the found values of the coefficients dg, e,
¢k in (16), (17), we find ug(t) and fi:

Yk =Yk n (2,4 Uk =Yk L (20
uk(t) = S Ba( ) = PR (AR, 6> 0,
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U — Pk
Aap(k)

sin(/\kt)—i—wk—wk — PR B (—A2bY), <0,

ug(t) = M cos(Agt)—Ak A ()

A (k)

fie = 3 (s - ﬁb‘(,f)’“ Ea(-N).

Taking into account these relations, from (14) and (15) we obtain the formal
solution of problem in the form of series:

Zuk )Jo(Akr) = Z[dj{ab(k) Eo(=Xit%) +

= G BB ) [ D), >0, (20)
Zuk )Jo(Axr) = [djab(lf)k cos(Axt) — A djab(lf)k sin(Axt) +

+¢k—ﬁab‘(g’“Ea—Azba)}Jo(m), t<0, (21)

r) = ifk%@\kﬂ = i)‘ {1/1 S a(_/\zba)} Jo(Aer). (22)

k=1 =1 “b(k)

To prove the existence of a solution, we need to show that the series in (20)—
(22) and the series obtained as a result of the action of fractional differentiation
o¢, by differentiating with respect to r twice, in domain G and by differentiating
twice in r, t, in domain G _, converge uniformly. To this end, we calculate 95 u(r, t),
(0%/0t?)u(r,t), (8%/0r*)u(r,t), by formally performing differentiation under the
signs of sums. Using properties of the Bessel functions, namely (see [24]) Jj(r) =
= —Ji(r), 2J](r) = Jo(r)—Ja(r), from formulas (20), (21) we obtain the following:

o0

O u Z O ur () Jo(Akr) =

=Y [N Ba(=20t%)] WJO()\M% t>0, (23)
k=1 @

DPu(r,t) o= O%uy(t)
aﬂ:kz_: gz o) =

1
[—AZ cos(Agt) + A7 sin(Agt)] WJO(AM), t<0, (24)
k=1 @
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2 o0 2 o0 _
Fulrl)  § (DO Z[‘ﬁ‘ BN +

2
(~A2B°) }? (Jo(Akr) = Jo(Akr)). >0, (25)

2 > 2 > — —
9 gfﬁg t) _ Zuk(t)d@(aikr) _ {1/;1; b(]f)k COS()\kt)_)\klﬁ b(;:)k sin(Axt) +
k=1 k=1 "¢ ¢
B 2
+ Y — 1%: b(;:)k Ea(—)\zba)} )\ (JQ()\]J’) Jo()\kr)), t < 0. (26)

Let the functions ¢(r) and ¢ (r) satisfy the conditions of Theorem 2 with some
s > 1 (we define the number s later). Then for the Fourier—Bessel coefficients of
these functions are true the following estimates:

My My
lor| < B2 || < S
K Ak

Now we will evaluate the expressions at Bessel functions on the right-hand
sides of equalities (20)—(26). In this case, the expressions in (20), (21) are estimated
as follows:

Y — Pk 9 Y — Pk 2
E (=Xt™) + 4y, — Eo(—AbY)| <
My Mo Ny
<M + t<O0
25— (1/2) 25— (1/2) s—(1/2)° J
</\k A2 ) A
Y — Pk Y — Ok . Y — Pk 2
Aet) — A At -~ Ba(—220)| <
Aab(k) COS( b ) F Aab(k) Sln( F )+wk Aab(k) ( F )
>\k +1
< N27)\23—(1/2)’ t>0,
k

where M, M, My, N1, No are positive constants.
Similarly, it is established that the expressions in (22), (23), (2 ) are less than

2 2
N3ﬁ, and the expressions in (24), (26) are less than ]\74257“/2 N3, Ny are
k

positive constants.

It follows from these estimates that if s = 3, then, according to Theorem 1,
the series in (23)—(26) and the series obtained as a result of the action of fractional
differentiation 0, by differentiating with respect to r twice, in domain G and by
differentiating twice in r, ¢, in domain G_, converge uniformly. Thus, Theorem B
is proved.
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5. Conclusion

This paper concerns the existence and uniqueness of a solution to the inverse

source problem for a mixed-type equation with a fractional diffusion equation in
the parabolic part and a wave equation in the hyperbolic part of a cylindrical
domain. The solution is obtained in the form of Fourier-Bessel series expansion
using an orthogonal set of Bessel functions.
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