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Abstract

The paper presents a new exact solution to the Navier—Stokes equa-
tions which describes a steady shearing isothermal flow of an incompressible
two-layer fluid stratified in terms of density and/or viscosity, the vertical
velocity of the fluid being zero. This exact solution belongs to the class of
functions linear in terms of spatial coordinates, and it is an extension of the
classical Couette flow in an extended horizontal layer to the case of non-
one-dimensional non-uniform flows. The solution constructed for each layer
is studied for the ability to describe the appearance of stagnation points
in the velocity field and the generation of counterflows. It has been found
that the flow of a two-layer fluid is stratified into two zones where the fluid
flows in counter directions. It is also shown that the tangential stress tensor
components can change their sign.

Keywords: stratified viscous fluid, exact solution, field stratification, coun-
tercurrent.
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Inhomogeneous Couette flows for a two-layer fluid

Introduction. The Couette flow is one of the first examples of an exact so-
lution to the Navier—Stokes equations [1-3]. It describes the isobaric flow of a
viscous incompressible fluid, which is induced due to the motion of one or both
boundaries of an infinite horizontal fluid layer. Recall that the steady Couette flow
is described by a linear velocity profile, and this has predetermined the popularity
of this solution in the theory of hydrodynamic stability for studying secondary
flows generated by different disturbance classes. There is an interesting observa-
tion for the unsteady Couette flow. It is described by the simplest linear parabolic
equation having a general solution to an extensive class of functions |2, 3|. Thus,
the first and second Stokes problems are described by the non-stationary Couette
profile, and they are its particular case 2, 3].

Besides studying the hydrodynamic stability of the Couette flow for a viscous
incompressible fluid, there are various modifications of the exact Couette solution
for regions without plane symmetry. Note that there exists the well-known exact
Taylor—Couette solution on the fluid flow in the gap between coaxial cylinders
[2,4-8], as well as the solution describing isobaric fluid flow on a sphere [9,10]. The
Couette flow is fundamental in the study of fluids with non-Newtonian properties
[11,12]. The three-dimensional Couette flow, which is potential and non-isobaric,
has been recently exemplified [13].

It is difficult to study Couette flows, different from unidirectional ones, since
the reduced Navier—Stokes system becomes overdetermined [14-17]. The overde-
termined Navier—Stokes equation system describing two-dimensional flows of vis-
cous fluids began to be studied in [17], a complete list of exact solutions for
two-dimensional hydrodynamics being given in [18]. An example of a nontrivial
exact solution to the Navier—Stokes equation system for incompressible fluids with
nonstationary and steady two-dimensional velocity fields depending on three co-
ordinates was found in [15,16]. The first exact solution describing the non-uniform
Couette flow was constructed in the class of solutions for velocities linearly de-
pendent on two coordinates (the Lin—Sidorov—Aristov family) [19-21|. The studies
along this line were continued and summarized in [16].

This paper studies a boundary value problem for 2.5D Navier—Stokes equa-
tions, which describes steady flows of a two-layer fluid. The study is based on the
exact solution of the Navier-Stokes equations for incompressible fluids [15, 16|,
which was constructed by functional variable separation. It was shown in [22] that
the exact solutions found in [15,16] and describing non-uniform Couette flows can
be used to describe isobaric multilayer fluids. It was reported in [15,16] that exact
solutions with a velocity field linear in coordinates describe equatorial countercur-
rents in the World Ocean [2,15,21]. Multilayer fluids are often used to model large
oceanic flows [2,21]. In [22] it was found useful to extend the study of boundary
value problems of steady flows from single-layer streams [15,16] to multilayer flu-
ids. This should be done in order to have a store of exact solutions for studying
the hydrodynamic stability of flows, for comparing model representations with
natural observations, and most importantly to understand the applicability of the
substitution of continuous density stratification by a discrete saltus function.

1. Problem Statement. Consider a steady flow of a viscous two-layer fluid
in an extended horizontal layer. We denote the lower layer by the subscript “1” and
the upper one by “2”. Each of the two layers of the two-layer fluid can have its own
thickness (hy and hg, respectively, see Fig. 1), density (p; and p2), and viscosity
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Figure 1. The scheme of a two-layer fluid

(m and 72). Note that the heavier phase is located below in density-stratified
fluids, i.e., p1 > po2.

