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Abstract

The stable stationary solutions of the test problem of hydrodynamics and
heat transfer in a plane channel with the backward-facing step have been
considered in the work for extremely high Reynolds numbers and expansion
ratio of the stream ER. The problem has been solved by numerical inte-
gration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation
and the heat equation in the range of Reynolds number 500 6 Re 6 3000
and expansion ratio 1.43 6 ER 6 10 for Prandtl number Pr = 0.71. Validity
of the results has been confirmed by comparing them with literature data.
Detailed flow patterns, fields of stream overheating, and profiles of horizon-
tal component of velocity and relative overheating of flow in the cross section
of the channel have been presented. Complex behaviors of the coefficients of
friction, hydrodynamic resistance and heat transfer (Nusselt number) along
the channel depending on the problem parameters have been analyzed.

Keywords: Navier–Stokes equations, separating flow, heat transfer, a plane
channel with backward-facing step, mathematical simulation, grid-based ap-
proach.

Article
cb The content is published under the terms of the Creative Commons Attribution 4.0 In-

ternational License (http://creativecommons.org/licenses/by/4.0/)
Please cite this article in press as:
Fom i n A. A., F om i n a L. N. On the solution of fluid flow and heat transfer prob-
lem in a 2D channel with backward-facing step, Vestn. Samar. Gos. Tekhn. Univ., Ser.
Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 2,
pp. 362–375. doi: 10.14498/vsgtu1545.
Authors’ Details:
Alexander A. Fomin http://orcid.org/0000-0002-4128-3938
Cand. Phys. & Math. Sci.; Senior Researcher; Dept. for Development and International
Cooperation; e-mail: fomin_aa@mail.ru
Liubov N. Fomina http://orcid.org/0000-0003-2004-2454
Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept. of Information and
Computing Technology; e-mail: lubafomina@mail.ru

362

http://mi.mathnet.ru/eng/vsgtu1545
http://doi.org/10.14498/vsgtu1545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mi.mathnet.ru/eng/vsgtu1545
http://orcid.org/0000-0002-4128-3938
http://orcid.org/0000-0002-4128-3938
mailto:fomin_aa@mail.ru
http://orcid.org/0000-0003-2004-2454
http://orcid.org/0000-0003-2004-2454
mailto:lubafomina@mail.ru


On the solution of fluid flow and heat transfer problem in a 2D channel . . .

Received: 4th May, 2017 / Revised: 8th June, 2017 /
Accepted: 12th June, 2017 / First online: 25th June, 2017

Introduction. Permanent improvement of numerical techniques for modeling
fluid dynamics and heat transfer requires adequate methods to assess their effec-
tiveness. For these purposes, consideration of well-known test problems which
solutions have all main features of real fluid flows is the best approach. On the one
hand, for these problems the huge volume of experimental and theoretical results
is saved up that provides their maximum reliability. On the other hand the critical
parameters are unambiguously determined for them. The ‘intensification’ of these
parameters increases the complexity of the problems. The efficiency evaluation
of a new computing technology follows from this: the more critical parameters of
the problem are ‘intense’, the more the technology is effective. The well-known
example of such problem of hydrodynamics of incompressible viscous liquids is
the classical lid-driven cavity problem. Reynolds number is the critical parameter
for this problem.

The problem of separated flow in a 2D channel with backward-facing step is
one more such a problem [1]. The problem is characterized by a simple geometry.
Its solution, in general, depends on two parameters: Reynolds number Re and
expansion ratio ER, where ER is defined as the ratio of the full height of the
channel to the height of its inlet segment. Prandtl number Pr is added when heat
transfer is taken into account. Change of these few input parameters allows to
receive radically various solutions of the problem–namely, separated flow patterns,
which are characterized by the quantity, form, size, and position of the vortices.
Furthermore, they can have a very complex structure. The maximum value of
Reynolds number (Re = 3000 at ER = 2) was reached in the article [2], and
expansion ratio (ER = 4 at Re 6 300) was reached in the works [3, 4].

