Дифференциальные уравнения и математическая физика

УДК 517.955.2

Корректность задач Дирихле и Пуанкаре в многомерной области для одного класса гиперболических уравнений

С. А. Алдашев

Казахский национальный педагогический университет им. Абая, Казахстан, 480100, Алматы, пр. Достык, 114.

Аннотация

В ранних работах автора изучены задачи Дирихле и Пуанкаре для многомерных гиперболических уравнений, где показана корректность этих задач в цилиндрических областях, существенно зависящая от высоты рассматриваемой цилиндрической области. В данной статье рассматривается многомерная область внутри характеристического конуса, в которой задачи Дирихле и Пуанкаре имеют единственные решения для одного класса гиперболических уравнений.

Ключевые слова: многомерное гиперболическое уравнение, задачи Дирихле и Пуанкаре, многомерная область, корректность, функционально-интегральное уравнение.

Получение: 31 мая 2016 г. / Исправление: 11 апреля 2017 г. / Принятие: 12 июня 2017 г. / Публикация онлайн: 7 июля 2017 г.

Введение. В работе [1] было показано, что одна из фундаментальных задач математической физики — изучение поведения колеблющейся струны — некорректна, когда краевые условия заданы на всей границе области. Как отмечено в работах [2,3], задача Дирихле не является корректной не только для волнового уравнения, но и для общих гиперболических уравнений. В [4] показано, что решение задачи Дирихле существует в прямоугольных областях. В дальнейшем эта задача исследовалась методами функционального анализа [5], применение которых в приложениях затруднено.

Статья

Образец для цитирования

Алдашев С. А. Корректность задач Дирихле и Пуанкаре в многомерной области для одного класса гиперболических уравнений // $Becmn.\ Cam.\ coc.\ mexn.\ yn-ma.\ Cep.\ Физ.-мат.\ науки,\ 2017. Т. 21, № 2. С. 209–220. doi: 10.14498/vsgtu1494.$

Сведения об авторе

Серик Аймурзаевич Алдашев № № http://orcid.org/0000-0002-8223-6900 доктор физико-математических наук, профессор; заведующий кафедрой; каф. фундаментальной и прикладной математики; e-mail: aldash51@mail.ru

В работах [6, 7] получены теоремы единственности решения задачи Дирихле для гиперболических уравнений в цилиндрической области. В работах [8-12] задачи Дирихле и Пуанкаре изучены для многомерных гиперболических уравнений, показано, что корректность этих задач существенно зависит от высоты рассматриваемой цилиндрической области.

Естественно, возникает вопрос: имеются ли другие области, в которых решения исследуемых задач являются корректными?

В данной работе приводится многомерная область внутри характеристического конуса, в которой задачи Дирихле и Пуанкаре однозначно разрешимы для одного класса гиперболических уравнений.

1. Постановка задачи и результат. Пусть D-конечная область евклидова пространства E_{m+1} точек (x_1, \ldots, x_m, t) , ограниченная при t > 0конической поверхностью

$$K: t = \varphi(r), \ \varphi(0) = \varphi(1) = 0, \ \varphi(r) \in C^1([0,1]) \cap C^2((0,1)), \ |\varphi'(r)| < 1, \ \varphi'(r) \neq 0$$

и плоскостью t=0, где r=|x| — длина вектора $x=(x_1,\ldots,x_m)$. Через Sобозначим множество $\{t = 0, 0 < r < 1\}$ точек из E_m .

В области D рассмотрим взаимно сопряженные многомерные гиперболические уравнения

$$Lu \equiv \Delta_x u - u_{tt} + \sum_{i=1}^m a_i(x,t)u_{x_i} + b(x,t)u_t + c(x,t)u = 0,$$
 (1)

$$L^*v \equiv \Delta_x v - v_{tt} - \sum_{i=1}^m a_i v_{x_i} - bv_t + dv = 0,$$
 (1*)

где Δ_x — оператор Лапласа по переменным $x_1,\ldots,x_m,\ m\geqslant 2,\ d(x,t)=c$ — $-\sum_{i=1}^{m} a_{ix_i} - b_t$.

В качестве многомерных задач Дирихле и Пуанкаре для уравнения (1) рассмотрим следующие задачи.

Задача 1. B области D найти решение уравнения (1) из класса $C^1(ar{D})\cap$ $C^{2}(D)$, удовлетворяющее краевым условиям

$$u|_S = \tau(x), \quad u|_K = \sigma(x),$$
 (2)

unu

$$u_t|_S = \nu(x), \quad u|_K = \sigma(x).$$
 (3)

Отметим, что корректность этой задачи для многомерного волнового уравнения получена в [13].

Перейдем от декартовых координат x_1, \ldots, x_m, t к сферическим $r, \theta_1, \ldots, \theta_m$

 $\theta_{m-1},\,t,$ где $r\geqslant 0,\,0\leqslant \theta_1<2\pi,\,0\leqslant \theta_i\leqslant \pi,\,i=2,3,\ldots,m-1.$ Пусть $\{Y_{n,m}^k(\theta)\}$ — система линейно независимых сферических функций порядка n, где $1 \leqslant k \leqslant k_n$, $(m-2)!n!k_n = (n+m-3)!(2n+m-2)$, $\theta =$ $=(\theta_1,\ldots,\theta_{m-1}),\,W_2^l(S),\,l=0,1,\ldots$ —пространства Соболева.

Имеет место следующая лемма [14].