It is assumed here that the flow takes place at a constant temperature and in
the absence of external forces, except for gravity. The sum of pressure (ratioed
to density) and the gravity potential is constant through the flow; therefore, the
gradient of this sum, entering the Navier—Stokes equations, is zero. The steady
flow of fluids of this type is described by two systems of nonlinear equations
(each layer is described by its own system) consisting of the vector Navier—Stokes
equation and the scalar incompressibility equation [22-24]:

p (VO )V = AV v vl = (1)
p2(VE V)IVE = AV v.vE =, (2)

Systems (1), (2) have the following notations: V(1) = (Vggl),Vy(l),Vz(l)) and
v@ = (Vx@), Vy@), VZ(Q)) are the vector velocity fields for the lower and upper
layers, respectively; V. = (9/0x,0/0y,0/0z) is the Hamilton operator; A =
(0%/02*+0%/9y*+0?/02?) is the Laplace operator; (V, V) = (V,,0/0z+V,0/dy+
V,0/0z) is a convective derivative. Note that both system (1) and system (2) are
overdetermined, i.e., the required velocities Vx(l), V;,(l) for each layer must satisfy
three scalar equations (the third Navier—Stokes equation is fulfilled identically
since a flow with zero vertical velocity is considered). Note that the equations
V-V =0 and V-V® = 0 (velocity divergence is zero) is termed in two
ways in the scientific literature. They are termed the continuity equation in the
physical literature and the incompressibility equation in the hydrodynamic liter-
ature [25,26].

In what follows, the solution of systems (1), (2) is sought in the form of
functions linearly dependent on one of the horizontal coordinates [22-24]:

VoD = uM(2) +uM(2)y, Vy(l) =vD(z); (3)
VO = i)+ u® (e, GO = V), )

For the class (3), (4) the incompressibility equation in systems (1), (2) is sat-
isfied identically. This circumstance dismantles the problem of overdetermination
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of systems (1) and (2), i.e., each system is now reduced to finding two projections
of the velocity vector from two ordinary differential equations (projections of the
Navier—Stokes equation onto the axes Oz and Oy):

prV Dl = g (@ a0 (5)
" " "
pVOu® = (" 0@y V@ =0, (6)
Hereinafter, the double prime marks derivation with respect to the vertical coor-

dinate z. In view of the independence of the spatial coordinates x and y of the
selected Cartesian system, equations (5) and (6) can be represented as

u(l)” =0, V(l)” =0, u(l)” — ﬂv(l)u(l); (7)
m
u(2)” =0, V(2)” =0, u(2)” — %V@)u@). (8)

The first two equations in both system (7) and system (8) are isolated, and the
solution of the third equations in these systems is the last to be found. Double
integration of systems (7) and (8) results in their general solution

GO C) JUSp ) IRV BN C) PR V)

uV = 1;17 (224 + 2(c, Ve @ + ;W) 28 + 6, Vo D 22) +
1

+ 8z + 85 (9)

u® = % (02(2)a2(2)z4 + 2(02(2)a1(2) + 01(2)a2(2))23 + 661(2)041(2)22)—1—
2

+ 8Pz 4+ 53 (10)

The solutions represented by equations (9) and (10) are polynomial, the highest
degree of these polynomials corresponds to expressions for velocities U L, U@,
and this is attributable to the sequence of integration of the equations in sys-
tems (7) and (8). The constants cgl), 02(2), agl), az(?), ,Bi(l) and 552) (1 =1,2) in the
exponential solutions (9) and (10) must be found from the boundary conditions;
therefore, it is necessary to formulate twelve conditions for the determination of
these values.

2. Boundary Conditions. Since the vertical fluid velocity is assumed to be
zero, the fluids of the different layers do not intermix in the shear flow under
study. In other words, the interlayer boundary (the boundary z = hj) is here
considered to be rigid (Fig. 1). For convenience, in what follows, h = hy + ho.

Assume that a no-slip condition is set at the lower boundary z = 0 [15]:
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Taking into account the representation (3), (4), we arrive at three conditions
uMo)y=0, «P0)=0, vB©O) =o0. (11)
A velocity field (wind effect) is set at the upper boundary z = h [15]:

V.2 (h) = W cos ¢ + Qy, Vy@)(h) = Wsinp.

Here, Q2 is the horizontal gradient of the velocity VQC(Q) (spatial acceleration) at the
upper boundary; W is the absolute value of the uniform velocity component at
the mobile boundary z = h of a two-layer fluid; ¢ is the angle between the uniform

velocity component ‘/;(2) and the axis Ox. Taking into account representation (4),
we obtain three more conditions

UD(h) =Wcosp, uP(h)=9Q, VP(h)=Wsine. (12)

Besides, it is required that two additional conditions be met at the interlayer
boundary z = hy (conditions for “sewing together” the solutions for the two lay-
ers). They are

— the solution continuity condition for velocities

VIO (1) = VP (), VD (hy) = VD (h),

and taking into account the structure of classes (3) and (4), we have three
equalities

U (h) = U (h),  uV(hy) = u® (1), VW (k) =V (hy);  (13)
— the solution continuity condition for tangential stresses
() =72 (), 7D () = 752 (h).

