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Abstract

In the present work, a common fixed point result for self-mappings on
orthogonal complete metric spaces, which are not necessarily complete, is
proved. Furthermore, as an application, we find the existence of solutions to
two differential equations.
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1. Introduction and Preliminary. The pioneering mathematician in the
area of fixed point theory was Banach, who established and proved the first fixed
point theorem is named the Banach contraction theorem [1]. After that, extensions
of this theorem have been obtained either by generalizing the distance properties
of the underlying metric space or by modifying the contractive condition on the
mappings.

In 2017, Eshaghi Gordji et al. [2]| defined orthogonal metric spaces as a gen-
eralization of metric spaces, as follows:
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DEFINITION 1 [2]. Let X # () and let LC X x X be a binary relation. If |
satisfies the following hypothesis:

3$0 : (Vy, Yy 1 .iU()) or (Vy,l‘o 1 y)

Then (X, 1) is called an orthogonal set (briefly O-set).

The triplet (X, L, d) is called an orthogonal metric space if (X, d) is a metric
space and (X, 1) is an O-set, and x is said to be an orthogonal element.

Then, an important extension of the Banach fixed point principal is given, as
follows:

THEOREM 1 [2]. Let (X, L,d) be an O-complete metric space and T a self-
mapping on X which is L-preserving and L-continuous. If there exists k € [0,1)
such that for all x,y € X:

x Ly implies d(Tx,Ty) < kd(x,y). (1)

Then, T has a unique fized point.!

Later, many remarkable works in this area can be found in [3-5].

Motivated by [2] and other works concerning the theory of common fixed
points [6-9], in this paper we restrict our studies only to orthogonal elements, to
prove a result of common fixed points in a new setting and under weak conditions.
In other words, we extend condition (1) to two self-mappings f, g : X — X, as
follows:

x Ly implies d(fz, gy) < ¢(d(z,y)),

where ¢ € @, the class of all nondecreasing selfmaps ¢ on [0, +o0) satisfying
T2 ¢"(t) < +oo for all t > 0.

Moreover, an extension of the Banach fixed point theorem is delivered for a
large class of mappings, we call it weakly- | -preserving.

In addition, we give an example to support the proven theorem and to show
the usability of this new direction of research.

At the end of the results, an application to the study of the existence of
common solutions for a class of differential equations is presented.

Finally, we assert some definitions that will be needed in the topic:

DEeFINITION 2 [2]. Let (X, L) be an O-set. A mapping 7' : X — X is said to
be L-preserving if Tx 1L Ty whenever z L y.

DEerFINITION 3 [2]. Let (X, L) be an O-set. A sequence {x,} is called an or-
thogonal sequence (briefly, O-sequence) if

(Vn,xpn L @pi1) or (Vn,zpe1 L oxy).

DErFINITION 4 [2]|. Let (X, L, d) be an orthogonal metric space. Then, a map-
ping T : X — X is said to be orthogonally continuous (briefly |-continuous) in
x € X, if for each O-sequence {z,} C X such that z,, - x as n — 0o, we obtain
Tz, — Tx as n — oo. In addition, T is said to be _L-continuous on X if T is
L -continuous in each z € X.

Tn the sequel, we will recall the related basic notions of orthogonality.
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DerINITION 5 [2]. Let (X, L,d) be an orthogonal metric space. Then, X is
said to be orthogonally complete (or L-complete) if every Cauchy O-sequence is
convergent.

REMARK 1 [2]. Every complete metric space (continuous mapping) is O-complete
metric space (_L-continuous mapping) and the converse is not true.

ExampLE 1 [2]. Let X = Z. Define the binary relation L in X by m L n if
there exists k € Z such that m = kn. It is easy to see that 0 L n for all n € Z.
Hence, (X, 1) is an O-set.

2. Main results. The main result of this article is the following:

THEOREM 2. Let (X, L,d) be an O-complete metric space and f, g: X — X
be 1 -continuous mappings such that:

) azly = (frLlgyorgyl fz)and (gz L fy or fy L gx);

2) x Ly = d(gz, fy) < ¢(d(x,y)), for all x,y € X, where ¢ € P.

Then, f, g have a common fized point.

Proof. Since X is an O-set, there exists at least g € X such that
Vye X, zg Lyor Vye X, y L xg.

So, in particular we have ¢ L fxzg or fzg L x9. We can choose a sequence {x,}
defined by wo,+1 = fxo, and xo, 2 = gronsq for all n € N*. The condition 1)
implies

Yn € N*, x, L xpp1 or Vn € N*, 2,09 L .