ЛЕММА 1. Пусть $f(r,\theta) \in W_2^l(S)$. Если $l \geqslant m-1$, то ряд

$$f(r,\theta) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} f_n^k(r) Y_{n,m}^k(\theta),$$
 (4)

а также ряды, полученные из него дифференцированием порядка $p\leqslant l-m+1,$ сходятся абсолютно и равномерно.

ЛЕММА 2. Для того чтобы $f(r,\theta) \in W_2^l(S)$, необходимо и достаточно, чтобы коэффициенты ряда (4) удовлетворяли неравенствам

$$|f_0^1(r)| \le c_1$$
, $\sum_{n=1}^{\infty} \sum_{k=1}^{k_n} n^{2l} |f_n^k(r)|^2 \le c_2$, $c_1, c_2 = \text{const.}$

Через $\tilde{a}_{in}^k(r,t),\,a_{in}^k(r,t),\,\tilde{b}_n^k(r,t),\,\tilde{c}_n^k(r,t),\,\tilde{d}_n^k(r,t),\,\rho_n^k,\,\bar{\tau}_n^k(r),\,\bar{\nu}_n^k(r),\,\bar{\sigma}_n^k(r)$ обозначим коэффициенты разложения ряда (4), находящиеся соответственно перед функциями $a_i(r,\theta,t)\rho(\theta),\,a_i\frac{x_i}{r}\rho,\,b(r,\theta,t)\rho,\,c(r,\theta,t)\rho,\,d(r,\theta,t)\rho,\,\rho(\theta),\,\tau(r,\theta),\,\nu(r,\theta),\,\sigma(r,\theta),$ причем $i=1,2,\ldots,m,\,\rho(\theta)\in C^\infty(H),\,H$ —единичная сфера в E_m .

ТЕОРЕМА 1. Пусть $a_i(r, \theta, t), b(r, \theta, t), c(r, \theta, t) \in W_2^p(D) \subset C(\overline{D}), i = 1, 2, ..., m, p \geqslant m+1 \ u \ \tau(r, \theta) = r^3 \tau^*(r, \theta), \ \nu(r, \theta) = r^3 \nu^*(r, \theta), \ \sigma(r, \theta) = r^3 \sigma^*(r, \theta); \ \tau^*(r, \theta), \ \nu^*(r, \theta), \ \sigma^*(r, \theta) \in W_2^l(S), \ l > 3m/2 + 4.$ Тогда задача 1 разрешима.

ТЕОРЕМА 2. Решение задачи (1), (2) единственно. Если выполняется условие $b(r, \theta, 0) = 0 \ \forall \ (r, \theta) \in S$, то решение задачи (1), (3) также единственно.

2. Разрешимость задачи **1** (доказательство теоремы **1**). Уравнение (1) в сферических координатах имеет вид

$$Lu \equiv u_{rr} + \frac{m-1}{r}u_r - \frac{1}{r^2}\delta u - u_{tt} + \sum_{i=1}^m a_i(r,\theta,t)u_{x_i} + b(r,\theta,t)u_t + c(r,\theta,t)u = 0,$$
(5)

где

$$\delta \equiv -\sum_{j=1}^{m-1} \frac{1}{g_j \sin^{m-j-1} \theta_j} \frac{\partial}{\partial \theta_j} \Bigl(\sin^{m-j-1} \theta_j \frac{\partial}{\partial \theta_j} \Bigr),$$

$$g_1 = 1$$
, $g_j = (\sin \theta_1 \dots \sin \theta_{j-1})^2$, $j > 1$.

Известно [14], что спектр оператора δ состоит из собственных чисел $\lambda_n = n(n+m-2), n=0,1,\ldots$, каждому из которых соответствует k_n ортонормированных собственных функций $Y_{n,m}^k(\theta)$.

Искомое решение задачи 1 будем искать в виде

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \bar{u}_n^k(r,t) Y_{n,m}^k(\theta), \tag{6}$$

где $\bar{u}_n^k(r,t)$ — подлежащие определению функции.

Подставив (6) в (5), затем умножив полученное выражение на $\rho(\theta) \neq 0$ и проинтегрировав его по единичной сфере H для \bar{u}_n^k , получим [11,12]

$$\rho_0^1 \bar{u}_{0rr}^1 - \rho_0^1 \bar{u}_{0tt}^1 + \left(\frac{m-1}{r}\rho_0^1 + \sum_{i=1}^m a_{i0}^1\right) \bar{u}_{0r}^1 + \tilde{b}_0^1 \bar{u}_{0t}^1 + \tilde{c}_0^1 \bar{u}_0^1 + \\
+ \sum_{n=1}^\infty \sum_{k=1}^{k_n} \left\{ \rho_n^k \bar{u}_{nrr}^k - \rho_n^k \bar{u}_{ntt}^k + \left(\frac{m-1}{r}\rho_n^k + \sum_{i=1}^m a_{in}^k\right) \bar{u}_{nr}^k + \tilde{b}_n^k \bar{u}_{nt}^k + \\
+ \left[\tilde{c}_n^k - \lambda_n \frac{\rho_n^k}{r^2} + \sum_{i=1}^m (\tilde{a}_{in-1}^k - na_{in}^k) \right] \bar{u}_n^k \right\} = 0. \quad (7)$$