As distinct from expressions (13) resulting (in view of the independence of the
spatial coordinates) directly from the condition of equality of the velocities at the
interlayer boundary, the case with the continuity condition for tangential stresses
is not as apparent, the continuity condition for the velocity field proves to be
insufficient. By the Newton law, the relation of the stress tensor components to
velocities is known,

avx@ av v, ® v | av.®
()+277 10 z( U(>) m( 8z() o ) (3),(4)
; (1) av av, av, O] ;
70 = i (%% 5—) —()+2iayy (e + %) | =
avz(ﬂ asz’) ov,( | av,® asz
Z( 0z + oy ) 'L( dy ayz ) ()+2
(@)
—p® mu(l) niia‘gz(_)
; ; av, (i
— ,rhu(l()) _p(z()‘) i é)yz ,
i ov, (¢ ;
Ul el
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where p(¥) is hydrostatic pressure (the pressure of a moving fluid column, depend-
ing not only on the transverse coordinate, i.e. changing only with depth, similarly
to the main equation of hydrostatics) in the layer under study. This representa-
tion of the stress tensor can easily yield the following equivalent of the continuity
condition for tangential stresses:

du® du® du® du®
n dz z=h1 — e dz Z:hl7 n dz z=h1 e d z:h17
dv(® av®

n dZ ‘Z:h1 — e dZ Z:h1‘

Thus the boundary value problem (9)—(14) becomes closed.

3. An Exact Solution to the Boundary Value Problem. Conditions (11)—
(14) allow us to find a particular solution to systems (7), (8) for each layer, which
would meet the selected boundary conditions:

hn982
W (7 — LA 15
u
( ham + hina (15)
hnoW sin ¢
vO(zy= 2727 % 16
2) ham + hina (16)
W Z

ul(Z) = [Qp175 (hamy + hina)h® sin 9 Z°+

1201 (hamy + hane)®
+12mm2(hamt + hanz)® cos o — Qsin p(4hShamin3 1 + hinsp1+
+hin}p2 + AhaB3n3naps + 6h1h2771772/72)}7 (17)

OZ) = — L (nZ 4 il — 18
u b
( ham + hin2 (hn 1(m —m)) (18)
W sin ¢
vO(Z) = I G 7 4 b — ), 19
( ham + hina (i 12 = m)) (19)

ul?(Z) = s{h*n5 (ham + hinz) paSdsin 2" —

12n2(ham + hine)
—4hPhami (m — n2) (hamt + hanp) paQsin 9 Z°+
+6h2h3 (m — n2)* (ham + hino) p2Qsin 2%~
—hZ[(=3hin3p1 + (ha(4R3 + h3)ni + 4hy (K3 — 3hihg + h3)mama+
+6h3 (—2h7 + 2h1ha + h3)mns + 12h1n3) p2) Qsin p—
—12mm2(hom + hana)? cos o]+
—ha(hy + ho)W sin o (3hin3p1 — hihani p2 + hahinipa — hin}pa—
—hinsnap2 + Shihatsnepa(hn — ha) + h3maiaps + 4himi p2—
—10h3 hamni pa + 4hihsmns pa + 6hin5 pa(he — b))
—12h1(n1 — m2)n2(ham + han)? cos o} (20)
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Solutions (15)—(20) involve the substitution Z = z/h € [0,1]. The motion of the
lower layer (Z € [0;hy/h]) is described by expressions (15)—(17). The values of
Z € [h1/h;1] correspond to the other (upper) layer, where the flow velocity is
determined by solutios (18)—(20).

It is of interest that, despite seemingly simple structure of boundary condi-
tions (11), (12) and velocity field representation (11), (12), the obtained solu-
tion (15)—(20) depends on the parameters of the boundary problem under study
and the physical characteristics of the fluid in an extremely non-trivial way. There-
fore, in a general form, it is impossible to make any conclusions about the effect
of a specific parameter on the structure of the final solution. First of all, this con-
cerns the uniform components U™ and U®). The only conclusion (fairly obvious)
that can be made concerns the effect of the values of W and 2 on the value of
velocity in the Oy direction (the velocities V(1) and V) and the non-uniform
velocity component along the Oz axis (the spatial gradients u® and u(Z)) since
functions (15), (16) and (18), (19) depend in direct proportion on these parame-
ters.

