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Abstract

The evolution of a composite closed system using the integral wave equa-
tion with the kernel in the form of path integral is considered. It is supposed
that a quantum particle is a subsystem of this system. The evolution of the
reduced density matrix of the subsystem is described on the basis of the
integral wave equation for a composite closed system. The equation for the
density matrix for such a system is derived. This equation is nonlinear and
depends on the history of the processes in the closed system. It is shown
that, in general, the reduced density matrix trace does not conserve in the
evolution processes progressing in open systems and the procedure of the
trace normalization is necessary as the mathematical image of a real non-
local physical process. The wave function collapse and EPR correlation are
described using this approach.
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1. Introduction. The principle differences between the dynamics of an open
system and the evolution of a closed one can not solely restricted by the irre-
versibility of the former. In general, there exist nonlinear transformations of the
reduced density matrices of open systems. Depending on the specific properties
of the system, these nonlinear processes can take the form of the wave function
collapse in process of the measurement, the decoherence phenomenon, etc. Any
open system can be considered as a subsystem of a large closed system obeying the
linear evolution law. The impossibility to describe the nonlinear state transfor-
mation of an open system under the measurement using the Schrödinger equation
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Nonlinear dynamics of open quantum systems

led to the necessity to formulate a particular reduction postulate [1] (the quan-
tum jump notion [2]). The peculiarity of the problem is that there is no cause,
expressed in precise physical terms, determining the form of the transformation
of the quantum state [3].

Except for nonlinearity the open system dynamics, in general, has one more
specific property — the dependence on the evolution history. This property al-
ready emerges in the correlation of the uncertainty of the measured value of the
stationary state energy with the duration of the measurement process and be-
comes apparent when considering the EPR paradox [4]1.

We assume that the Schrödinger equation is absolutely accurate when de-
scribing the evolution of closed quantum systems for infinitesimal time intervals2.
The unique strict generalization of Schrödinger’s equation on finite time intervals
is the integral wave equation with the kernel in the form of path integral [6, 7].
The action functionals entering into the integral evolution operator generates the
dependence of the quantum system state on the evolution history. Besides, the
mathematical form of this law supposes the existence of a subsystem nonlinear
evolution [8, 9].

Open system quantum states can be described by reduced density matrices.
A corresponding evolution equation is usually derived by considering a large closed
system including this open system 𝑆 and the rest part of the closed system 𝑅.
It is supposed that the evolution of the closed system is Schrodinger’s one. The
next assumption is that the state of the rest part 𝑅 of the closed system is not
affected by the state of the subsystem 𝑆 and the open system evolution can be
considered as a Marcov process3 (Born–Markov approximation) [10, 11].

Keeping the model of an open system as a part of a closed system we consider
the closed system in a pure quantum state and, therefore, the evolution processes
of this system, as well as those of all its subsystems are deterministic. The pro-
cesses in the subsystems depend on the evolution history of the closed system and
they are described exactly by the corresponding integral wave equation with the
kernel in the form of path integral. Following this approach, the deterministic
equation for the reduced density matrix of the subsystem 𝑆 is derived.

2. The equation for the subsystem’s density matrix. Let a quan-
tum particle be the considered subsystem 𝑆. We shall limit ourselves to an one-
dimensional problem as the generalization to several dimensions is obvious. The
closed system wave function Ψ𝑡 is the function of the particle position (denote it
by 𝑥 or 𝑦) and the generalized coordinates of the rest part of the closed system
(denote by 𝑞 the set of them, by 𝑑𝑞 = 𝑑𝑞1 ···𝑑𝑞𝑠 — the configuration space volume,
where 𝑠 is the number of the subsystem degrees of freedom). The reduced density

1The future states of entangled subsystems are not completely determined by their reduced
density matrices at the current time.

2As opposed, for example, to the paper [5], we do not modify Schrödinger’s equation and
introduce no terms in it.

3Assuming that the Marcov process happens in the open system, the state of the subsystem
𝑅 is described statistically, which does not allow us deterministically consider the closed system
quantum dynamics. The approach offered here uses the deterministic equation only, so that the
terms the Markov process and the master equation are not used here.
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matrix of the particle at the time 𝑡 is

𝜌𝑡(𝑥, 𝑦) =

∫︁ ∞

−∞
Ψ*
𝑡 (𝑦, 𝑞)Ψ𝑡(𝑥, 𝑞)𝑑𝑞.