Further increase in these parameters causes computational instability which,
in particular, is discussed in [2]. E. Erturk recommends to reduce a mesh step for
overcoming this instability (see, for example, [5]). But in this case, the systems
of the linear algebraic equations (SLAE) with huge number of unknowns are
generated, and more effective methods are needed to solve them. Of course, the
number of grid nodes (the number of unknowns) can be reduced by reduction
of the channel length. But in this case the open outlet border of the channel
will approach close to zone of the stream perturbation. And, as is well known,
the problem of formulation of conditions at open boundaries is still far from a
complete solution.

The correction algorithm for solving the incompressible fluid dynamics prob-
lems in areas with open borders is proposed in [6]. This algorithm makes it
possible to position the open border almost anywhere in the fluid flow with min-
imal distortions of the problem solution in a narrow border zone. Its application
has allowed to obtain solutions of the test problem of this investigation in the
case of simultaneous increase in Re and ER up to Re = 3000 and ER = 10.

1. Problem statement and calculation method. The problem of vis-
cous heat-conducting incompressible fluid flow in the plane channel with sudden
expansion and the warmed-up bottom wall is considered. It is supposed that
temperature differences of the stream are small, and volume forces are absent. As

363



Fom i n A. A., F om i n a L. N.

a result, it is assumed that liquid density, and also coefficients of viscosity and
heat conductivity are constants.

The scheme of fluid flow structure is presented in Fig. 1. Liquid inflows through
the left border B4, where its movement is a fully-developed flat Poiseuille flow
between two parallel plates. It is also assumed that velocity and overheating of the
stream practically do not change at the exit from the channel. Other borders of
the channel are impermeable walls. The bottom wall B1 is heated to temperature
Tw, and walls B2, B3 and B5 are thermally insulated borders. Flow velocity at the
border B4 smoothly increases from zero to the maximum value at initial times.
As a result, liquid starts to move. In the final analysis, a stationary solution of
the problem is looked for by a relaxation method.

Figure 1. (color online) Scheme of flow in the plane channel with sudden expansion and the
warmed-up bottom wall with designation of the domain borders

The mathematical formulation of the problem in dimensionless form is a sys-
tem of two-dimensional non-stationary Navier–Stokes equations:
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and stationary equation of heat balance:
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;

with initial conditions at t = 0: u = v = θ = 0; and conditions at the borders of
the research area (see Fig. 1):

B1 (y = 0, lc 6 x 6 L) : u = v = 0, θ = 1;

B2 (y = hc, 0 6 x 6 lc) : u = v = 0,
∂θ

∂y
= 0;

B3 (y = 1, 0 6 x 6 L) : u = v = 0,
∂θ

∂y
= 0;
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B4 (x = 0, hc 6 y 6 1) : u = 6f(t)(y − hc)(1− y)/(1− hc)2, v = 0, θ = 0;

f(t) =

{
0.5
[
sin
(
0.5π (2t− 1)

)
+ 1
]
, 0 6 t 6 1;

1, t > 1;

B5 (x = lc, 0 6 y 6 hc) : u = v = 0,
∂θ

∂x
= 0;

B6 (x = L, 0 6 y 6 1) :
∂u

∂x
=
∂v

∂x
=
∂2(1/θ)

∂x2
= 0.

Here t is time; x, y are the horizontal and vertical coordinates respectively; u, v
are the horizontal and vertical components of the velocity V respectively; p is the
pressure; θ = (T − T0)/(Tw − T0) is the relative flow overheating; Pe = Pr · Re
is Peclet number; Re = UH/ν is Reynolds number; Pr = ρ0cp ν/κ is Prandtl
number. The dimensional scales are: H is the full height of the channel (at the
border B6); U is the average velocity of the incoming flow through the border B4;
ν is the kinematic viscosity; ρ0 is the density; cp is the specific heat at constant
pressure; κ is the thermal conductivity; T0 is the flow temperature at the inlet
border of the channel.