Рассмотрим бесконечную систему дифференциальных уравнений

$$\rho_0^1 \bar{u}_{0rr}^1 - \rho_0^1 \bar{u}_{0tt}^1 + \frac{m-1}{r} \rho_0^1 \bar{u}_{0r}^1 = 0, \tag{8}$$

$$\rho_1^k \bar{u}_{1rr}^k - \rho_1^k \bar{u}_{1tt}^k + \frac{m-1}{r} \rho_1^k \bar{u}_{1r}^k - \frac{\lambda_1}{r^2} \rho_1^k \bar{u}_1^k =$$

$$= -\frac{1}{k_1} \left(\sum_{i=1}^m a_{i0}^1 \bar{u}_{0r}^1 + \tilde{b}_0^1 \bar{u}_{0t}^1 + \tilde{c}_0^1 \bar{u}_0^1 \right), \quad n = 1, \quad k = \overline{1, k_1}, \tag{9}$$

$$\rho_n^k \bar{u}_{nrr}^k - \rho_n^k \bar{u}_{ntt}^k + \frac{m-1}{r} \rho_n^k \bar{u}_{nr}^k - \frac{\lambda_n}{r^2} \rho_n^k \bar{u}_n^k =$$

$$= -\frac{1}{k_n} \sum_{k=1}^{k_{n-1}} \left\{ \sum_{i=1}^m a_{in-1}^k \bar{u}_{n-1r}^k + \tilde{b}_{n-1}^k \bar{u}_{n-1t}^k + \right.$$

$$+ \left[\tilde{c}_{n-1}^k + \sum_{i=1}^m (\tilde{a}_{in-2}^k - (n-1) a_{in-1}^k) \right] \bar{u}_{n-1}^k \right\}, \quad k = \overline{1, k_n}, \quad n = 2, 3, \dots (10)$$

Суммируя уравнения (9) от 1 до k_1 , а уравнения (10) — от 1 до k_n , а затем складывая полученные выражения с (8), приходим к уравнению (7). Отсюда следует, что если $\{\bar{u}_n^k\}_{k=1}^{k_n},\ n=0,1,\ldots,$ — решение системы (8)–(10), то оно является решением уравнения (7).

Нетрудно заметить, что каждое уравнение системы (8)–(10) можно представить в виде

$$\bar{u}_{nrr}^k - \bar{u}_{ntt}^k + \frac{m-1}{r} \bar{u}_{nr}^k - \frac{\lambda_n}{r^2} \bar{u}_n^k = \bar{f}_n^k(r, t),$$
 (11)

где функции $\overline{f}_n^k(r,t)$ определяются из предыдущих уравнений этой системы, при этом $\overline{f}_0^1(r,t)\equiv 0.$

Из краевых условий (2) и (3) в силу (6) будем иметь

$$\bar{u}_n^k(r,0) = \bar{\tau}_n^k(r), \quad \bar{u}_n^k(r,\varphi(r)) = \bar{\sigma}_n^k(r), \quad k = \overline{1,k_n}, \quad n = 0, 1, \dots, \quad (12)$$

$$\bar{u}_{nt}^k(r,0) = \bar{\nu}_n^k(r), \quad \bar{u}_n^k(r,\varphi(r)) = \bar{\sigma}_n^k(r), \quad k = \overline{1,k_n}, \quad n = 0, 1, \dots$$
 (13)

Сначала рассмотрим задачу (11), (12). Произведя в (11), (12) замену

$$\bar{u}_n^k(r,t) = r^{\frac{(1-m)}{2}} u_n^k(r,t)$$

и положив затем

$$\xi = \frac{(r+t)}{2}, \quad \eta = \frac{(r-t)}{2},$$

получим

$$u_{n\xi\eta}^k + \frac{[(m-1)(3-m)-4\lambda_n]}{4(\xi+\eta)^2} u_n^k = f_n^k(\xi,\eta), \tag{14}$$

$$u_n^k(\xi,\xi) = \tau_n^k(\xi), \quad u_n^k(\xi,\gamma(\xi)) = \sigma_n^k(\xi), \quad \xi \in \bar{J},$$
(15)

где

$$f_n^k(\xi,\eta) = (\xi + \eta)^{\frac{(m-1)}{2}} \bar{f}_n^k(\xi + \eta, \xi - \eta), \quad \tau_n^k(\xi) = (2\xi)^{\frac{(m-1)}{2}} \bar{\tau}_n^k(2\xi),$$
$$\sigma_n^k(\xi) = (\xi + \gamma(\xi))^{\frac{(m-1)}{2}} \bar{\sigma}_n^k(\xi + \gamma(\xi)),$$

а функция $\eta = \gamma(\xi)$ является решением уравнения $\eta = \xi - \varphi(\xi + \eta)$. Здесь и ниже J означает интервал (0, 1/2).