Suppose that the subsystems (the particle and the rest part of the system) do
not interact before the time 𝑡′. Then, for the evolution of the closed system state
after the time 𝑡′, we have

Ψ𝑡(𝑥, 𝑞) =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝐾𝑡,𝑡′(𝑥, 𝑞, 𝑥

′, 𝑞′)Ψ𝑡′(𝑥
′)Φ𝑡′(𝑞

′) 𝑑𝑥′𝑑𝑞′,

where Ψ𝑡′(𝑥
′) and Φ𝑡′(𝑞

′) are the wave functions of the subsystems before the
interaction; the transition amplitude 𝐾𝑡,𝑡′(𝑥, 𝑞, 𝑥

′, 𝑞′) is described by the continual
integral [12]

𝐾𝑡,𝑡′(𝑥, 𝑞, 𝑥
′, 𝑞′) =

x
exp

𝑖

~

(︁
𝑆1[𝑥(𝑡)] + 𝑆2[𝑞(𝑡)]− 𝐼[𝑥(𝑡), 𝑞(𝑡)]

)︁
[𝑑𝑥(𝑡)][𝑑𝑞(𝑡)];

𝑆1[𝑥(𝑡)] =

∫︁ 𝑡

𝑡′

(︀
𝑇1(�̇�)− 𝑈1(𝑥)

)︀
𝑑𝑡, 𝑆2[𝑞(𝑡)] =

∫︁ 𝑡

𝑡′

(︀
𝑇2(𝑞)− 𝑈2(𝑞)

)︀
𝑑𝑡

are respectively the actions for the virtual paths of the particle and the rest part of
the closed system without interaction (𝑇 and 𝑈 are kinetic and potential energies
of the subsystems);

𝐼[𝑥(𝑡), 𝑞(𝑡)] =

∫︁ 𝑡′′

𝑡′
𝑉 (𝑥, 𝑞) 𝑑𝑡

is the functional describing the subsystems interaction (𝑉 (𝑥, 𝑞) — the interaction
energy of the subsystems; 𝑡′′ — the time of the interaction termination if 𝑡′′ 6 𝑡,
if not, then 𝑡′′ = 𝑡). Then, the reduced density matrix at the time 𝑡 > 𝑡′ is

𝜌𝑡(𝑥, 𝑦) =

∫︁ ∞

−∞

∫︁ ∞

−∞

(︂x
exp
(︁
− 𝑖

~
𝑆1[𝑦(𝑡)]

)︁
exp

𝑖

~
𝑆1[𝑥(𝑡)]×

× exp
(︀
−𝑆𝐴[𝑥(𝑡), 𝑦(𝑡)]

)︀
[𝑑𝑦(𝑡)][𝑑𝑥(𝑡)]

)︂
Ψ*
𝑡′(𝑦

′)Ψ𝑡′(𝑥
′) 𝑑𝑦′𝑑𝑥′. (1)

The functional 𝑆𝐴[𝑥(𝑡), 𝑦(𝑡)], associating the subsystems, describes the influ-
ence of the environment on the particle evolution. It has the form

𝑆𝐴[𝑥(𝑡), 𝑦(𝑡)] =

= − ln

∫︁ ∞

−∞

(︃(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(−𝑆2[𝑞(𝑡)] + 𝐼[𝑦(𝑡), 𝑞(𝑡)]

)︀
[𝑑𝑞(𝑡)]

)︁
Ψ*
𝑡′(𝑞

′)𝑑𝑞′
)︂
×

×
(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(𝑆2[𝑞(𝑡)]− 𝐼[𝑥(𝑡), 𝑞(𝑡)]

)︀
[𝑑𝑞(𝑡)]

)︁
Ψ

′(
𝑡 𝑞

′)𝑑𝑞′
)︂)︃

𝑑𝑞. (2)

To convert equation (1) to a differential form, let us consider the development
of the density matrix with time for the shot finite interval of time 𝜀. Denote by 𝜂

