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Abstract

The exact stationary solution of the boundary-value problem that describes
the convective motion of an incompressible viscous fluid in the two-dimen-
sional layer with the square heating of a free surface in Stokes’s approach is
found. The linearization of the Oberbeck—Boussinesq equations allows one
to describe the flow of fluid in extreme points of pressure and temperature.
The condition under which the counter-current flows (two counter flows) in
the fluid can be observed, is introduced. If the stagnant point in the fluid
exists, six non-closed whirlwinds can be observed.

Keywords: exact solution, Newton—Rikhmann law, thermal convection, Ober-
beck—Boussinesq equations, counter-current flow.

Introduction. The research of the convective flows of an incompressible viscous
fluid is caused by a considerable drop of temperature in a wide range of processes
connected with the deformation of dissipative environments. The convection in-
duced by the non-uniform heating of incompressible and compressed substances
is the most widespread kind of gas dynamics and fluid flows in the Universe.
The convective motion of the fluid heated from below in a two-dimensional hor-
izontal layer is one of the most popular subjects of studying. The first example
of self-organization of the nonlinear phenomena is Rayleigh-Benard convection.
The choice of the two-dimensional layer as the abstract mathematical object is
mainly connected with the fact that this geometry can be quite easily realized
in an experiment and provides certain conveniences for taking thermal and op-
tical measurements. The two-dimensional horizontal layer is a matter of great
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importance in connection with the theory of convective stability applications in
meteorology, geophysics and astrophysics [1,2].

The first exact solution of the natural convection for a two-dimensional layer
of fluid with a constant gradient of the temperature on the borders of the layer is
described in the article [3], where two cases of boundary conditions for the velocity
are considered. A brief survey of the articles and reviews, in which the possibilities
of finding exact solutions to free convection equations and the research of stability
of these solutions were studied [4-10], is given in the papers [1,2] and the reference
lists.

In the work [5], a method for the description of heat exchange with the lo-
calized parabolic heating of the border is offered. This method is offered in the
context of the exact solutions class in which velocities linearly depend on horizon-
tal coordinates, and fields of the pressure and temperature are distributed under
the square law [2, 6, 11]. In this case, finding the exact solution is reduced to
solving the nonlinear system of one-dimensional evolution heat conduction equa-
tions like heat conductivity, and stationary equations of the gradient type. When
finding the exact solutions, which describe the convective fluid flow [1-10], an
ideal heat transfer on the borders is assumed. The aim of the present work is
to investigate the motion of a viscous incompressible fluid with heat exchange on
the upper boundary.

1. Mathematical model and main equations. The plane layer stationary con-

vection of a viscous incompressible fluid (Fig. 1) can be presented by the system
of Oberbeck-Boussinesq equations:

oV, oV, OP 9%V, 0%V,
an%;”azav— ‘a%P”<axz + 55 )
Veeo + V.= = ——— + VAV, + gBT,
ox 0z 0z (1)
Ve [ OVe
ox 0z _2 ’ )
oT oT o°T  0°T
VetV = X5 + 52):

In the system of equations (1), the following designations are introduced: V,,
V., are the velocities that are parallel to x axis and z axis, respectively; P is
the pressure deviation from hydrostatic pressure divided by the constant average
fluid density p; T is a deviation from the average temperature; v, x, 8 are the
dissipative coefficients of the kinematic viscosity, heat diffusivity and thermal

z

g
I x

Figure 1. Schematic view of the model problem
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expansion of fluid, respectively; g is the acceleration of gravity;

0?2 0?
922 T 9.2

is the two-dimensional Laplace operator written down in the Cartesian orthogonal
coordinate system.
We search the stationary solution of the system (1) in the form of [2,6, 11]:

Ve =zu(z), V,=w(z),
2

X
T = To(z) =+ TH(Z)?,

2
P:PO(Z)+P11(Z)%' @
Note that if the temperature T is formally substituted with the concentration
function C in the system (1) the solutions (2) are also true for the concentration
convection. B is the coefficient of concentration fluid extension, in this case.