Note also that, when W = 0, the velocity field determined by solutions (15)-
(17) and (18)-(20) assumes a trivial form; therefore, it is considered hereinafter
that W # 0.

Besides, note that the functions v and u(® become zero when Q = 0, i. e., we
obtain an extension of the classical Couette flow to a non-one-dimensional case.
The velocities V(1) and V() become zero only if sin¢ = 0. In this case, there is a
unidirectional flow along the Ox axis with a non-uniform velocity distribution. In
addition, the exact solutions for the components u(!) and V(1) are linear functions
of Z, whose zero is only the point Z = 0. The stagnation (zero) points of the fluid
are of particular importance due to the fact that both simply flow suppression
and flow reversal (the appearance of counterflows) are possible at these points.

4. Analysis of the Exact Solution for the Lower Layer. Expression (17)
for velocity U can be written as

1201 (o + hame)®

[aZ3 + 1], (21)

where the following nomenclature is introduced:
a = Qp1n3(hany + hin)h3 sin @, b= 12mmn2(hom + h1n2)2 cos p—

—Qsin p(4hShamnzpy + hinspr + hani p2 + 4hihin3naps + 6hTh3mmnspa).

The case a = 0 in Eq. (21) is not discussed here due to its triviality. Assume
further that a # 0, then the velocity U™ becomes zero inside the layer under
study only if the point Zy = — W falls within this layer. The latter condition
is equivalent to the fulfillment of the inequality

b(ah? 4 bh3) < 0.

The corresponding velocity profiles U1 are shown in Figs. 2 and 3. These figures
show the value of angular velocity, corresponding to the first Coriolis parameter,
for the equatorial zone of the World Ocean (the latitude is w/12 rad).
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Figure 2. The U-velocity profiles (the dashed line U @ for the lower layer and the solid line U(?
for the upper layer) for W = 10 m/s, o = 7/12, h1 = 0.4 m, he = 0.6 m, Q = 1.4584-107° rad/s,
p1 = 1100 kg/m®, p» = 1057.6 kg/m?> 7 = 1.7-107° Pa-s, 7o = 1.2-107° Pa-s
Z
1.0

0.8

0.6
04

0.2

0 2 4 6 8 10 U,m/s

Figure 3. The U-velocity profiles (the dashed line UM for the lower layer and the solid line U@
for the upper layer) for W = 10 m/s, ¢ = /12, hy = 0.6 m, hs = 0.4 m, Q = 1.4584-107° rad/s,
p1 = 1100 kg/m?>, po = 733.1 kg/m>, 1 = 1.7-107° Pa-s, 72 = 1.2-107° Pa-s

In view of the above notations, the tangential stress ng,lz) is defined as
mn2sly

1) _ w '
ham + hine

= [4aZ3 + b] +
12(hom + hame)®

Note that, when W = 0, the tangential stress ng,lz) assumes a constant value

(different for each section y). Therefore, it is further assumed that W # 0, and
(1)

hence the stress 7,,’ can be represented as

Q
[4&Z3+b]+ h771772 Yy —

ham + hina

T 12(hony + hamp)®

hW
= [4aZ® +C), (22)
12(hon1 + hing)

where C' denotes the following expression:

12mm2(ham + hine)*Qy

C=b
" W

Note that the structure of expression (22) is similar to formula (21). Hence, by
analogy with the analysis of the expression (21), it follows that, when a # 0, the
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(1)

stress 7, becomes zero only at one point inside the layer, namely at the point

Z = —3/C/(4a). This value belongs to the interval of interest only if
C(4ah3 + Ch3) < 0.

Thus, the profile of the tangential stress represented by expression (22) is defined
by a cubic parabola, which cannot have more than one point in common with the
0Z axis (Figs. 4 and 5). The profiles of the tangential stress 7., in Figs. 4 and 5
are constructed for those values of the boundary conditions, layer thicknesses, and
physical fluid parameters for which a calculation is made and presented in Figs. 2
and 3, respectively.

Z
1.0

0.8
0.6

Y/ S

0.2

—0.01 0 001 0.02 0.03 0.04 0.05 0.06 7y, kg/(m-s?)

