ISSN: 2310-7081 (online), 1991-8615 (print)

УДК 530.145.1

ОБ ОПРЕДЕЛЕНИИ ЧИСТЫХ СОСТОЯНИЙ МЕТОДОМ ГОМОДИННОГО ДЕТЕКТИРОВАНИЯ

А. И. Днестрян

Московский физико-технический институт (государственный университет), Россия, 141700, Московская обл., Долгопрудный, Институтский пер., 9.

Аннотация

В работе обсуждаются методы реконструкции волновой функции чистого состояния квантовой системы по известной оптической томограмме состояния. Оптическая квантовая томограмма представляет собой однопараметрическое распределение вероятностей с параметром θ . Волновая функция чистого состояния выражается через оптическую томограмму, если последняя известна для любых значений θ . Однако оптическая томограмма определяется из эксперимента гомодинного детектирования, где θ фиксированно. Поэтому оптическая томограмма может быть известна лишь для нескольких дискретных значений параметра. Мы приводим приближенные методы определения волновой функции квантового состояния по неполной информации о его томограмме, представляющие собой развитие уже существующих методов.

Ключевые слова: квантовая томограмма, квантовое состояние, оператор плотности, волновая функция.

1. Введение. В конце XX века было предложено новое вероятностное представление квантовой механики, в которой квантовые состояния связываются со стандартными плотностями распределений вероятностей — так называемыми томографическими плотностями или квадратурными распределениями. Этот формализм, содержащий такую же информацию, как волновая функция и матрица плотности, основан на томографическом подходе к измерению квантовых состояний [1,2]. Суть его в следующем: каждому состоянию квантовой системы с матрицей плотности $\hat{\rho}$ ставится в соответствие плотность распределения наблюдаемой — квадратурной компоненты $\hat{X} = \mu \hat{q} + \nu \hat{p}$:

$$w(X,\mu,\nu) = \operatorname{Tr} \hat{\rho}\delta(X-\mu\hat{q}-\nu\hat{p}),\tag{1}$$

где \hat{q} и \hat{p} есть обычные операторы координаты и импульса. Функция (1) называется симплектической квантовой томограммой состояния $\hat{\rho}$. Частным случаем симплектической томограммы является экспериментально измеримая [2] оптическая томограмма

$$w(X,\theta) = w(X,\mu = \cos\theta,\nu = \sin\theta).$$

Сведения об авторе

Андрей Игоревич Днестрян (dnestor@inbox.ru), аспирант, каф. высшей математики.

^{© 2016} Самарский государственный технический университет.

Образец для цитирования

Днестрян А. И. Об определении чистых состояний методом гомодинного детектирования // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. Т. 20, № 1. С. 33-42. doi: 10.14498/vsgtu1462.

В работе [3] было установлено, что для чистого состояния с координатной волновой функцией $\psi(x)$ его симплектическая томограмма выражается следующим образом:

$$w(X,\mu,\nu) = \left| \hat{F}_{\mu,\nu} \left[\psi \right] \right|^2 (X),$$
(2)

где $\hat{F}_{\mu,\nu}$ есть линейный интегральный оператор в $\mathscr{L}^2(\mathbb{R})$, подробно изученный в [4]. В данной статье мы рассмотрим вопрос обратимости отображения (2) в случае чистых состояний.

2. Реконструкция чистого состояния по его квадратурному распределению. Результатом всякой процедуры измерений над квантовой системой может быть только распределение вероятностей. Поскольку квантовое состояние содержит всю доступную информацию о квантовой системе, мы безусловно можем, отталкиваясь от этого состояния, рассчитать все распределения вероятностей [5]. Зададим обратный вопрос: возможно ли использовать набор вероятностных распределений для реконструкции квантового состояния?

Этот вопрос возвращает нас к раннему периоду развития квантовой механики, в частности, к обзорной статье В. Паули [6]. Он интересовался вопросом, можно ли найти амплитуду и фазу волновой функции, зная вероятности распределений по координате и импульсу. Паули не дал ответа на этот вопрос. Однако простые контрпримеры (см., например, [7–12]) показывают, что в общем случае это невозможно. На самом деле нужно знать больше распределений, чем эти два.