Функция $\eta = \gamma(\xi)$ обладает следующими свойствами:

- 1) она осуществляет топологическое отображение сегмента \bar{J} в себя, оставляя неподвижными ее концы;
- 2) справедлива оценка для производной

$$\gamma'(\xi) = \frac{1 - \varphi'(r)}{1 + \varphi'(r)} > 0, \quad \gamma'(\xi) \neq 1, \quad \xi \in \bar{J}.$$

$$(16)$$

В работе [15] с использованием общего решения уравнения (14) [2] показано, что решение задачи Коши для уравнения (14) имеет вид

$$u_{n}^{k}(\xi,\eta) = \frac{\tau_{n}^{k}(\eta)}{2} R(\xi,\xi;\xi,\eta) + \frac{\tau_{n}^{k}(\xi)}{2} R(\eta,\eta;\xi,\eta) + \frac{1}{\sqrt{2}} \int_{\eta}^{\xi} \left[\nu_{n}^{k}(\xi_{1}) R(\xi_{1},\xi_{1};\xi,\eta) - \tau_{n}^{k}(\xi_{1}) \frac{\partial}{\partial N} R(\xi_{1},\eta_{1};\xi,\eta) \Big|_{\xi_{1}=\eta_{1}} \right] d\xi_{1} + \int_{1/2}^{\xi} \int_{\gamma(\xi)}^{\eta} f_{n}^{k}(\xi,\eta) R(\xi_{1},\eta_{1};\xi,\eta) d\xi_{1} d\eta_{1}, \quad (17)$$

где

$$R(\xi_1, \eta_1; \xi, \eta) = P_{\mu} \left[\frac{(\xi_1 - \eta_1)(\xi - \eta) + 2(\xi_1 \eta_1 + \xi \eta)}{(\xi_1 + \eta_1)(\xi + \eta)} \right]$$

— функция Римана уравнения (14) [16], а $P_{\mu}(z)$ — функция Лежандра с $\mu=\frac{n+(m-3)}{2},$

$$\nu_n^k(\xi_1) = \frac{\partial u_n^k}{\partial N^\perp} \Big|_{\xi_1 = \eta_1} = \left(\frac{\partial \xi_1}{\partial N^\perp} \frac{\partial u_n^k}{\partial \eta_1} + \frac{\partial \eta_1}{\partial N^\perp} \frac{\partial u_n^k}{\partial \xi_1} \right) \Big|_{\xi_1 = \eta_1},$$

где N^{\perp} — нормаль к прямой $\xi = \eta$ в точке (ξ_1, η_1) , направленная в сторону полуплоскости $\eta \leqslant \xi$.

Из уравнения (17) с учетом краевого условия (15) при $\eta = \gamma(\xi)$ после дифференцирования по ξ получим функционально-интегральное уравнение

$$\psi_n^k(\xi) = \nu_n^k(\xi) - \gamma'(\xi)\nu_n^k(\gamma(\xi)), \quad \xi \in \bar{J}, \tag{18}$$

где

$$\psi_n^k(\xi) = g_n^k(\xi) - \int_{\gamma(\xi)}^{\xi} \nu_n^k(\xi_1) \frac{[\gamma^2(\xi) - \xi_1^2 + \gamma'(\xi)(\xi^2 - \xi_1^2)]}{\xi_1(\xi + \gamma(\xi))^2} P_\mu'(z) d\xi_1,$$

$$g_n^k(\xi) = \frac{d}{d\xi} h_n^k(\xi),$$

$$h_n^k(\xi) = \sqrt{2}\sigma_n^k(\xi) - \frac{1}{\sqrt{2}} \tau_n^k(\xi) - \frac{1}{\sqrt{2}} \tau_n^k(\gamma(\xi)) + \frac{1}{\sqrt{2}} \int_{\gamma(\xi)}^{\xi} \frac{\tau_n^k(\xi_1)}{\xi_1} \frac{(\xi - \gamma(\xi))}{(\xi + \gamma(\xi))} P_\mu'(z) d\xi_1,$$

$$P_{\mu}(z) = P_{\mu} \left[\frac{\xi_1^2 + \xi \gamma(\xi)}{\xi_1(\xi + \gamma(\xi))} \right].$$

Из (16) следует

$$1 - \gamma'(\xi)\gamma'(\gamma(\xi)) \neq 0, \quad \xi \in \bar{J}. \tag{19}$$

В [17] показано, что при выполнении условия (19) функциональное уравнение (18) имеет единственное решение и оно имеет вид

$$\nu_n^k(\xi) = \frac{\psi_n^k(\xi) + \gamma'(\xi)\psi_n^k(\gamma(\xi))}{1 - \gamma'(\xi)\gamma'(\gamma(\xi))} = \mu_n^k(\xi) + \int_{\gamma^2(\xi)}^{\xi} G_n(\xi, \xi_1)\nu_n^k(\xi_1)d\xi_1, \tag{20}$$

где

$$\mu_n^k(\xi) = \frac{g_n^k(\xi) - \gamma'(\xi)g_n^k(\gamma(\xi))}{1 - \gamma'(\xi)\gamma'(\gamma(\xi))}, \quad \mu_n^k(\xi) = \xi\bar{\mu}_n^k(\xi), \quad \bar{\mu}_n^k(\xi) \in C(\bar{J}).$$

$$G_{n}(\xi,\xi_{1}) = \begin{cases} \frac{\gamma'(\xi)[\gamma^{3}(\xi) - \xi_{1}^{2} + \gamma'(\gamma(\xi))(\gamma^{2}(\xi) - \xi_{1}^{2})]}{[\gamma'(\xi)\gamma'(\gamma(\xi)) - 1][\gamma(\xi) + \gamma^{2}(\xi)]^{2}\xi_{1}} P'_{\mu} \left[\frac{\xi_{1}^{2} + \gamma^{3}(\xi)}{\xi_{1}(\gamma(\xi) + \gamma^{2}(\xi))} \right], & \gamma^{2}(\xi) \leqslant \xi_{1} \leqslant \gamma(\xi), \\ \frac{[\gamma^{2}(\xi) - \xi_{1}^{2} + \gamma'(\xi)(\xi^{2} - \xi_{1}^{2})]}{[\gamma'(\xi)\gamma'(\gamma(\xi)) - 1](\xi + \gamma(\xi))^{2}\xi_{1}} P'_{\mu} \left[\frac{\xi_{1}^{2} + \xi\gamma(\xi)}{\xi_{1}(\xi + \gamma(\xi))} \right], & \gamma(\xi) \leqslant \xi_{1} \leqslant \xi. \end{cases}$$

$$(21)$$

Так как $|P'_{\mu}(z)| \leq C = \text{const (см. [18])}$, ядро $G_n(\xi, \xi_1)$ (21) допускает оценку

$$|G_n(\xi, \xi_1)| \leqslant \frac{C_1}{\xi_1}, \quad C_1 = \text{const.}$$
 (22)