216



Nonlinear dynamics of open quantum systems

and 𝜁 the increments of arguments 𝑥(𝑡+ 𝜀)−𝑥(𝑡) and 𝑦(𝑡+ 𝜀)− 𝑦(𝑡) respectively.
Then, using the results of the book [12], the evolution of the subsystem density
matrix for the time interval 𝜀 is governed by the equation:

𝜌𝑡+𝜀(𝑥, 𝑦) =

∫︁ ∞

−∞
exp

(︂
− 𝑖

~

(︁𝑚𝜁2
2𝜀

− 𝑈1

)︁)︂
×

×
(︂∫︁ ∞

−∞
exp

𝑖

~

(︁𝑚𝜂2
2𝜀

− 𝑈1𝜀−
~
𝑖

𝜕𝑆𝐴

𝜕𝑡
𝜀
)︁
𝜌𝑡(𝑥− 𝜂, 𝑦 − 𝜁) 𝑑𝜂

)︂
𝑑𝜁.

To transform the integral into the real form, we replace the real time 𝑡 with
the imaginary one 𝑡 = 𝑖𝜏 (or 𝑡 = −𝑖𝜏 for the complex conjugated transition
amplitude), where 𝜏 is a complex time modulus . Expanding all the terms of the
last equation as a Taylor series to the first order of smallness and equating the
terms of the first order in 𝜀, for imaginary time, we obtain

~
𝜕𝜌𝜏 (𝑥, 𝑦)

𝜕𝜏
=

~2

2𝑚

(︁ 𝜕2
𝜕𝑦2

− 𝜕2

𝜕𝑥2

)︁
𝜌𝜏 (𝑥, 𝑦)+

+
(︁
𝑈(𝑥)− 𝑈(𝑦) + ~

𝜕𝑆𝐴(𝑥, 𝑦)

𝜕𝜏

)︁
𝜌𝜏 (𝑥, 𝑦).

Analytic continuation to real time transforms this equation into the form

𝑖~
𝜕𝜌𝑡(𝑥, 𝑦)

𝜕𝑡
=

~2

2𝑚

(︁ 𝜕2
𝜕𝑦2

− 𝜕2

𝜕𝑥2

)︁
𝜌𝑡(𝑥, 𝑦)+

+
(︁
𝑈(𝑥)− 𝑈(𝑦) + 𝑖~

𝜕𝑆𝐴(𝑥, 𝑦)

𝜕𝑡

)︁
𝜌𝑡(𝑥, 𝑦). (3)

Equation (3) describes the evolution of the subsystem deterministically. There
are no stochastic terms in it. This equation can be nonlinear if the last term on the
right side of the equation is not zero. The form of this dependence is determined
by the concrete situation of the interaction. Consider some examples of interaction
types.

3. Measurement of the particle position.Suppose that the localized in
space macroscopic process (registering process) is initiated in the apparatus 𝑅
as the result of interaction with the quantum particle 𝑆. The coordinate mea-
suring instrument contains many elements where such processes can be initiated
independently each other. Let the size of a single element 𝑗 (𝑗 = 1, 𝑁) be small
enough the particle object wave function to be considered as having the same
values in the volume of a single element. This assumption allows for describ-
ing the interaction of the particles of the apparatus element 𝑗 (active particles)
with the particle-object by the unique coordinate 𝑋𝑗 of the mass center of these
particles [13,14]. Then, the wave function of the system has the form:

Ψ𝑡(𝑥,𝑋1, . . . , 𝑋𝑁 ) =

∫︁
· · ·
∫︁ 𝑁∏︁

𝑗=1

𝐾(𝑥,𝑋𝑗 , 𝑥
′, 𝑋 ′

𝑗)Ψ(𝑥′, 𝑋 ′
𝑗) 𝑑𝑥

′𝑑𝑋 ′
𝑗 ,
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and for functional (2), we have

𝑆𝐴 =

𝑁∑︁
𝑗=1

𝑆𝐴𝑗 ,

where

𝑆𝐴
𝑗 [𝑥(𝑡), 𝑦(𝑡)] =

= − ln

∫︁ ∞

−∞

(︂(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(−𝑆2[𝑋𝑗(𝑡)] + 𝐼[𝑦(𝑡), 𝑋𝑗(𝑡)]

)︀
[𝑑𝑋𝑗(𝑡)]

)︁
Ψ*

𝑡′(𝑋
′
𝑗) 𝑑𝑋

′
𝑗

)︂
×

×
(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(𝑆2[𝑋𝑗(𝑡)]− 𝐼[𝑥(𝑡), 𝑋𝑗(𝑡)]

)︀
[𝑑𝑋𝑗(𝑡)]

)︁
Ψ′*

𝑡 (𝑋
′
𝑗) 𝑑𝑋

′
𝑗

)︂)︂
𝑑𝑋𝑗 .