Как известно, функция Вигнера содержит всю информацию о квантовом состоянии, поэтому мы можем восстановить все квадратурные распределения с помощью преобразования Радона.

Преобразование вида

$$w(x,\mu,\nu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(q,p)\delta(x-\mu q-\nu p) \, dqdp \tag{3}$$

называется преобразованием Радона [13] функции W(q, p). Функция (3) совпадает с симплектической томограммой [3]. Преобразование Радона обратимо, обращение преобразования (3) выглядит следующим образом:

$$W(q,p) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(x,\mu,\nu) e^{i(x-\mu q-\nu p)} dx d\mu d\nu$$

Обратимость преобразования Радона здесь позволяет выразить функцию Вигнера W(q, p) через симплектическую томограмму состояния $w(x, \mu, \nu)$ при условии, что последняя известна для всех действительных μ, ν . Симплектическая томограмма обладает замечательным свойством однородности

$$w(\lambda X, \lambda \mu, \lambda \nu) = \frac{1}{|\lambda|} w(X, \mu, \nu),$$

используя которое, можно восстановить функцию Вигнера, зная лишь оптическую томограмму $w(x, \theta)$ для любого $\theta \in [0, \pi]$ [14, 15]. В этом случае функция Вигнера выражается по формуле

$$W(q,p) = \frac{1}{(2\pi)^2} \int_0^\pi d\theta \int_{-\infty}^{+\infty} |t| \, dt \int_{-\infty}^{+\infty} w(x,\theta) \exp it(x-q\cos\theta - p\sin\theta) \, dx.$$

Однако реально невозможно измерить оптическую томограмму (квадратурное распределение) $w(x, \theta)$ для любых значений фазы θ . Возможно лишь провести гомодинное детектирование для различных, но фиксированных значений фазы θ . На практике, когда такой подход реализуется, получается ансамбль распределений { $w(x, \theta_1), w(x, \theta_2), \ldots, w(x, \theta_N)$ }, который с некоторой погрешностью можно считать за истинный непрерывный ансамбль. Затем по этому ансамблю численно с помощью обратного преобразования Радона восстанавливается функция Вигнера исследуемого состояния.

В эксперименте фазу θ изменяют, меняя разность хода поступающих на светоделитель лучей. Удобно выбирать значения фаз эквидистантными $\theta_n = \pi(n-1)/N$. Поэтому для осуществления обратного преобразования Радона необходимо, чтобы *n* пробегало значения от 1 до *N*. Ясно, что точность вычислений увеличивается с ростом *N*, т. к. численное интегрирование представляет собой суммирование с шагом $h \propto N^{-1}$. Однако зачастую проведение экспериментов со значениями $N \ge 10$ бывает затруднительным.

Вместе с этим количество фаз N еще и качественно влияет на результат. В работе [16] было показано, что для точной реконструкции состояния в оптической гомодинной томографии размерность матрицы плотности в представлении Фока должна быть равна количеству фаз θ_n , для которых было произведено гомодинное детектирование. Также был получен простой способ оценки ошибок, если фактическая размерность матрицы плотности больше, чем число фаз, используемых в эксперименте.

Еще один метод реконструкции волновой функции состояния был дан в [17]. Он основан на интегральных представлениях коэффициентов в разложении волновой функции. Развивая идею, высказанную авторами, мы предлагаем следующий метод.