Each stationary solution is calculated in two stages: on the first stage dynamic
characteristics of the stream u, v, p, and on the second stage the field of the
overheating θ are defined. The non-stationary form of the momentum equations
is caused by using a relaxation technique for reaching the stationary solution of
the Navier–Stokes equations. On the basis of the received problem solution the
distributions of the coefficient of friction Cf , and Nusselt number Nu along the
bottom wall of the channel, as well as the coefficient of hydrodynamic resistance
to the fluid flow λ are calculated. These coefficients are defined as follows [4,7–9].

1. Cf = τw/(1/2ρ0U
2), where τw = ρ0ν(∂u/∂n)w is the shear stress at the

wall. Here (∂/∂n)w is the outward pointing derivative with respect to the
wall. The modified coefficient of friction is proposed in [8] which does not
depend on Reynolds number C∗f = 0.5Cf Re. In the issue

C∗f = (∂u/∂n)w.

2. Nu = αH/κ, where α is a local heat transfer coefficient in the formula for
the heat flux q between heated surface and fluid stream qw = α(Tw − T0).
Expression for Nusselt number follows from the definitions of heat flux
qw = −κ(∂T/∂n)w and relative flow overheating θ [7]

Nu = −(∂θ/∂n)w.

3. The coefficient of hydrodynamic resistance λ relates the pressure drop at
the l distance from the entrance of the channel with the velocity head by
the formula ∆P = λ lρ0U

2/(2H) [9], where ∆P is a difference of average
pressure at the entrance to the channel and at l distance from it. Therefore,
the formula for calculating λ = λ(x) will be as follows

λ =
2

x

∫ 1

0
(p (0, y)− p (x, y)) dy.
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The technique of splitting of physical factors is applied to solve the of Navier-
Stokes equations at each time step [10]. Herewith two modifications of the tech-
nique are used:

1) on the first step of splitting the pressure is taken into account from the pre-
vious time layer and implicit difference schemes for the movement equations
are used;

2) on the second step of splitting the Neumann problem is formulated for the
increment of pressure p′, which is equal to a difference of pressure on the
current and previous time layers.

Details of the technology which allows to construct solution of the problem are
presented in [6].

Difference approximation of the initial differential equations is carried out
by the control-volume method with fifth-order power-law scheme of second-order
accuracy in space and first-order accuracy in time [11]. In all calculations uniform
grids are used with an identical step h along both coordinate axes. The resulting
SLAE with respect to numerical vectors u = {uij}, v = {vij}, p′ = {p′ij}, and
θ = {θij} are solved by the implicit iteration line-by-line recurrence method of the
second order, accelerated in Krylov subspaces [12]. Dynamic flow characteristics
are considered to be found when condition

∥∥un − un−1∥∥
1

+
∥∥vn − vn−1∥∥

1

∆t ‖Vn‖1
< 10−5

is satisfied. Here superscript n is an index of a time level, ∆t is a time step which
is defined from the formula ∆t = C min(h,Reh2), where h is a step of the spatial
grid, C is Courant number. The optimal value of C = 30 has been determined
from the results of computational experiments.

2. Algorithm validation. Calculations for different grids of the solution
domain at Re = 1000, ER = 2, lc = 0.5, L = 10 showed that for h 6 1/300 the
profiles of both components of velocity u and v are practically identical to each
other. Computation errors of the dynamic and heat transfer parameters are given
in the table. The relative errors of the parameters have been calculated in relation
to their values for the grid step of 1/500. It is clearly seen that the grid step of
h = 1/300 is sufficient to calculate these parameters with reasonable accuracy: in
this case, in general, the differences of the parameters in neighborhoods of their
local extremes are less than 1%. As a result, all the solutions of the problem were
received for this grid step. Also, the increasing of the step length up to lc = 1 has
not led to significant differences in the solution [6], so all subsequent calculations
have been carried out at the fixed lc = 0.5.