We substitute the class of solutions (2) in the system of equations (1) and re-
ceive the following nonlinear system defining unknown functions u, w, Ty, T11, Po:

l/d2—u—u2+wd—u+P d—w——u
022 0z g, = 7
dPy d2w dw
Va3 + gﬁ 0— ’
0z 8 82 ) (3)
dP11 dTO d TO
o 95T, W X( nt+ ),
dly  d*Ty
2UT11 + UJW =X sz .

We reduce the system of ordinary ninth-order differential equations (3) to the
dimensionless form. We introduce the following characteristic geometric scale val-
ues as basis [2,6]: h is the transverse characteristic size, [ is the axial characteristic

size. The units of measurements are: O is for the temperature, V, and V,, are for

the velocities 22 (?Qh and gﬁy@l respectively. Thus, the accounting of geometrical

anisotropy of the task results in the formation of a flow and availability of two
scales for the velocities, since

gBORt  gBOR
5 =0 ;

vl vl

the pressure for an incompressible fluid divided by the constant density is gB0h;
d=nh/l

We write down the system (3) in the dimensionless form:

dP11 dw 2 dT11 1 d2T11
dz g 2u, Gro ( ulil +w dz ) Pr dz?
dTO 1 d T(] dw dP[) d w
or 2wl = (52 Gro?tl = S0 200 g (4
tOwTL Pr( +d2>’ dz 2dz: d2+0’ )
du d“u
2 _ 2
6ro?(u? + 052 ) = —Pu+ 6",
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Both dimensionless and dimensional (3) variables and functions in the system
(4) are designated by the same symbols. Only dimensionless variables are used
further on. In this work

_ gBew®

212

Gr

is the modified Grashof number.

We find the solution of the system (4) in the extremum points of the tem-
perature. For this purpose we linearize the equations (3). The linearization of
the nonlinear system (4) is possible when Gré? < 1. In this case, the received
exact solutions are fair with any Grashof number they satisfy the assessed value
Gr < 1/6% where Gr € (0;1/62). It should be noted that with an isotropic ge-
ometry (0 = 1), we receive the classical criterion of reducing the equations (1) to
Stokes equation [11].

The linearized system (3) in the dimensionless form is written as:

d2T11 N dP11 . d2u —p de) - _u
dZ2 _2 ; dz — 411, d2’2 — 111, de - ) (5)
= —§°T — =Ty +0"—.
dz? L o+t dz?

The equations in the system (5) are written out in the order, the integration of
equations is effected.

2. Boundary conditions and exact solutions. The system of the linear differ-
ential equations (5) has the exact polynomial solution:

2
z
Ty =Ciz+Cy, Ppp= 015 + Coz + Cs,
Z4 Z3 22 .
U2015+02§+03?+C4Z+C5,
25 24 2'3 22
w = —015—021—035—045—0524‘06, (6)
23 22
Ty = —01525 — 02(525 + Crz + Ck,

P——2052i4—2052'13 C; — §%C 2 Cs — §%C C
0= T 2 3!+(7 3)2+(8 4)Z+ 9.

We formulate boundary conditions for finding the constants of integration—the
coefficients of polynomials (6). The heat source is introduced on the lower solid
bound:

)
T:A+Bm2:§(1—az2)

with dimensionless variables, it is written as:
1
T=-(1-2%.
S(1— %)

The boundary conditions for defining the constants of integration of dimensionless
solutions (5) can be written as:

1
z:—lzw:u:O, TH:—I, TO:i; (7)
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dT dar
z=0:w=0 Py=0 P=1 —2=_-BiT,, —= =—-BiTy. (8
dz dz
The no-slip condition is set on the lower bound (z = —1), and the heat exchange

under Newton-Rikhman law is set on the free plane layer bound [12]. Bi is Biot
number [12]. It is obvious that the integration constants defining the structure of
the exact solution (6) by boundary conditions (7) and (8) can be as follows:

C3=Cs=0, Cy=1.