Пусть произведен эксперимент гомодинного детектирования некого состояния. На выходе эксперимента для фиксированного значения фазы θ мы имеем относительно большой (~ 10⁵) набор точек x_j — измеренных квадратурных компонент, по которому строится гистограмма. Эта гистограмма определяет распределение $w(x, \theta)$. Предположим, что чистое состояние

$$\hat{\rho} = |\psi\rangle\langle\psi|,$$

подаваемое на гомодинный детектор, представимо конечной суммой фоковских состояний, т. е. волновая функция может быть представлена в виде

$$|\psi\rangle = \sum_{n=0}^{N} c_n |n\rangle, \tag{4}$$

где

$$\langle x|n\rangle = \frac{1}{\pi^{1/4}\sqrt{2^n n!}} H_n(x) e^{-x^2/2}.$$
 (5)

Фоковские состояния образуют ортонормированный базис

$$\langle n|m\rangle = \delta_{nm},$$

поэтому коэффициенты c_n удовлетворяют

$$\sum_{n=0}^{N} |c_n|^2 = 1.$$

Обозначая $\langle x|n\rangle = \psi_n(x)$ и подставляя разложение (4) в равенство (2), мы получаем оптическую томограмму суперпозиции фоковских состояний [4]

$$w(x,\theta) = \left| \hat{F}_{\cos\theta,\sin\theta} \left[\psi \right] \right|^{2} = \left| \sum_{n=0}^{N} c_{n}\psi_{n}(x)e^{-in\theta} \right|^{2} =$$

$$= \sum_{n,m\geq 0}^{N} \operatorname{Re}(c_{n}c_{m}^{*}e^{i\theta(m-n)})\psi_{n}(x)\psi_{m}(x) =$$

$$= \sum_{n=0}^{N} |c_{n}|^{2}\psi_{n}^{2}(x) + 2\sum_{0\leq m< l\leq N} \operatorname{Re}(c_{m}c_{l}^{*}e^{i\theta(l-m)})\psi_{m}(x)\psi_{l}(x) =$$

$$= \sum_{n,m\geq 0}^{N} c_{n}c_{m}^{*}e^{i\theta(m-n)}\psi_{n}(x)\psi_{m}(x) \quad (6)$$

или через амплитуду и фазу коэффициентов $c_n = |c_n|e^{i\varphi_n}$:

$$w(x,\theta) = \sum_{0 \le n,m \le N} |c_n| |c_m| \cos\left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \psi_n(x) \psi_m(x).$$
(7)

Произведение волновых функций фоковских состояний $\psi_n(x)\psi_m(x)$ раскладывается в сумму [17]

$$\psi_n(x)\psi_m(x) = 2^{1/4} \sum_{k=0}^{n+m} \beta_k^{n,m} \psi_k(\sqrt{2}x), \tag{8}$$

где коэффициенты $\beta_k^{n,m}$ не равны нулю, только если числа n+m и k одной четности, при этом для незануляющихся коэффициентов

$$\beta_k^{n,m} = \left(\frac{2}{\pi}\right)^{1/4} \sqrt{\frac{n!m!}{k!}} 2^{-2q-(k+1)/2} (-1)^q \sum_{j=0}^{\min(n,m,q)} \frac{(-4)^j (n+m-2j)!}{j!(n-j)!(m-j)!(q-j)!},$$

где q = (n + m - k)/2. В таблице представлены коэффициенты $\beta_k^{n,m}$ для $1 \leq n \leq 2, 1 \leq m \leq 5$, определенные численными методами по формуле

$$\beta_k^{n,m} = 2^{1/4} \int_{-\infty}^{+\infty} \psi_n(x) \psi_m(x) \psi_k(\sqrt{2}x) dx,$$
(9)

следующей напрямую из (8). Отсюда следует, что (7) можно переписать так:

$$w(x,\theta) = 2^{1/4} \sum_{0 \le n,m \le N} \sum_{k=0}^{n+m} |c_n| |c_m| \cos\left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_k^{n,m} \psi_k(\sqrt{2}x).$$
(10)

Поскольку $\psi_k(\sqrt{2}x)$ образуют ортогональный базис в $\mathscr{L}^2(\mathbb{R})$, равенство (10) представляет из себя разложение $w(x,\theta)$ в ряд Фурье, а коэффициенты этого ряда находятся из условия

$$\sum_{0 \le n, m \le N} |c_n| |c_m| \cos\left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_k^{n,m} =$$

$$= 2^{1/4} \left(w(x,\theta), \psi_k(\sqrt{2}x) \right).$$
 (11)