Comparisons with the results of other investigators [2,13–19] are presented in
Figs. 2 and 3. The experimental and calculated data are shown in Fig. 2, while
only the calculated results are presented in Fig. 3. It is not difficult to see that
a good matching of all results take place. At the same time, it should be noted
that all of the comparisons with the published data are made in the framework of
nondimensionalization which has been accepted in the present work. Therefore,
the same parameters and coordinates in the original papers can have, generally
speaking, different values.
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Maxima of the stream parameters for the set of grid steps
at Re = 1000, L = 10, ER = 2, lc = 0.5

Grid step 1/100 1/200 1/300 1/400 1/500

−7.867 −7.104 −6.934 −6.864 −6.826
C∗

f at B1
13.23% 3.92% 1.56% 0.55% 0.0%

11.315 11.279 11.267 11.260 11.257
C∗

f at B3
0.52% 0.20% 0.09% 0.03% 0.0%

−0.03642 −0.03545 −0.03525 −0.03517 −0.03513
λ

3.54% 0.91% 0.33% 0.11% 0.0%

9.316 8.929 8.852 8.824 8.811
Nu at B1

5.42 % 1.33 % 0.46 % 0.15 % 0.0%

Figure 2. (color online) Profiles of the horizontal component of velocity u = u(y) in the different
sections of the channel at Re = 1000, ER = 2: solid line — present data, • — E. Erturk [2],

◦ — B. F. Armaly et al. [19]

Figure 3. (color online) Comparison of the results with literature data: (a) profiles of the
vorticity at Re = 800, ER = 2 in the sections: 1 — x − lc = 7, 2 — x − lc = 15; (b) behavior
of Nusselt number along the bottom wall: 1 — Re = 300, ER = 1.5, 2 — Re = 600, ER = 1.5,

3 — Re = 200, ER = 2
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3. Calculated results and discussion. Effect of expansion ratio of the
stream ER at Re = 500 on flow structure and fluid overheating is presented in
Fig. 4. It is visible that increase of ER causes reduction of the perturbance zone
length. At the same time, complexity of vortex structures of the flow grows. In
particular, the vortex behind the step becomes two-level. Two centers of rotation
appear in the vortices. As a result, saddle points are formed between these cen-
ters. It is interesting, that the maximum length of the vortices zone behind the
step is realized at ER = 2 for the considered expansion ratios. As to the fluid
overheating, due to the fact that an increase in ER growths the vertical dimension
of the primary vortex behind the step, warm liquid layers approach the roof wall
of the channel. As a result, on average, the liquid is more heated-up in all the
channel at ER = 10 than at ER = 2. For the reason that in these calculations
Re < 600, the results can be regarded as the simulation of the real fluid flow in
the channel [3, 19]. In this sense, it would be interesting to obtain experimental
confirmation of the existence of a two-level vortex behind the step at ER = 10.

From the point of view of computing stability the variant at ER = 10 is the
most complex task. Therefore, the influence of Reynolds number on the solution is
investigated at the maximum step height. The corresponding results are presented
in Fig. 5. These solutions can not already be regarded as a simulation of real fluid
flows because Re > 600. However, from the point of view of computing techniques
these results are very indicative. Especially in cases of Re > 2000, when the right
border of the channel cuts the bottom vortex. First, primary vortex behind the
step is two-level in all cases of Re. Second, both primary vortex behind the step
and secondary vortex at the roof wall are polycentric at Re > 1000. Third, the
complexity of vortex structure of the stream increases with increase in Re, and
the zone of vortices stretches monotonically from the step up to the channel exit.

Structure of the overheating field corresponds to structure of the fluid stream
(Fig. 5, b). ‘Spots’ of uniform temperature arise in the places of large-scale circu-
lations of the primary vortex. It is also visible that the upper secondary vortex
does not allow the flow to get warm in the central part of the channel. Because
of large Reynolds numbers (and Peclet numbers, respectively), convective heat
transfer considerably surpasses diffusive one. Therefore, in this part of the channel
the overheating area is literally pressed to the warm bottom wall.