Bi 1 2(4Bi+15) 3Bi+10
01:.7’ 02:_. ) 4= Si/os 1 1y 5= Siios o a0
Bi+1 Bi+1 5!(Bi + 1) 5!(Bi + 1)
o — 62Bi(Bi +3) — 3Bi(Bi + 1) O — 3(Bi+ 1) —d%(Bi+3)
T 31(Bi + 1)2 T 31(Bi + 1)2

Let’s substitute (6) with the boundary conditions (7) and (8) into the equa-
tions (2), then the expressions of hydrodynamic fields are written in the following
form:

Vo ( Bi z? 23 N 2(4Bi+15)z ~ 3Bi+10 )
* =P\ QBi+1) BI(Bit+l) = 5Bi+l) | 5(Bit+1)/)
v __( Bi 2° N 4 (4Bi+15)2° (3Bi+10)z>
“ \BI(Bi+1) 4!(Bi+1) 5!/(Bi+1) 5!(Bi+1) /’
Bi 6223 6222 6%Bi (Bi +3) — 3Bi (Bi +1)
=—— + = + . z
3!(Bi+1)  2/(Bi+1) 3!(Bi+1)?
3(Bi+1) —6%(Bi+3) 2%(Biz—1)
3!(Bi +1)2 2!(Bi+1) ’

2Bi 0224 26223 2 (6%B1i(Bi+3) — 3Bi (Bi+1)) 22

P:_4!(Bi+1) T3 41 (Bi 4+1)?
3(Bi+1)—6%(Bi+3) 2(4Bi+15)452
( 3! (Bi+1)2 B 5!(Bi+1) )Z+
+1+< Bi 22 I )1:2
2(Bi+1) Bi+1/ 2

3. Analysis of the plane convective motion of the fluid. Since the solutions
(6) of the system of equations (5)are polynomial, the analysis of flows can always
be converted to the solution of the generalized Raus—Gurvits problem. We con-
sider the characteristic properties of the velocities depending on the value of Biot
number. Considering the boundary conditions (6) and (7), we find out that the
variety of the function’s values can be presented in the following form:

Bi 23 (Bi +4)22
41(Bi+1)  4!(Bi+1)

u=(4 D) =G+
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(Bi+4)z  3Bi+10
41(Bi+1)  5!(Bi+1)/°

The function f is a cubic polynomial with the coefficients depending on num-

ber Bi under the linear-fractional law. We investigate the spectral properties of a

polynom f on the domain of the definition. It is known that the function contains

an odd number of zero values (the quantity of stagnant points of the flow) when
an inequality is being solved:

f(=1)f(0) <0

and an even number when the opposite inequality is being solved. Thus, the
function f has the only one solution in the interval with

Bi € (—o0;—10/3) U (=5/2; —1) U (—1; +00).

When Bi = 0, the assumed cubic polynomial degenerates into a linear func-
tion. Two solutions are possible in the one case with Bi € (—10/3; —5/2). Let’s

consider graphs of the stream function and vorticity when Bi = —2.7 (Fig. 2) and
Bi = —2 (Fig. 3). The expressions are assumed for the stream function of the
velocity:

Bi 22 (2Bi+5)z  3Bi +10)

¥ = —wa(z o+ 1)2<_5!(Bi 1) TSI 5lEE )

and vorticity:

Qy:x< Bi.ZS - %2 +2(4Bi'+15)>
3!(Bi+1) 2/(Bi+1) 5!(Bi+1)

Investigating the localization of the polynom f roots with the values of num-
bers Bi = —10/3 and Bi = —5/2, we find out that the function takes the zero

-0 L L L L L L L L L L L L
-1.0 -0.5 00

x x

Figure 2. Isolines of the current function (left) and the function of vorticity (right)
with Bi = —2.7
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Figure 3. Isolines of the current function (left) and the function of vorticity (right) with Bi = —2

values in the intervals of definition z = 0, z = —(1 + v/21)/10 and z = —1,
z = (1 —/6)/5 respectively.
Let’s note that for the velocity there is a point different from z = —1 in

which the velocity does not depend on the values of Biot number. To prove this
statement, we take two Biot numbers not equal among one another and substitute
them in the expression for a gradient u. Subtracting one polynomial function from
another, we receive the equation for the definition of this point within the interval
[—1;0]:

524 4+202% — 222 — 7 =0.