Скалярное произведение в правой части (11) определено в $\mathscr{L}^2(\mathbb{R}),$ т. е.

$$\left(w(x,\theta),\psi_k(\sqrt{2}x)\right) = \int_{-\infty}^{+\infty} w(x,\theta)\psi_k(\sqrt{2}x)dx$$

Индекс k в (11) пробегает 2N + 1 значений: $0 \leq k \leq 2N$. Тем самым для нахождения коэффициентов c_n разложения (4) мы имеем систему из 2N + 1 уравнений, повторяющих (11) для разных значений k:

$$\sum_{0 \leq n,m \leq N} |c_n| |c_m| \cos \left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_{2N}^{n,m} = 2^{1/4} \left(w(x,\theta), \psi_{2N}(\sqrt{2}x)\right);$$

$$\sum_{0 \leq n,m \leq N} |c_n| |c_m| \cos \left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_{2N-1}^{n,m} = 2^{1/4} \left(w(x,\theta), \psi_{2N-1}(\sqrt{2}x)\right);$$

$$\sum_{0 \leq n,m \leq N} |c_n| |c_m| \cos \left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_k^{n,m} = 2^{1/4} \left(w(x,\theta), \psi_k(\sqrt{2}x)\right);$$

$$\sum_{0 \leq n,m \leq N} |c_n| |c_m| \cos \left(\theta(m-n) + (\varphi_n - \varphi_m)\right) \beta_0^{n,m} = 2^{1/4} \left(w(x,\theta), \psi_0(\sqrt{2}x)\right).$$
(12)

Система уравнений (12), вообще говоря, содержит 2N + 2 неизвестных $(\{c_k\}_{k=0}^N \text{ и } \{\varphi_k\}_{k=0}^N)$ и 2N + 1 уравнений, однако она не является недоопределенной. Дело в том, что искомая волновая функция $\psi(x)$ в любом случае может быть определена с точностью до постоянной фазы. По этой причине мы фиксируем (зануляем) фазу, например, коэффициента c_N , а все остальные фазы считаем относительно фазы $\varphi_N = 0$. После этого предположения число неизвестных системы (12) становится равным 2N + 1.

На первый взгляд, решение системы уравнений (12) представляется очень трудным процессом, однако есть один момент, заметно упрощающий ее решение. Суть в следующем: коэффиценты $\beta_k^{n,m} = 0$ при n + m < k. Следовательно, первые уравнения перепишутся заметно проще:

$$\begin{cases} c_N^2 \beta_{2N}^{N,N} = 2^{1/4} \left(w(x,\theta), \psi_{2N}(\sqrt{2}x) \right); \\ 2c_N c_{N-1} \cos \left(\theta - \varphi_{N-1} \right) \beta_{2N-1}^{N,N-1} = 2^{1/4} \left(w(x,\theta), \psi_{2N-1}(\sqrt{2}x) \right); \\ \dots \dots \dots \dots \dots \end{cases}$$

Отсюда видно, что c_N находится из первого уравнения, а c_{N-1} выражается через c_N и т. д. Таким образом, данная методика позволяет определить Таблица коэффициентов $\beta_k^{n,m}$, вычисленных по (9). Верхняя таблица содержит коэффициенты $\beta_k^{1,m}$, т. е. при n = 1, нижняя таблица — при n = 2 [The table contains the coefficients $\beta_k^{n,m}$ calculated by the Eq. (9). The upper part of the table contains the coefficients $\beta_k^{1,m}$; The lower part of the table contains the coefficients $\beta_k^{2,m}$]