The vertical profiles of the horizontal component of velocity and fluid over-
heating for various Reynolds numbers at ER = 10 in section x − lc = 5 are
presented in Fig. 6. The following numbering of curves is used in this figure and
further in Figs. 7 and 8: 1 — Re = 500, 2 — Re = 1000, 3 — Re = 1500,
4 — Re = 2000, 5 — Re = 2500, 6 — Re = 3000.

Fragments of the curves with negative values of u(y) detect wall vortices: the
roof vortices for Re = 1000 and 1500 and the bottom ones behind the step for
2000 6 Re 6 3000. Positive components of the profiles correspond to the kernel
of the main stream. It is visible, that the more Re (the less liquid viscosity), the
more maximum of u. It is curious, that the curves are almost linear in the central
part of the channel.

The complex behavior of the u(y) profiles is explained by the interactions of
numerous vortices as among themselves, and with the main stream of the fluid
flow. Something similar one can observe in [20] where exact solutions of free-
convective fluid flows in a plane layer are considered. However, the driving forces
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Figure 4. (color online) Structure of the fluid flow and the liquid overheating at Re = 500 for
various ER: (a) streamlines; (b) overheating isolines, levels θ: from 0.95 to 0.05 with step 0.05,

and 0.001
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Figure 5. (color online) Structure of the fluid flow and the liquid overheating at ER = 10 for
various Re: (a) streamlines; (b) overheating isolines, levels θ: from 0.95 to 0.05 with step 0.05,

and 0.001
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Figure 6. (color online) The cross profiles of the stream parameters in section x − lc = 5 at
ER = 10 for various Re: (a) horizontal component of velocity u; (b) fluid overheating θ

Figure 7. (color online) Longitudinal profiles of flow parameters along the bottom wall at
ER = 10 for various Re: (a) drop pressure (p0 is the pressure at the step basis; p0 has a unique

value for each solution of the problem); (b) the modified coefficient of friction

Figure 8. (color online) Longitudinal profiles of flow parameters along the bottom wall at
ER = 10 for various Re: (a) the coefficient of hydrodynamic resistance; (b) Nusselt number at

bottom wall of the channel
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are the buoyancy ones in this work in contrast to the present research. This causes
more intensive mixing of heat in the field of consideration.

As to the profiles of the liquid overheating (Fig. 6, b), existence of the local
extrema should be noted here which arise because of vortex structure of the fluid
flow. It is clear, that these extrema do not contradict the maximum principle in
relation to the 2D overheating field. Also, attention should be paid to the uniform
height sections of the curves which correspond to the above-mentioned ‘spots’ of
uniform temperature in Fig. 5, b.

Behavior of the drop pressure and the modified coefficient of friction along
the bottom wall of the channel are shown in Fig. 7. First of all, it is necessary
to note the increase in amplitude of the extrema of the profiles with increasing
Reynolds number. It is easy to see, that the positions of the local maxima of the
pressure correspond exactly to the right edge of the primary vortex behind the
step. Moreover, the positions of the local minima correspond approximately to
the right edge of the lower-level vortex behind the step. It is interesting, that
despite the existence of another large vortex downstream near the bottom wall
the pressure in this part of the flow changes a little.

Profiles of the modified coefficient of friction C∗f behave in the same way. Also,
the increase in amplitude with increasing Re takes place. However, the position
of the extrema is slightly shifted downstream by 0.2–0.3 units. Therefore, the
distinct matching of C∗f extremum position to the flow structure is not observed.
It is clear, that positive values of the coefficient correspond to direct fluid flow,
and negative values – to returned one. Small negative values of C∗f at the channel
exit speak about the low intensity of the bottom vortex at the right boundary
region.