Calculating the roots of this equation, we receive the point in which the ve-
locity does not depend on Biot number, and the value of velocity is:

z =—0.370734, «(—0.370734) = 0.01929.

Now we consider the characteristic properties of the velocity parallel to an
axis of z-coordinates. Its value as well as the value of velocity V,, does not depend
on parameter 0. If we consider the boundary conditions (7) and (8), we find out
that the multiplicity of the function V, values can be presented in the following
form:

Bi 22 (2Bi+5)z  3Bi +10>

w=z(z4+1)%f(2) = 2(z + 1)* (_5!(31 +1) © 5!(Bi+1) B 5!(Bi+1)

The function f is a square polynomial with the coefficients depending on Bi under
the fractional-linear function. The function f has the only one root within the
interval [—1;0] with Bi € (—10/3; —5/2). If Bi = 0, the initial square polynomial
degenerates into a linear function. When an inequality f(—1)f(0) > 0 is being
solved in the interval [—1;0] no roots are found. Analyzing the arrangement of
square polynomial roots f with the values of numbers Bi = —10/3 and Bi = —5/2,
we find out that the function takes these values in the intervals of definition z = 0
and z = —1, respectively.
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Let’s consider the additive components of the temperature. The square addi-
tive component 711 is distributed under the linear law. The variety of the function
Ty values for z € [—1;0] takes negative values with Biot Bi € [—1;0). The re-
ceived T71 solution takes up the constant value when Bi = 0: Tj; = —1. The
additive component is monotonously increasing with Bi € (—oo; —1) U (0; +00),
otherwise it is monotonously decreasing. Function 771 vanishes in the interval of
the definition in the point z = 1/Bi with Bi € [—1;0).

Now let’s consider the properties of the background temperature and pressure.
The background temperature can be presented in the following form:

22" 22
Ty = Bi Cyd 5—02(5 Q—BiC&Zﬂ-Cg.

The existence of an odd number of solutions is equivalent to an inequality being
solved:
Co6?

3!

To(~1)To(0) = Cis(Cs(Bi + 1) - —2-(B1 + 3)) <0.
Due to the boundary conditions (7) and (8), the temperature can be presented in
another form:

Ty = % + 3!((;;3)2(—2'213152@1 +1) + 26%(Bi+1)(Bi +3)—
—3Bi(Bi+1) — 6*(Bi +3)) =
1 (z4+1)
—3" 31(B1 +1)2” (2)

Let’s investigate the function g(z). The function g(z) is a square polynomial
function depending on two parameters: 6 and Bi. The function g(z) takes a zero
value in the interval of the definition when an inequality is being solved:

g(—1)g(0) = (3Bi + 3Bi% + 362 + Bid?)(3Bi + 3Bi% + 662 + 6Bid” + 2Bi2%6?) < 0.
The function g(z) has two solutions when the system of inequalities is being

solved:
D >0,
9(0)g(=1) > 0.

D is the discriminant of a quadratic equation. If the minimum of the function
To is not more than 0.5, the number of zeros of the function T is equal to the
number of zeros.

Further on, additive components of the pressure are analyzed. We provide
isolines of the temperature and pressure when Bi = —2 and § = 1 (Fig. 4) and
when Bi = —0.4 and § = 0.48 (Fig. 5).

It is obvious that the square law change of P;; converts into a linear depen-
dence Pj; = —z when Bi = 0. The function P;; reduces to zero within the
interval [—1;0) in the point z = 2/Bi. Since the square curve turns into a linear
dependence, the function P;; monotonously decreases.