n = 1	m = 1	m = 2	m = 3	m = 4	m = 5
k = 1	0	0.1579	0	-0.2051	0
k = 2	0.4466	0	0	0	-0.1528
k = 3	0	0.3868	0	-0.1116	0
k = 4	0	0	0.3158	0	-0.1765
k = 5	0	0	0	0.2496	0
k = 6	0	0	0	0	0.1934
n=2	m = 1	m = 2	m = 3	m = 4	m = 5
k = 1	0.1579	0	0.0967	0	-0.1621
k = 2	0	0.2233	0	-0.0483	0
k = 3	0.3867	0	0.1579	0	-0.1324
k = 4	0	0.3867	0	-0.0558	0
k = 5	0	0	0.3531	0	-0.0395
k = 6	0	0	0	0.3058	0
k = 7	0	0	0	0	0.2558

состояние $\psi(x)$ в представлении (4), т. е. в виде суперпозиции первых N фоковских состояний. Отметим, что исходный метод [17] решает данную задачу при N = 2.

Перейдем к следующему методу реконструкции волновой функции, который является развитием метода, представленного в [18]. Вводя коэффициент

$$\alpha_n = \frac{1}{\sqrt[4]{\pi}\sqrt{2^n n!}},$$

перепишем равенство (6), используя (5):

$$w(x,\theta) = \sum_{n=0}^{N} \alpha_n^2 |c_n|^2 H_n^2(x) e^{-x^2} + 2 \sum_{0 \le m < l \le N} \alpha_m \alpha_l \operatorname{Re} \left(c_m c_l^* e^{i\theta(l-m)} \right) H_m(x) H_l(x) e^{-x^2}.$$

Домножим обе части этого равенства на e^{x^2} и получим

$$e^{x^{2}}w(x,\theta) = \sum_{n=0}^{N} \alpha_{n}^{2} |c_{n}|^{2} H_{n}^{2}(x) + 2 \sum_{0 \leq m < l \leq N} \alpha_{m} \alpha_{l} \operatorname{Re} \left(c_{m} c_{l}^{*} e^{i\theta(l-m)} \right) H_{m}(x) H_{l}(x).$$

В этом равенстве справа стоит многочлен степени 2N, его коэффициенты

можно определить, дифференцируя этот многочлен пошагово:

$$\frac{d^{2N}}{dx^{2N}} \left(e^{x^2} w(x,\theta) \right) = \alpha_N^2 (2N)! 2^{2N} |c_N|^2;$$

$$\frac{d^{2N-1}}{dx^{2N-1}} \left(e^{x^2} w(x,\theta) \right) = \alpha_N^2 (2N)! 2^{2N} |c_N|^2 x + 2\alpha_N^2 N (N-1) 2^{N-2} 2^N (2N-1)! |c_N|^2 + 2^N 2^{N-1} (2N-1)! \alpha_N \alpha_{N-1} \operatorname{Re} \left(c_N c_{N-1}^* e^{i\theta} \right);$$

$$\dots$$

$$e^{x^2} w(x,\theta) = \sum_{\substack{n=0\\n=0}}^N \alpha_n^2 |c_n|^2 H_n^2(x) + 2\sum_{\substack{n=0\\n=0\\n=0}}^N \alpha_n \alpha_l \operatorname{Re} \left(c_m c_l^* e^{i\theta(l-m)} \right) H_m(x) H_l(x)$$

Система содержит2N+1уравнений
и2N+2неизвестных, доопределим эту систему условием нормировки волновой функции

$$\sum_{n=0}^{N} |c_n|^2 = 1.$$

Тогда количество неизвестных и уравнений совпадает и равно 2N+2. Решение системы дает коэффициенты c_n в разложении (4).

3. Заключение. В данной статье развиты уже существующие методы реконструкции чистого квантового состояния по неполной информации о его квантовой томограмме. Состояние описывается волновой функцией, которая в рамках данной работы аппроксимируется суммой из N фоковских состояний. Отметим, что по сравнению с начальными методами, где N ограничено, в данной работе это число произвольно. С ростом количества слагаемых данной суммы в силу сходимости можно добиться сколь угодно большой точности приближений волновой функции. Также метод, развитый в данной работе, имеет преимущество перед обратным преобразованием Радона, так как последнее осуществимо только если известны квадратурные распределения $w(x, \theta)$ на сетке θ_n , покрывающей отрезок $[0; \pi]$, тогда как метод, предложенный в работе, требует, чтобы было известно квадратурное распределение лишь для одного значения θ . Это преимущество существенно при проведении экспериментов гомодинного детектирования.