Behaviour of the coefficient of hydrodynamic resistance λ and Nusselt number
along the channel are presented in Fig. 8. In the narrow entrance section of the
channel, λ practically does not depend on longitudinal coordinate and well satisfies
approximate ratio λ · ER ≈ 24/Re. This result coincides with the well-known
theoretical solution of the problem of viscous fluid flow in a plane channel [9].

It is clear, that the jump of the coefficient of resistance is associated with
sudden expansion of the channel. In other words, although the pressure in the
transition from the narrow entrance of the channel to its expanded section varies
smoothly, however, the cross sectional area of the channel increases abruptly at
this time. Therefore, the coefficient of resistance changes abruptly too. The
inverse relation of λ and Re is explained by the fact that generation of a stream
of less viscous liquid requires smaller drop pressure.

Curves of the behavior of Nusselt number say that the number of local maxima
of Nu and their locations correlate with the number and positions of the rotation
centers inside the primary vortex behind the step. In this sense, they naturally
shift to the right with increasing Re because the primary vortex behind the step
is stretched to the right.

Conclusion. Numerical solutions of the problem of steady flow of heat-con-
ducting viscous incompressible fluid in the plane channel with the backward-facing
step and heated bottom wall have been presented in the article for Reynolds num-
ber 500 6 Re 6 3000, expansion ratio of the channel 1.43 6 ER 6 10, and for
Prandtl number Pr = 0.71. Reliability of the results has been confirmed by com-
parison with literature data for corresponding values of the problem parameters.
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Patterns of the solutions depending on ER at constant Re = 500 and depend-
ing on Re at constant ER = 10 have been given in the work. The last series of
solutions (ER = 10) has been considered in detail as the most interesting pre-
viously not investigated case. In particular, the behaviors of the coefficients of
friction, heat transfer and hydrodynamic resistance along the length of the chan-
nel have been analysed. The obtained results may be useful for comparisons in
solving problems of this type.

It is possible to draw the following conclusions on the basis of the obtained
solutions in the considered range of change of the problem parameters:

1. The complex structure of the flow takes place: the vortices can have several
centers of rotation and they can also have up to two levels with respect to
the walls of the channel.

2. The growth of Re causes the increase in the length of all the vortices, while
the dependence of the vortices lengths on ER is not monotonous one.

3. The increase in ER leads to a more uniform heating of the flow along the
height of the channel.

4. The bottom vortices promote warming up of the flow and vice versa – roof
vortices prevent the liquid from heating up.
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О решении задачи течения жидкости и теплообмена
в плоском канале с обратным уступом

А. А. Фомин1, Л. Н. Фомина2

1 Кузбасский государственный технический университет имени Т. Ф. Горбачева,
Россия, 650000, Кемерово, ул. Весенняя, 28.
2 Кемеровский государственный университет,
Россия, 650043, Кемерово, ул. Красная, 6.

Аннотация
В работе рассмотрены устойчивые стационарные решения задачи

гидродинамики и теплообмена в плоском канале с обратным уступом
для экстремально больших чисел Рейнольдса и параметра расшире-
ния потока ER. Задача решена путем численного интегрирования дву-
мерных уравнений Навье—Стокса в переменных «скорость-давление» и
уравнения баланса тепла в диапазоне чисел Рейнольдса 500 6 Re 6 3000
и параметра расширения потока 1.43 6 ER 6 10 для числа Прандт-
ля Pr = 0.71. Достоверность полученных результатов подтверждена их
сравнением с литературными данными. Представлены подробные кар-
тины течения и перегрева потока, а также профили продольной компо-
ненты скорости и перегрева в поперечном сечении канала. Проанализи-
ровано поведение коэффициентов трения, сопротивления и теплоотдачи
(числа Нуссельта) по длине канала в зависимости от параметров задачи.

Ключевые слова: уравнения Навье—Стокса, отрывное течение, теп-
лообмен, плоский канал с обратным уступом, математическое модели-
рование, метод сеток.
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