Let’s consider the background pressure function Py(z). The function Py(z)
is a quartic polynomial depending on two parameters: § and Bi. The function
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Figure 4. Isolines of the functions of temperature and pressure with Bi = —2 and § = 1

0.0 FO: 208 b1 0 0.0 F,
f . X

-0.2 A —-02F

Figure 5. Isolines of the function of temperature pressure with Bi = —0.4 and § = 0.48

Py(z) takes one zero value in the interval of the definition z € [—1;0] when the
inequality is being solved:

P(—1)P(0) < 0.

The function of the pressure comes up to the maximum with some values of
parameters 0 and Bi in the considered interval. The existence of the extremum
points in the interval of the definition z € [—1;0] is confirmed by the inequality
solution:

P'(=1)P'(0) < 0.

Thus, the structure of the function for the temperature shows that some locally
hyperbolic level lines exist. In other words, they can not be closed with any Biot
number and § values. The local ellipticity isolines of the pressure can be observed
in a rather wide range of the dimensionless complexes defining the topology of
the fluid flow.

Conclusion. In this paper the convective motion of the two-dimensional flow
of a viscous incompressible fluid under the Newton—Rikhman law on one of the
borders of an infinite fluid layer in Stokes’s approach has been analyzed.

The assessed value of the function that makes the linearization of the Navier-
Stokes equation in the Oberbeck—Boussinesq approach possible has been obtained.
It is shown that the considered system of ordinary differential equations received
within the announced class of exact solutions, exactly describes a fluid flow in ex-
treme points of the temperature and pressure. The values when counter-current
flows in the fluid can be observed, are found. It is shown that depending on sim-
ilarity numbers in fluid, a different number of whirlwinds and the local ellipticity
of pressure isolines can be observed.

575



VlasovaS. S., Prosviryakov E. Yu.

Declaration of Financial and Other Relationships. This work was supported by the Foun-

dation for Assistance to Small Innovative Enterprises in Science and Technology (the UMNIK
program); the agreement no. 8389 GU2/2015. Each author has participated in the article
concept development and in the manuscript writing. The authors are absolutely responsible
for submitting the final manuscript in print. Each author has approved the final version of
manuscript. The authors have not received any fee for the article.

10.

11.

12.

ORCIDs
Svetlana S. Vlasova: http://orcid.org/0000-0002-1458-8760
Evgeny Yu. Prosviryakov: http://orcid.org/0000-0002-2349-7801

REFERENCES

Getling A. V. Formation of spatial structures in Rayleigh—Bénard convection, Sov. Phys.
Usp., 1991, vol. 34, no. 9, pp. 737-776. doi: 10.1070/pul991v034n09abeh002470.

Aristov S. N., Prosviryakov E. Yu. On one class of analytic solutions of the stationary
axisymmetric convection Bénard—Maragoni viscous incompreeible fluid, Vestn. Samar. Gos.
Tekh. Univ., Ser. Fiz. Mat. Nauki |J. Samara State Tech. Univ., Ser. Phys. & Math. Sci.],
2013, no. 3(32), pp. 110-118 (In Russian). doi: 10.14498/vsgtu1205.

Birikh R. V. Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech.
Phys., 1966, vol. 7, no. 3, pp. 43-44. doi: 10.1007/b£00914697.

Andreev V. K., Bekezhanova V. B. Stability of non-isothermal fluids (Review), J. Appl.
Mech. Tech. Phys., 2013, vol. 54, no. 2, pp. 171-184. doi: 10.1134/s0021894413020016.
Aristov S. N., Shvarts K. G. Vikhrevye techeniya advektivnoi prirody vo vrashchayushchem-
sya sloe zhidkosti [Advective Eddy Flows in a Rotating Liquid Layer|. Perm, Perm. Gos.
Univ., 2006 (In Russian).

Aristov S. N., Shvarts K. G. Vikhrevye Techeniya v tonkikh sloyakh zhidkosti [Eddy Flows
in Thin Liquid Layers|. Kirov, Vyat. Gos. Univ, 2011 (In Russian).