Then, {z,} is an O-sequence.
Hence, we have

d(@2n+1, Tanv2) = d(f22n, gr2nt1) < G(d(@2n, T2nt1))-
Similarly, we have
d(T2n+2, T2n+3) = d(fT2n+42, gTont+1) < G(d(T2n41, T2n+2))-
Therefore,
(@, 2p41) < O(d(2p-1,70)) < $*(d(Tp-2,2n-1)) < - < " (d(0,71)),

for all n € N. Let n, m € N*, we have

k=n+m-—1 k=n+m-—1
d(xn>$n+m) < Z d(.l?k,l‘k_H) < Z gbk(d(l‘bxk-‘rl))' (2)
k=n k=n

Letting n, m — oo in (2), we deduce that {z,,} is an Cauchy O-sequence. Since
X is an O-complete space there exists u € X such that li_)rn Tn = u. On the other
n oo
side, the orthogonal continuity of f, g implies lim fz, = fu and lim gz, = gu,
n—oo n—oo
which leads to u = fu = gu. O

ExampLE 2. Let X = Q and d(z,y) = |z — y| for all z, y € X is the usual
metric on X.
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Define a binary relation on X by
rly<=x=0o0ry=0.

Note that (X, L,d) is not a complete metric space, but is an O-complete metric
space.
Consider the mappings f, g : X — X defined by

1, ifx =1,
fle) = {x/?), iz #£1,
and
(2) = 1, ifzx=1,
TE =N z/2, ifx#1.
Without loss of generality, let x,, L z,41 for each n € N. Then we have z,, = 0,
which leads to fz, = z,/3 =0 = f0 and gu,, = z,/2 = 0 = g0. Therefore f, g
are 1 -continuous mappings.
Clearly, the mappings f, g satisfy the condition 1) of Theorem 2.
On the other hand, let ¢ be a function defined by ¢(t) = 3t/4, for all ¢t > 0.

Let z,y € X such that x | y, we obtain x =0 or y = 0.
Case 1: If x = 0, we have

|y

d(f0,9y) = 5 < 7d(0,y) < #(d(0,y)).

s

Case 2: If y = 0, we have

3

atfe.90) = 2 < 2aa,0) < o(a(r, 0))

Then, all assumptions of Theorem 2 are satisfied and 1 = f1 = gl is the
common fixed point.

Now, we introduce a new definition named weakly-_| -preserving self-mapping;:

DEFINITION 6. Let (X, L) be an O-set. A mapping T : X — X is said to be
weakly-_|-preserving if Tx 1 Ty or Ty L T'x whenever x L y.

REMARK 2. It is clear that a L-preserving mapping is a weakly-_|-preserving
mapping, but in general the converse is not true.

ExampLE 3. Let X = [0, 1], define the function Tz = 1 — z, € X. Define a
binary relation 1 C X x X by

zly<=z<y.

Therefore, (X, L) is an O-set with the orthogonal element xy = 0.

We have 0 L. 1, 70 =1 and T1 = 0, thus 71 L. T0 but 70 L T1 does not
hold.

Thus, the mapping T' is weakly-_|-preserving, but not 1-preserving.

By taking ¢ = f in our main theorem, we obtain a new generalization of
Theorem 1.
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THEOREM 3. Let (X, L,d) be an O-complete metric space and T be a self-
mapping on X which is weakly-1-preserving and 1 -continuous. If there exists
¢ € O such that for oll x,y € X, we have

x Ly implies d(Tz,Ty) < ¢(d(z,y)).

Then, T has a unique fixed point.

3. Application. In this section, we will prove the existence of a common
solution for the two differential equations:

3)

2'(t) = k(t,z(t)), tel=1[0,0], € (1,+00);
= a, a > 2,

and

t
2'(t) = k:<t,a+/1 k(u,m(u)du), tel=10,0], 0¢c(1,+00); @)
z(1) = a, a>2,

where x € C(I), the space of all continuous functions from I into R and £ : I xR —
R is a continuous mapping.
Let X ={z € C(I)/z(t) > 1} endowed by the metric

d(z,y) = sup[z(t) = y(¢)].

Define the mappings f, g : X — X, as follows:

Fa(t) = a+ /1 k(s, (s))ds, (5)

" gx(t) =a+ /jk(s,a + /18 k(u,x(u))du) ds, (6)

for all t € 1.
Hence, equations (3) and (4) have a common solution if and only if the map-
pings f and g have a common fixed point.