Решение интегрального уравнения (20) будем искать в виде ряда

$$\nu(\xi) = \sum_{l=0}^{\infty} \nu_l(\xi),\tag{23}$$

где

$$\nu_0(\xi) = \mu_n^k(\xi), \quad \nu_l(\xi) = \int_{\gamma^2(\xi)}^{\xi} G_n(\xi, \xi_1) \nu_{l-1}(\xi_1) d\xi_1, \quad l = 1, 2, \dots$$

Из (22) получим следующие оценки:

$$|\nu_0(\xi)| \leqslant \xi^2 \max_{\bar{J}} |\bar{\mu}_n^k(\xi_1)| = m\xi^2, \quad |\nu_1(\xi)| \leqslant mC_1\xi, \quad |\nu_2(\xi)| \leqslant mC_1\frac{\xi}{2},$$

и вообще,

$$|\nu_l(\xi)| \leqslant \frac{mC_1}{2^l}.$$

Тогда для ряда (23) будем иметь

$$|\nu(\xi)| \le \sum_{l=0}^{\infty} |\nu_l(\xi)| \le m\xi^2 + mC_1 \sum_{l=1}^{\infty} \frac{1}{2^l} = m\xi^2 + mC_1 \le m(1+C_1).$$

Таким образом, интегральное уравнение (20), а также (18), имеют единственное решение. Отметим, что решение функционального уравнения (18), как в [13], можно построить методом итерации.

Следовательно, сначала решив задачу (8), (12) (n=0), а затем (9), (12) (n=1) и т. д., найдем последовательно все $\bar{u}_n^k(r,t)$, $k=\overline{1,k_n}$, $n=0,1,\ldots$ Итак, показано, что

$$\int_{H} \rho(\theta) L u \, dH = 0. \tag{24}$$

Пусть $f(r,\theta,t)=R(r)\rho(\theta)T(t)$, причем $R(r)\in V_0$, V_0 плотно в $L_2((0,1))$; $\rho(\theta)\in C^\infty(H)$, $C^\infty(H)$ плотно в $L_2(H)$; $T(t)\in V_1$, V_1 плотно в $L_2((0,\varphi(1/2)))$. Тогда $f(r,\theta,t)\in V$, $V=V_0\otimes\Gamma\otimes V_1$ —плотно в $L_2(D)$ [19]. Отсюда и из (24) следует

$$\int_{D} f(r, \theta, t) Lu \, dD = 0$$

И

$$Lu = 0 \quad \forall \ (r, \theta, t) \in D.$$

Таким образом, задача (1), (2) имеет решение вида

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} r^{\frac{(1-m)}{2}} u_n^k(r,t) Y_{n,m}^k(\theta),$$
 (25)

где функции $u_n^k(r,t)$ определяются из формулы (17), в которой функции $\nu_n^k(\xi)$ находятся из (20). Следовательно, решение задачи (1), (2) построено.

Теперь рассмотрим задачу (1), (3), решение которой также будем искать в виде (6). Тогда приходим к задаче (11), (13), которая переходит к краевой задаче для (14) с условием

$$\left. \frac{\partial u_n^k}{\partial N} \right|_{\xi=\eta} = \nu_n^k(\xi), \quad u_n^k(\xi, \gamma(\xi)) = \sigma_n^k(\xi), \quad \xi \in \bar{J}, \tag{26}$$

$$\nu_n^k(\xi) = \sqrt{2(2\xi)}^{\frac{(m-1)}{2}} \bar{\nu}_n^k(2\xi), \quad k = \overline{1, k_n}, \quad n = 0, 1, \dots$$

Далее из (17) при $\eta=\gamma(\xi)$ с учетом (26) получим функционально-интегральное уравнение

$$\tau_n^k(\xi) + \tau_n^k(\gamma(\xi)) = g_n^k(\xi) + \int_{\gamma(\xi)}^{\xi} G_n(\xi, \xi_1) \tau_n^k(\xi_1) d\xi_1, \tag{27}$$

где

$$g_n^k(\xi) = 2\sigma_n^k(\xi) - \sqrt{2} \int_{\gamma(\xi)}^{\xi} \nu_n^k(\xi_1) P_\mu \left[\frac{\xi_1^2 + \xi \gamma(\xi)}{\xi_1(\xi + \gamma(\xi))} \right] d\xi_1, \quad g_n^k(\xi) \in C(\bar{J}),$$

$$G_n(\xi, \xi_1) = \frac{\xi - \gamma(\xi)}{\xi_1(\xi + \gamma(\xi))} P'_{\mu} \left[\frac{\xi_1^2 + \xi \gamma(\xi)}{\xi_1(\xi + \gamma(\xi))} \right], \quad |G_n(\xi, \xi_1)| \leqslant M.$$

Так как интегральный оператор, стоящий в правой части равенства (27), вполне непрерывен, функциональное уравнение (27), как показано в [17], имеет единственное решение. Следовательно, функция (25) является решением задачи (1), (3), где $u_n^k(r,t)$, $k=\overline{1,k_n}$, $n=0,1,\ldots$, определяются из решения (17), в котором функции $\tau_n^k(\xi)$ находятся из (27).