Отметим, что на практике всегда может быть известна лишь неполная информация о томограммме, поскольку томограмма является экспериментально наблюдаемой величиной, и результат эксперимента представляет собой набор значений томограммы в разных точках. Этот факт обуславливает актуальность задачи, рассмотренной в данной работе.

ORCID

Андрей Игоревич Днестрян: http://orcid.org/0000-0002-9381-2133

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Vogel K., Risken H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase // Phys. Rev. A, 1989. vol. 40, no. 5. pp. 2847– 2855. doi: 10.1103/physreva.40.2847.
- Smithey D. T., Beck M., Raymer M. G., Faridani A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum // *Phys. Rev. Lett.*, 1993. vol. 70, no. 9. pp. 1244–1247. doi:10.1103/physrevlett.70.1244.
- Mancini S., Man'ko V. I., Tombesi P. Symplectic tomography as classical approach to quantum systems // Phys. Lett. A, 1996. vol. 213, no. 1–2. pp. 1–6. doi: 10.1016/ 0375-9601(96)00107-7.
- Амосов Г. Г., Днестрян А. И. О спектре семейства интегральных операторов, определяющих квантовую томограмму // Труды МФТИ, 2011. Т. 3, № 1. С. 5–9.
- 5. Schleich W. P. Quantum Optics in Phase Space. Berlin: Verlag, 2001, xx+695 pp. doi: 10. 1002/3527602976.
- Pauli W. Die allgemeinen Prinzipien der Wellenmechanik // Handbuch Physik, 1933. vol. 24, Tl. 1. pp. 83–272; Pauli W. Die allgemeinen Prinzipien der Wellenmechanik / Die allgemeinen Prinzipien der Wellenmechanik / Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann; ed. Professor Dr. Norbert Straumann. Berlin: Springer, 1990. pp. 21–192. doi: 10.1007/978-3-642-61287-9_2.
- 7. Reichenbach H. *Philosophic Foundations of Quantum Mechanics*. Berkeley and Los Angeles: University of California Press, 1944. x+182 pp.
- Vogt A. Position and Momentum Distributions do not Determine the Quantum Mechanical State / Mathematical Foundations of Quantum Theory. New York: Academic Press, 1978. pp. 365–372. doi: 10.1016/b978-0-12-473250-6.50024-8.
- Freyberger M., Bardroff P. J., Leichle C., Schrade G., Schleich W. P. The art of measuring quantum states // *Physics World*, 1997. vol. 10, no. 11. pp. 41–46. doi: 10.1088/2058-7058/ 10/11/31.
- Schleich W. P., Raymer M. G. Special issue on quantum state preparation and measurement // J. Mod. Opt., 1997. no. 11–12. pp. 2021–2022. doi: 10.1080/09500349708231863.
- Leibfried D., Pfau T., Monroe C. Shadows and Mirrors: Reconstructing Quantum States of Atom Motion // Physics Today, 1998. vol. 51, no. 4. pp. 22–28. doi: 10.1063/1.882256.
- Welsch D.-G., Vogel W., Opatrný T. II Homodyne Detection and Quantum-State Reconstruction / Progress in Optics. vol. 39; ed. E. Wolf. Amsterdam: North-Holland, 1999. pp. 63–211. doi: 10.1016/S0079-6638(08)70389-5.
- 13. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten // Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl., 1917. vol. 69. pp. 262-277, Available at http://people.csail.mit.edu/bkph/courses/papers/Exact_ Conebeam/Radon_Deutsch_1917.pdf (February 24, 2016); Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten / Proceedings of Symposia in Applied Mathematics. vol. 27; ed. Lawrence A. Shepp. Providence: Amer. Math. Soc., 1983, pp. 71-86. doi: 10.1090/psapm/027/692055.
- D'Ariano G. M., Mancini S., Man'ko V. I., Tombesi P. Reconstructing the density operator by using generalized field quadratures // Quantum Semiclass. Opt., 1996. vol. 8, no. 5. pp. 1017–1027. doi: 10.1088/1355-5111/8/5/007.
- Leonhardt U., Paul H., D'Ariano G. M. Tomographic reconstruction of the density matrix via pattern functions // Phys. Rev. A, 1995. vol. 52, no. 6. pp. 4899-4907. doi: 10.1103/ physreva.52.4899.
- Leonhardt U., Munroe M. Number of phases required to determine a quantum state in optical homodyne tomography // Phys. Rev. A, 1996. vol. 54, no. 4. pp. 3682-3684. doi: 10. 1103/physreva.54.3682.
- Orłowski A., Paul H. Phase retrieval in quantum mechanics // Phys. Rev. A, 1994. vol. 50, no. 2. pp. R921–R924. doi: 10.1103/physreva.50.r921.