Figure 4. The profile of the stress 7., (the dashed line 72 for the lower layer and the solid
line 7£2 for the upper layer) for W = 10 m/s, ¢ = n/12, hy = 04 m, ho = 0.6 m, Q =
1.4584-107° rad /s, p1 = 1100 kg/m?®, p2 = 1057.6 kg/m?> 7, = 1.7-107° Pa-s, n2 = 1.2-107° Pa-s

Z
1.0

0.8

0.6
04}

0.2F

0 0.01 0.02 0.03 0.04 0.05 Tyz, kg/(m - s%)

Figure 5. The profile of the stress 7., (the dashed line ng) for the lower layer and the solid
line 72 for the upper layer) for W = 10 m/s, ¢ = 7/12, hy = 0.6 m, ho = 04 m, Q =
1.4584-1075 rad/s, p1 = 900 kg/m®, p» = 733.1 kg/m?®, m = 1.7-107° Pa-s, 72 = 1.2-107° Pa-s

Note that, in view of the structure of solutions(16) and (19), the tangential
stress 7, assumes a constant value determined by the problem parameters:

av® o av®  pppWsing

(1) — — = =
WM T dZ T b+ e
5. Analysis of the Exact Solution for the Upper Layer. The expres-
sion(20) for the velocity U(?) can be represented as

u® — W

= kZ* +nZ3 +mZ? + qZ + 7]
12n2(hom + hﬂ]z)?’[ " " 4z +1]
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The coefficients k, n, m, ¢ and r can be easily written from exact solution (20).
Let us now study the properties of the tangential stress defined by the velocity

Vz(z). Using the above notations, we obtain

hm Q2
2= 2{ W 514kZ° + 3072+ 2mZ + g+ — L.
h L1205 (ham + hana) hany + hine
Note that, when W = 0, the stress Tg) assumes a constant (through the se-

lected section) value, hence the stratification of this field does not occur. In the

(2)

assumption that W £ 0, the stress 75, can be represented as

W
@ - 2 . {4kZ3 + 3022 + 2mZ + ¢+

h 12n5(hom + hang)

n 12hmima(hom + hlﬂQ)QQy}
W b

and this illustrates stratification on the change in the sign of the tangential stress
(2)

relative to the Z-coordinate. The examples of the tangential stress 7>’ corre-
sponding to this solution are given in Figs. 4 and 5.

Conclusion. The problem describing the isothermal flow of a viscous incom-
pressible two-layer fluid in a horizontal layer has been studied. The properties
of the layers differ in thickness, density and/or viscosity. An exact solution has
been obtained to describe velocities in each of the layers for a set of boundary
conditions describing no-slip of the fluid at the lower boundary of the fluid flow
region under study and the non-uniform effect of wind at the upper boundary
of this region. At the boundary between the layers of the two-layer fluid, it was
required that the velocities and stresses be equal. The analysis of the obtained
solution for the layers has shown that this exact solution is able to describe the
appearance of reverse flow zones and stratification of the tangential stress field.
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AHHOTaNNsA

IIpenyioxkeno HOBOE TOUHOE pemtenue ypasHeruii Happe—CToKca, onmchl-
BaloIlee YCTAaHOBUBIIEECs N300apUIeCKOe N30TEPMUIECKOe TeUEeHNEe CTPATHU-
buIEpoOBaHHON 1O IJIOTHOCTH M/UIM BA3KOCTH HECKUMAEMON JBYCJIONHON
KUJAKOCTH. YKa3aHHOE TOYHOE DPEeIlleHre PUHAIJIEXKUT KJIaccy (QYHKIIUMH,
JINHEHHBIX 110 YACTH [IPOCTPAHCTBEHHBIX KOOD/JUHAT, U SABJIsI€TCS 0000IIeHN-
€M KJIACCHIeCKOro Tedenns KysTTa B MPOTSKEHHOM T'OPU30HTAIBLHOM CJIO€
Ha CJydJail HeOJHOMEPHBIX HEOIHOPOJHBIX TedeHWU. B KadecTBe cHUCTEMBI
KPaeBBbIX YCJIOBHII PAaCCMOTPEHa CBdA3Ka <«YCJIOBHE IPUJIUIAHUSA -+ BO3/el-
cTBHUE mapadboamdeckoro Berpas. Ha obmieil rpanuie AByX CJIOEB 3asBJIECHO
BBINIOJTHEHNE TPeOOBaHUs TJIAKOCTH U HENpepbIBHOCTU perrenusi. [locTpo-
€HHOE JIJIsI KaKJIOT'0 CJIOsl PeIlleHre OBbIIO MCCJIEOBAHO HA IIPEIMET BO3MOXK-
HOCTHU OIACHIBATh BO3HUKHOBEHUE 3ACTOIHBIX TOYEK IOJIsI CKOPOCTH H Te-
Hepanuu nporuBoredennii. CTpOro moKas3aHo, YTO YKA3aHHOE PEIleHre MpU
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