THEOREM 4. Let f, g : X — X be the mappings defined by (5) and (6).
Assuming that the following conditions are satisfied:

1) k(t,z) >0 forallz >0 and t € I;

2) there exists h < 1 such that for all x,y € X,
we have

k(-5 fe) = k(9] < [z —yl, (7)

for any xz,y € C(I), with xy >y or xy > x.
Then, the differential equations (3) and (4) have a positive common solution.

0—-1

Proof Let z,y € X. Define an orthogonal relation L on X by
xly <= z(t)y(t) = y(t) or x(t)y(t) = x(t), for all t € I. (8)
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It is clear that (X, L, d) is a O-complete metric space.

Let z, y € C(I) be such that = L y, since fz(t), gy(t) > 2, then fz(t)gy(t) >
gy(t) and gx(t) fy(t) > fy(t), which means that condition 1) of Theorem 2 holds.
Also, from the definitions of f and g, we see that f, g are |-continuous.

On the other hand, we will show that the contraction 2) of Theorem 2 is
satisfied.

By considering (7) and (8), we obtain

lga(t) — Fy(t)] < /f|kxs,fa«s>>—-kxs,y<s>ﬂds <

0
< [ glate) — us)ds < hda,y).

So
d(gz, fy) < ¢(d(z,y)).

where ¢(t) = ht, with h < 1.
Finally, we conclude by Theorem 2 that the differential equations (3) and (4)
have a positive common solution. O

REMARK 3. In the above theorem, the function z¢(t) = 2 for all t € I is an
orthogonal element.
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HoBag obGiasg TeopemMa 0 HENOABUXKHOI TOYKe
B OPTOTOHAJIBHBIX METPUYECKUX MPOCTPAHCTBAX
1 ee IPUJIOKeHIe

Y. Touail', A. Jaid?, D. El Moutawakil®

L Vumsepcurer Cumu Moxamena 6en AGmemint, Pec, Mapokko.
2 Vuusepcurer Cynarana Mynas Cnumana, Bern-Memntans, Mapokko.
3 Vuusepcurer Hlyaitba Tykxamm, Dib-/Ixammma, Mapokko.

AHHOTaNsA

JokazbiBaeTcst oOIUit pe3yIbTaT O HEMOJBUKHON TOYKE JIJIsi CAMOOTO0D-
paXXeHuil Ha OPTOrOHAJIBHBIX ITOJIHBIX METPUYECKUX IIPOCTPAHCTBAX, KOTO-
pble He 00s13aTeJILHO TIOJIHBL. B KavuecTBe MPUIOXKEHUsI IOy 9€HHOTO Pe3YJIb-
TaTa HAWIEHO CyIIECTBOBAHUE PelleHnil AByX nuddepeHInalbHbIX ypaBHe-
Huii.

KiroueBnle ciioBa: 06ma51 HEIIO/ABU2KHasA TOYKa, OPTOrOHAaJIbHOE MeTpu4e-
CKO€ IIPOCTPaHCTBO.

Ionyuenue: 28 suBaps 2023 r. / Wcnpasienune: 17 Hosbps 2023 r. /
Ipunsarue: 13 nexabps 2023 r. / [lybaukanus ornaita: 25 nekabps 2023 1.

Koukypupyrormiue narepecbl. OT UMEHE BCEX aBTOPOB aBTOP-KOPPECIIOHJIEHT 3as1B-
JisIeT 00 OTCYTCTBHUU KOH(DJINKTA HHTEPECOB.

ABTOpCKUT BKJIAJ 1 OTBETCTBEHHOCTDb. Bce aBTOpPHI NpUHUMAJIN yYacTHe B pa3pa-
6OTKE KOHIIEINHN CTATHI; BCE ABTOPHI CAE/IAIN SKBUBAJECHTHBIN BKJIAJI B IOATOTOBKY IIy0-
JiKanuu. ABTOPBI HECYT MOJTHYIO OTBETCTBEHHOCTH 3a IIPEIOCTABJIEHNE OKOHYATEJHHOM
pykommcu B rredarh. OKOHUIATEIbHAST BEPCHUs PYKOIHCH ObLIa 0/[00peHa BCEMU ABTOPAMH.

,D;OCTyHHOCTb JAaHHBIX. Hukaxune JJaHHBbI€ HE HCIIOJIB30BaJIUCh B 9TOM HMCCJICJOBAHUU.
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