 Амосов Г. Г., Днестрян А. И. О восстановлении чистого состояния по неполной информации о его оптической томограмме // Изв. вузов. Матем., 2013. № 3. С. 62–67.

Поступила в редакцию 21/XI/2015; в окончательном варианте — 24/II/2016; принята в печать — 26/II/2016.

Vestn. Samar. Gos. Techn. Un-ta. Ser. Fiz.-mat. nauki [J. Samara State Tech. Univ., Ser. Phys. & Math. Sci.], 2016, vol. 20, no. 1, pp. 33–42

ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi.org/10.14498/vsgtu1462

MSC: 81P50

ON THE DETERMINATION OF PURE QUANTUM STATES BY THE HOMODYNE DETECTION

A. I. Dnestryan

Moscow Institute of Physics and Technology (State University), 9, Inststitutskii per., Dolgoprudny, Moscow region, 141700, Russian Federation.

Abstract

The methods of reconstruction of the wave function of a pure state of a quantum system by quadrature distribution measured experimentally by the homodyne detection are considered. Such distribution is called optical tomogram of a state and containes one parameter θ . Wave function of a state is determined exactly by its optical tomogram if last one is known for all θ . But one can obtain optical tomogram from experiment of homodyne detection only for discrete number of θ . We introduce some approximate methods of reconstructing the state by such information about its optical tomogram.

Keywords: quantum tomography, quantum state, density operator, wave function.

ORCID

Andrey I. Dnestryan: http://orcid.org/0000-0002-9381-2133

REFERENCES

- Vogel K., Risken H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, *Phys. Rev. A*, 1989, vol. 40, no. 5, pp. 2847– 2855. doi:10.1103/physreva.40.2847.
- Smithey D. T., Beck M., Raymer M. G., Faridani A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, *Phys. Rev. Lett.*, 1993, vol. 70, no. 9, pp. 1244–1247. doi: 10.1103/physrevlett.70.1244.

(c) 2016 Samara State Technical University.

Please cite this article in press as:

Dnestryan A. I. On the determination of pure quantum states by the homodyne detection, *Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki* [J. Samara State Tech. Univ., Ser. Phys. & Math. Sci.], 2016, vol. 20, no. 1, pp. 33–42. doi: 10.14498/vsgtu1462. (In Russian)

Author Details:

Andrey I. Dnestryan (dnestor@inbox.ru), Postgraduate Student, Dept. of Higher Mathematics.