Aristov S. N., Shvarts K. G. Convective heat transfer in a locally heated plane incom-
pressible fluid layer, Fluid Dynamics, 2013, vol.48, no.3, pp. 330-335. doi: 10.1134/
s001546281303006x.

Goncharova O. N., Rezanova E. V. Modeling of two-layer fluid flows with evaporation at the
interface in the presence of the anomalous thermocapillary effect, J. Sib. Fed. Univ. Math.
Phys., 2016, vol. 9, no. 1, pp. 48-59. doi: 10.17516/1997-1397-2016-9-1-48-59.

Efimova M. V. On one two-dimensional stationary flow of a binary mixture and viscous
fluid in a plane layer, J. Sib. Fed. Univ. Math. Phys., 2016, vol. 9, no. 1, pp. 30-36. doi: 10.
17516/1997-1397-2016-9-1-30-36.

Goncharova O. N., Kabov O. A., Pukhnachov V. V. Solutions of special type describing
the three dimensional thermocapillary flows with an interface, Int. J. Heat Mass Transfer.,
2012, vol. 55, no. 4, pp. 715-725. doi: 10.1016/j.ijheatmasstransfer.2011.10.038.
Aristov S. N., Prosviryakov E. Yu. A New Class of Exact Solutions for Three Dimensional
Thermal Diffusion Equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286—293.
doi: 10.1134/s0040579516030027.

Gershuni G. Z., Zhukhovitskii E. M. Konvektivnaya Ustoichivost’ Neszhimaemoi Zhidkosti
[Convective Stability of An Incompressible Fluid]. Moscow, Nauka, 1972 (In Russian).

Received 13/111/2016;
received in revised form 25/V/2016;
accepted 09/IX/2016.

o976


http://orcid.org/0000-0002-1458-8760
http://orcid.org/0000-0002-2349-7801
http://dx.doi.org/10.1070/pu1991v034n09abeh002470
http://dx.doi.org/10.14498/vsgtu1205
http://dx.doi.org/10.1007/bf00914697
http://dx.doi.org/10.1134/s0021894413020016
http://dx.doi.org/10.1134/s001546281303006x
http://dx.doi.org/10.1134/s001546281303006x
http://dx.doi.org/10.17516/1997-1397-2016-9-1-48-59
http://dx.doi.org/10.17516/1997-1397-2016-9-1-30-36
http://dx.doi.org/10.17516/1997-1397-2016-9-1-30-36
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.038
http://dx.doi.org/10.1134/s0040579516030027

Two-dimensional convection of an incompressible viscous fluid. . .

BectH. Cawm. roc. texHn. yu-ra. Cep. ®us.-mart. Hayku. 2016, 2016. T. 20, Ne 3. C.567-577

ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi.org/10.14498/vsgtul483

VK 532.51

IIJIOCKASI KOHBEKIIN A BA3KOW HEC2KUMAEMOW
JKUJIKOCTH IIPY 3AJAHHOW TENIJIOOTIAYE
HA CBOBOJIHOI TPAHUIIE

C. C. Baacosa', E. FO. IIpoceupsaxos®

1 Kazanckuii HAI[MOHAJIbHBIU MCCJIeI0OBATEILCKUIT

TexHndeckuit yausepcurer uMm. A. H. Tymnosesa,

Poccus, 420111, Kaszanb, yia. Kapsa Mapkca, 10.
WNucruryr mamunosenenus YpO PAH,

Poccus, 620049, Exarepunoypr, yi. Komcomosbekast, 34.

AmnHorarus

Haiinero TouHOe cTammoHapHOe pereHne KpaeBoit 3aatdn, OMMCHIBAIOIIEe
KOHBEKTUBHOE JIBUKEHHE BI3KOU HECXKUMAEMON >KUJIKOCTH B IIJIOCKOM CJIOE
[P KBaIpATUIHOM HarpeBe cBOOOAHOM mosepxHocTH B mpudbamkenune CToK-
ca. Jluneapusamusi ypasraenuit Obepbeka—ByccrHaecka O3BOJISIET OMUCATH
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