Let, at first, the registering process be initiated in the element 𝑘 (at the
time 𝑡𝑟). Denote by 𝑈𝐴 the potential energy of the active particles taking part
in the registering process. It has a macroscopic value and after a very small time

interval 𝜀 the functional
∫︁ 𝑡𝑅+𝜀

𝑡𝑟

𝑈𝐴 𝑑𝜏 strongly exceeds any microscopic action in

the transition amplitudes 𝐾(𝑥,𝑋𝑗 , 𝑥
′, 𝑋 ′

𝑗). At the time 𝑡𝑟 + 𝜀, this functional
equals approximately 𝑈𝐴𝜀 and for 𝑆𝐴𝑘 , we have

𝑆𝐴
𝑘 [𝑥(𝑡), 𝑦(𝑡)] =

= − ln

∫︁ ∞

−∞

(︂(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(−𝑆2[𝑋𝑘(𝑡)]+𝐼[𝑦(𝑡), 𝑋𝑘(𝑡)]+𝑈

𝐴𝜀
)︀
[𝑑𝑋𝑗(𝑡)]

)︁
Ψ*

𝑡′(𝑋
′
𝑘) 𝑑𝑋

′
𝑘

)︂
×

×
(︂∫︁ ∞

−∞

(︁∫︁
exp

𝑖

~
(𝑆2[𝑋𝑘(𝑡)]− 𝐼[𝑥(𝑡), 𝑋𝑘(𝑡)]− 𝑈𝐴𝜀

)︀
[𝑑𝑋𝑘(𝑡)]

)︁
Ψ𝑡′(𝑋

′
𝑘) 𝑑𝑋

′
𝑘

)︂)︂
𝑑𝑋𝑘.

The actions in the last expression cannot be neglected in comparison with the
quantity 𝑈𝐴𝜀, because they generate different phases for different virtual paths
and the path integrals cannot be canceled. The modulus of continual integral is
determined by the measure of the set of the paths defined by their kinetic energies
and the weight of each path is defined by its potential energy. Since the set of the
paths 𝑋𝑗(𝑡) at the time 𝑡𝑟 are approximately the same for all 𝑆𝐴𝑗 (as well as the
modulus of the initial wave functions Ψ𝑡𝑟(𝑋𝑗)), the orders of 𝑆𝐴𝑗 are determined
by the corresponding potential energies which are the same, too, excepting for the
element 𝑘 that has the macroscopic energy 𝑈𝐴 in the action after the time 𝑡𝑟. In
order to estimate the consequences of this, it is necessary to transform the path
integrals in the expressions for 𝑆𝐾 and 𝑆𝑗 into a real form. According to the
conventional method we express the real time in the complex form 𝑡 = 𝜏 exp 𝑖𝜙,
but we take 𝜙 = 𝜋

2 (and not 𝜙 = −𝜋
2 as in a usual case, for example in [12])4. For

the complex conjugated path integral, in consequence of reversed time flow, we
have to take 𝜙 = −𝜋

2 . Taking into account the macroscopic value 𝑈𝐴 (and that

4The change 𝑡 for −𝑖𝜏 reverses the time, what is inadmissible for irreversible processes.
Although the path integral measure (the Wiener measure) is defined for the imaginary negative
time, it can be analytically continued on the upper part of the complex plate [15]
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𝑆𝐴𝑗 > 0), we have

𝑆𝐴𝑘 ∼ exp
2𝑈𝐴𝜀

~
𝑆𝐴𝑗 ,

and, therefore,

𝜕𝑆𝐴𝑘
𝜕𝑡

≫
𝑁∑︁
𝑗=1
𝑗 ̸=𝑘

𝜕𝑆𝐴𝑗
𝜕𝑡

Besides, this term considerably exceeds all the other terms on the right side of
equation (3) which takes the form:

𝜕𝜌(𝑥, 𝑦)

𝜕𝑡
=
𝜕𝑆𝐴𝑘 (𝑥, 𝑦)

𝜕𝑡
𝜌(𝑥, 𝑦).