- Mancini S., Man'ko V. I., Tombesi P. Symplectic tomography as classical approach to quantum systems, *Phys. Lett. A*, 1996, vol. 213, no. 1–2, pp. 1–6. doi:10.1016/ 0375-9601(96)00107-7.
- 4. Amosov G. G., Dnestryan A. I. On the spectrum of a family of integral operators defining the quantum tomogram, *Trudy MFTI*, 2011, vol. 3, no. 1, pp. 5–9 (In Russian).
- Schleich W. P. Quantum Optics in Phase Space. Berlin, Verlag, 2001, xx+695 pp. doi: 10. 1002/3527602976.
- Pauli W. Die allgemeinen Prinzipien der Wellenmechanik, Handbuch Physik, 1933, vol. 24, Tl. 1, pp. 83–272; Pauli W. Die allgemeinen Prinzipien der Wellenmechanik, Die allgemeinen Prinzipien der Wellenmechanik, Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann; ed. Professor Dr. Norbert Straumann. Berlin, Springer, 1990. pp. 21–192. doi: 10.1007/978-3-642-61287-9_2.
- 7. Reichenbach H. *Philosophic Foundations of Quantum Mechanics*. Berkeley and Los Angeles, University of California Press, 1944, x+182 pp.
- Vogt A. Position and Momentum Distributions do not Determine the Quantum Mechanical State, Mathematical Foundations of Quantum Theory. New York, Academic Press, 1978, pp. 365–372. doi: 10.1016/b978-0-12-473250-6.50024-8.
- Freyberger M., Bardroff P. J., Leichle C., Schrade G., Schleich W. P. The art of measuring quantum states, *Physics World*, 1997, vol. 10, no. 11, pp. 41–46. doi: 10.1088/2058-7058/ 10/11/31.
- Schleich W. P., Raymer M. G. Special issue on quantum state preparation and measurement, J. Mod. Opt., 1997, no. 11–12, pp. 2021–2022. doi: 10.1080/09500349708231863.
- 11. Leibfried D., Pfau T., Monroe C. Shadows and Mirrors: Reconstructing Quantum States of Atom Motion, *Physics Today*, 1998, vol. 51, no. 4, pp. 22–28. doi: 10.1063/1.882256.
- Welsch D.-G., Vogel W., Opatrný T. II Homodyne Detection and Quantum-State Reconstruction, *Progress in Optics*, vol. 39; ed. E. Wolf. Amsterdam, North-Holland, 1999, pp. 63–211. doi: 10.1016/S0079-6638(08)70389-5.
- 13. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl., 1917, vol. 69, pp. 262-277, Available at http://people.csail.mit.edu/bkph/courses/papers/Exact_ Conebeam/Radon_Deutsch_1917.pdf (February 24, 2016); Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Proceedings of Symposia in Applied Mathematics. vol. 27; ed. Lawrence A. Shepp. Providence, Amer. Math. Soc., 1983, pp. 71-86. doi: 10.1090/psapm/027/692055.
- D'Ariano G. M., Mancini S., Man'ko V. I., Tombesi P. Reconstructing the density operator by using generalized field quadratures, *Quantum Semiclass. Opt.*, 1996, vol. 8, no. 5, pp. 1017–1027. doi: 10.1088/1355-5111/8/5/007.
- Leonhardt U., Paul H., D'Ariano G. M. Tomographic reconstruction of the density matrix via pattern functions, *Phys. Rev. A*, 1995, vol.52, no.6, pp. 4899–4907. doi:10.1103/ physreva.52.4899.
- Leonhardt U., Munroe M. Number of phases required to determine a quantum state in optical homodyne tomography, *Phys. Rev. A*, 1996, vol. 54, no. 4, pp. 3682–3684. doi: 10. 1103/physreva.54.3682.
- 17. Orłowski A., Paul H. Phase retrieval in quantum mechanics, *Phys. Rev. A*, 1994, vol. 50, no. 2, pp. R921–R924. doi: 10.1103/physreva.50.r921.
- Amosov G. G., Dnestryan A. I. Reconstruction of a pure state from incomplete information on its optical tomogram, *Russian Math. (Iz. VUZ)*, 2013, vol. 57, no. 3, pp. 51–55. doi: 10. 3103/S1066369X13030079.

Received 21/XI/2015; received in revised form 24/II/2016; accepted 26/II/2016.