Учитывая ограничения на заданные функции $\tau(r,\theta), \nu(r,\theta), \sigma(r,\theta),$ леммы 1, 2, и формулы (из [18])

$$\frac{d^{m}}{dz^{m}}P_{\mu}(z) = \frac{\Gamma(\mu+m+1)}{2^{m}\Gamma(\mu-m+1)}F\left(1+m+\mu, m-\mu, m+1, \frac{1-z}{2}\right),
\frac{\Gamma(z+\alpha)}{\Gamma(z+\beta)} = z^{\alpha-\beta}\left[1+\frac{1}{2z}(\alpha-\beta)(\alpha-\beta-1)+o(z^{-2})\right],$$
(28)

а также оценки (из [14])

$$|k_n| \le c_1 n^{m-2}, \quad \left| \frac{\partial^q Y_{n,m}^k(\theta)}{\partial \theta_j^q} \right| \le c_2 n^{\frac{m}{2} + q - 1}, \quad j = \overline{1, m - 1}, \quad q = 0, 1, \dots, \quad (29)$$

где F(a,b,c,z)— гипергеометрическая функция, $\Gamma(z)$ — гамма-функция, α , β — произвольные действительные числа, как в [11,12], можно показать, что полученное решение (25) принадлежит классу $C^1(\bar{D})\cap C^2(D)$. Таким образом, теорема 1 доказана.

3. Доказательство теоремы **2.** Сначала рассмотрим задачу (1), (2) и докажем единственность ее решения. Для этого сначала построим решение задачи Дирихле для уравнения (1^*) с данными

$$v|_{S} = \tau(r,\theta) = \bar{\tau}_{n}^{k}(r)Y_{n,m}^{k}(\theta), \quad v|_{K} = 0, \quad k = \overline{1,k_{n}}, \quad n = 0, 1, \dots,$$
 (30)

где $\bar{\tau}_n^k(r) \in G$, G — множество функций $\tau(r)$ из класса $C^1([0,1]) \cap C^2((0,1))$. Множество G плотно всюду в $L_2((0,1))$ [19]. Решение задачи (1*), (30) будем искать в виде (6), где функции $\bar{v}_n^k(r,t)$ будут определены ниже. Тогда, аналогично п. 2, функции $\bar{v}_n^k(r,t)$ удовлетворяют системе уравнений (8)–(10), где

 $\tilde{a}_{in}^k,\,a_{in}^k,\,\tilde{b}_n^k$ заменены соответственно на $-\tilde{a}_{in}^k,\,-a_{in}^k,\,-\tilde{b}_n^k,\,$ а \tilde{c}_n^k на $\tilde{d}_n^k,\,i=1,\ldots,m,k=\overline{1,k_n},\,n=0,1,\ldots$

Далее из краевого условия (30) в силу (6) получим

$$\bar{v}_n^k(r,0) = \bar{\tau}_n^k(r), \quad \bar{v}_n^k(r,\varphi(r)) = 0, \quad k = \overline{1,k_n}, \quad n = 0, 1, \dots$$
 (31)

Ранее отмечено, что каждое уравнение системы (8)–(10) представимо в виде (11). В п. 2 показано, что задача (11), (31) имеет единственное решение. Таким образом, построено решение задачи (1*), (30) в виде ряда (25), которое в силу формул (28) и оценок (29) принадлежит классу $C^1(\bar{D}) \cap C^2(D)$.

Из определения сопряженных операторов L, L^* [19] имеем

$$vLu - uL^*v = -vP(u) + uP(v) - uvQ,$$

где

$$P(u) = \sum_{i=1}^{m} u_{x_i} \cos(N^{\perp}, x_i) - u_t \cos(N^{\perp}, t), \quad Q = \sum_{i=1}^{m} a_i \cos(N^{\perp}, x_i) + b \cos(N^{\perp}, t),$$

а N^{\perp} — внутренняя нормаль к границе ∂D , по формуле Грина будем иметь

$$\int_{D} (vLu - uL^*v)dD = \int_{\partial D} \left[\left(v\frac{\partial u}{\partial N} - u\frac{\partial v}{\partial N} \right) M + uvQ \right] ds, \tag{32}$$

при этом

$$\frac{\partial}{\partial N} = \sum_{i=1}^m \cos(N^\perp, x_i) \frac{\partial}{\partial x_i} - \cos(N^\perp, t) \frac{\partial}{\partial t}, \quad M^2 = \sum_{i=1}^m \cos^2(N^\perp, x_i) + \cos^2(N^\perp, t).$$

Из (32), принимая во внимание однородные граничные условия (2) и условия (30), получим

$$\int_{S} \tau(r,\theta) u_t(r,\theta,0) ds = 0.$$
(33)

Поскольку линейная оболочка системы функций $\{\bar{\tau}_n^k(r)Y_{n,m}^k(\theta)\}$ плотна в $L_2(S)$ [19], из (33) заключаем, что $u_t(r,\theta,0)=0 \ \forall \ (r,\theta)\in S$. Следовательно, в силу единственности решения задачи Коши $u(x,0)=u_t(x,0)=0$ для уравнения (1) [20] будем иметь $u(x,t)=0 \ \forall \ (x,t)\in D$.

Таким образом, единственность решения задачи (1), (2) показана. Справедливость единственности решения для задачи (1), (3) устанавливается аналогично. Теорема 2 доказана.

Конкурирующие интересы. Конкурирующих интересов не имею.

Авторская ответственность. Я несу полную ответственность за предоставление окончательной версии рукописи в печать. Окончательная версия рукописи мною одобрена.

Финансирование. Исследование выполнялось без финансирования.

Библиографический список

- 1. Hadamard J. Sur les problèmes aux dérivés partielles et leur signification physique // Princeton University Bulletin, 1902. vol. 13. pp. 49–52.
- 2. Бицадзе А. В. Уравнения смешанного типа. М.: АН СССР, 1959. 164 с.
- 3. Нахушев А. М. Задачи со смещением для уравнения в частных производных. М.: Наука, 2006. 287 с.
- Bourgin D. G., Duffin R. The Dirichlet problem for the vibrating string equation // Bull. Amer. Math. Soc., 1939. vol. 45, no. 12, Part 1. pp. 851-858, https://projecteuclid.org/euclid.bams/1183502251.
- 5. Fox D. W., Pucci C. The Dirichlet problem for the wave equation // Annali di Mathematica Pura ed Applicata, 1958. vol. 46, no. 1. pp. 155–182. doi: 10.1007/BF02412914.
- 6. Нахушев А. М. Критерий единственности задачи Дирихле для уравнения смешанного типа в цилиндрической области // Дифференц. уравнения, 1970. Т. 6, № 1. С. 190—191.
- 7. Dunninger D. R., Zachmanoglou E. C. The condition for uniqueness of the Diriclet problem for hyperbolic equations in cilindrical domains // J. Math. Mech., 1969. vol. 18, no. 8. pp. 763–766, http://www.jstor.org/stable/24893135.
- 8. Aldashev S. A. The well-posedness of the Dirichlet problem in the cylindric domain for the multidimensional wave equation // Mathematical Problems in Engineering, 2010. vol. 2010, 653215. 7 pp. doi: 10.1155/2010/653215
- 9. Алдашев С. А. Корректность задачи Пуанкаре в цилиндрической области для многомерного волнового уравнения // Современная математика и ее приложения, 2010. Т. 67. С. 28–32.
- 10. Aldashev S. A. Well-posedness of the Poincaré problem in a cylindrical domain for the higher-dimensional wave equation // Journal of Mathematical Science, 2011. vol. 173, no. 2. pp. 150–154. doi: 10.1007/s10958-011-0236-7.
- 11. Алдашев С. А. Корректность задачи Дирихле в цилиндрической области для многомерных гиперболических уравнений с волновым оператором // Доклады Адыгской (Черкесской) Международной академии наук, 2011. Т. 13, № 1. С. 21–29.
- 12. Алдашев С. А. Корректность задачи Пуанкаре в цилиндрической области для многомерных гиперболических уравнений с волновым оператором // Вычислительная и прикладная математика, 2013. № 4(114). С. 68–76.
- 13. Алдашев С. А. Корректность задач Дирихле и Пуанкаре в многомерной области для волнового уравнения // Укр. мат. экурн., 2014. Т. 66, № 10. С. 1414–1419.
- 14. Михлин С. Г. *Многомерные сингулярные интегралы и интегральные уравнения*. М.: Физматлит, 1962, 254 с.
- 15. Алдашев С. А. Краевые задачи для многомерных гиперболических и смешанных уравнений. Алматы: Гылым, 1994. 170 с.
- Copson E. T. On the Riemann-Green function // Arch. Rational Mech. Anal., 1957. vol. 1, no. 1. pp. 324-348. doi: 10.1007/BF00298013.
- 17. Литвинчук Г. С. *Краевые задачи и сингулярные интегральные уравнения со сдвигом.* М.: Наука, 1973. 294 с.
- 18. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. *Higher transcendental functions*. vol. II / Bateman Manuscript Project. New York, Toronto, London: McGraw-Hill Book Co., 1953. xvii+396 pp.
- 19. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1976. 543 с.
- 20. Смирнов В. И. Курс высшей математики. Т. 4, часть 2. М.: Наука, 1981. 550 с.

MSC: 35L10, 35R25

Well-posedness of the Dirichlet and Poincaré problems for one class of hyperbolic equations in a multidimensional domain

S. A. Aldashev

Kazakh National Pedagogical University, 114, prosp. Dostyk, Almaty, 480100, Kazakhstan.

Abstract

In early works the author studied the Dirichlet and Poincaré problems for multidimensional hyperbolic equations, which shows the well-posedness of these problems in cylindrical domains, significantly dependent on the height of the considered cylindrical domain. Here a multidimensional region inside a characteristic cone is considered, in which the Dirichlet and Poincaré problems have unique solutions for one class of hyperbolic equations.

Keywords: multidimensional hyperbolic equation, Dirichlet and Poincaré problems, multidimensional domain, well-posedness, functional-integral equation.

Received: $31^{\rm st}$ May, 2016 / Revised: $11^{\rm th}$ April, 2017 / Accepted: $12^{\rm th}$ June, 2017 / First online: $7^{\rm th}$ July, 2017

Competing interests. I have no competing interests.

Author's Responsibilities. I take full responsibility for submitting the final manuscript in print. I approved the final version of the manuscript.

Funding. The research has not had any sponsorship.

References

- 1. Hadamard J. Sur les problèmes aux dérivés partielles et leur signification physique, *Princeton University Bulletin*, 1902, vol. 13, pp. 49–52.
- 2. Bitsadze A. V. *Uravneniia smeshannogo tipa* [Equations of mixed type]. Moscow, USSR Academy of Sciences Publ., 1959, 164 pp. (In Russian)
- 3. Nakhushev A. M. Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh [Problems with shifts for partial differential equations]. Moscow, Nauka, 2006, 287 pp. (In Russian)

Article

∂ ② The content is published under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Please cite this article in press as:

Aldashev S. A. Well-posedness of the Dirichlet and Poincaré problems for one class of hyperbolic equations in a multidimensional domain, *Vestn. Samar. Gos. Tekhn. Univ.*, *Ser. Fiz.-Mat. Nauki* [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 2, pp. 209–220. doi: 10.14498/vsgtu1494 (In Russian).

Author's Details:

Serik A. Aldashev ♠ № http://orcid.org/0000-0002-8223-6900

Dr. Phys. & Math. Sci., Professor; Head of the Dept.; Dept. of Fundamental and Applied Mathematics; e-mail: aldash51@mail.ru

- 4. Bourgin D. G., Duffin R. The Dirichlet problem for the vibrating string equation, *Bull. Amer. Math. Soc.*, 1939, vol. 45, no. 12, Part 1, pp. 851-858, https://projecteuclid.org/euclid.bams/1183502251.
- 5. Fox D. W., Pucci C. The Dirichlet problem for the wave equation, Annali di Mathematica Pura ed Applicata, 1958, vol. 46, no. 1, pp. 155–182. doi: 10.1007/BF02412914.
- 6. Nahushev A. M. A uniqueness condition of the Dirichlet problem for an equation of mixed type in a cylindrical domain, *Differ. Uravn.*, 1970, vol. 6, no. 1, pp. 190–191 (In Russian).
- 7. Dunninger D. R., Zachmanoglou E. C. The condition for uniqueness of the Diriclet problem for hyperbolic equations in cilindrical domains, *J. Math. Mech.*, 1969, vol. 18, no. 8, pp. 763–766, http://www.jstor.org/stable/24893135.
- 8. Aldashev S. A. The well-posedness of the Dirichlet problem in the cylindric domain for the multidimensional wave equation, *Mathematical Problems in Engineering*, 2010, vol. 2010, 653215, 7 pp. doi: 10.1155/2010/653215
- 9. Aldashev S. A. The well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional wave equation, *Sovremennaia matematika i ee prilozheniia* [Modern mathematics and its applications], 2010, vol. 67, pp. 28–32 (In Russian).
- Aldashev S. A. Well-posedness of the Poincaré problem in a cylindrical domain for the higher-dimensional wave equation, *Journal of Mathematical Science*, 2011, vol. 173, no. 2, pp. 150–154. doi: 10.1007/s10958-011-0236-7.
- 11. Aldashev S. A. Well-posedness of the Dirichlet problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator, *Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk*, 2011, vol. 13, no. 1, pp. 21–29 (In Russian).
- 12. Aldashev S. A. Well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator, *Vychislitel'naia i prikladnaia matematika* [Computational and Applied Mathematics], 2013, no. 4(114), pp. 68–76 (In Russian).
- 13. Aldashev S. A. Well-posedness of the Dirichlet and Poincaré problems for the wave equation in a many-dimensional domain, *Ukr. Math. J.*, 2014, vol. 66, no. 10, pp. 1582–1588. doi: 10. 1007/s11253-015-1033-0.
- 14. Mikhlin S. G. *Mnogomernye singuliarnye integraly i integral'nye uravneniia* [Higher-dimensional singular integrals and integral equations]. Moscow, Fizmatlit, 1962, 254 pp. (In Russian)
- 15. Aldashev S. A. Kraevye zadachi dlia mnogomernykh giperbolicheskikh i smeshannykh uravnenii [Boundary value problems for many-dimensional hyperbolic and mixed equations]. Almaty, Gylym, 1994, 170 pp. (In Russian)
- 16. Copson E. T. On the Riemann-Green function, *Arch. Rational Mech. Anal.*, 1957, vol. 1, no. 1, pp. 324-348. doi: 10.1007/BF00298013.
- 17. Litvinchuk G. S. Kraevye zadachi i singuliarnye integral'nye uravneniia so sdvigom [Boundary value problems and singular integral equations with shift]. Moscow, Nauka, 1973, 294 c. (In Russian)
- 18. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. *Higher transcendental functions*, vol. II, Bateman Manuscript Project. New York, Toronto, London, McGraw-Hill Book Co., 1953, xvii+396 pp.
- 19. Kolmogorov A. N., Fomin S. V. *Elementy teorii funktsii i funktsional'nogo analiza* [Elements of the theory of functions and functional analysis]. Moscow, Nauka, 1976, 543 pp. (In Russian)
- Smirnov V. I. Kurs vysshei matematiki [A Course in Higher Mathematics], vol. 4, part 2. Moscow, Nauka, 1981, 550 pp. (In Russian)