Suppose that the interaction radius is much less than the apparatus active
element size and that the apparatus elements sizes is infinitesimal. Then, setting
the derivative 𝜕𝑆𝐴

𝑘 (𝑥,𝑦)
𝜕𝑡 infinite large, after normalization of the density matrix

trace, we have
𝜌(𝑥, 𝑦) = 𝛿(𝑥−𝑋𝑘)𝛿(𝑦 −𝑋𝑘).

Thus, the wave function collapse is the result of the specific deterministic
process5. Since the apparatus elements are macroscopic objects, they have differ-
ent properties with respect to the interaction with quantum objects. Hereupon,
the probabilities of the registering process initiation 𝑝𝑗(𝜌) are different for these
elements and the quantum objects ensemble after measurement is a statistical
mixture described by a diagonal density matrix. As opposite to the decoherence
mechanism this diagonalization is the result of the collapse of the single quan-
tum object state into a unique eigenstate after the measurement, and not the
suppression of the transitions between different eigenstates of this object (such a
process is considered in the paper [5]). In the offered approach, the randomness
of the wave function collapse is the result of the statistical straggling of physi-
cal properties of the macroscopic apparatus active elements, and, therefore, the
probabilities have a epistemic character, i.e. they are due to our ignorance about
the precise state of the macroscopic apparatus.

4. EPR paradox. Let us suppose that the closed system consists of two
quantum particles interacting in the past. Denote by 𝑥1 (or 𝑦1) and 𝑥2 the posi-
tions of the particles in space (as before, we consider a one-dimensional motion).
Let the subscript 1 denote the quantities of the subsystems 𝑆 and 2 — of 𝑅.
Suppose that the interaction is elastic collision at the time 𝑡′ = 𝑡′′, then the par-
ticles move freely (before this time the particles do not interact). The functional
𝐼(𝑥1, 𝑥2) entangling the states of the particles in expression (2) has the same val-
ues for any virtual path of the system corresponding to this collision. It can be
omitted while the entanglement of the particle states is conserved as the result of

5In quite a few publications the possibility of the deterministic collapse nature is consid-
ered as contradictory to the special relativity theory. In the conclusion we will show that the
deterministic collapse mechanism offered here cannot contradict to it, in principle.
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correlation between the paths of the sets {𝑥1(𝑡)} and {𝑥2(𝑡)} forming the set of
the virtual paths of the system:

𝑝1 = −𝑝2 = 𝑝,

𝑥′′1 = 𝑥′′2,

𝑥1 = 𝑥′′1 +
𝑝

𝑚1
(𝑡− 𝑡′′),

𝑥2 = 𝑥′′2 −
𝑝

𝑚2
(𝑡− 𝑡′′),

(4)

where 𝑝1 and 𝑝2 are the particles momenta, 𝑝 is the absolute value of these mo-
menta. Supposing that the wave functions of the particles immediately after the
collision have the form of the Dirac delta-functions, for the functional 𝑆𝐴, we have

𝑆𝐴[𝑥(𝑡), 𝑦(𝑡)] = − ln
1

(2𝜋~)2
×

×
∫︁ ∞

−∞
𝑑𝑥2

(︂∫︁ ∞

−∞

(︂∫︁
exp

(︂
𝑖

~

∫︁ 𝑡

𝑡′′

𝑚𝑥2
2

2
𝑑𝑡

)︂
[𝑑𝑥2(𝑡)]

∫︁ ∞

−∞
exp
(︁
− 𝑖

~
𝑝(𝑥′′2+𝑥0)

)︁
𝑑𝑝

)︂⃒⃒⃒⃒
𝑥1(𝑡)

𝑑𝑥′′2×

×
∫︁ ∞

−∞

(︂∫︁
exp

(︂
− 𝑖

~

∫︁ 𝑡

𝑡′′

𝑚𝑥2
2

2
𝑑𝑡

)︂
[𝑑𝑥2(𝑡)]

∫︁ ∞

−∞
exp
(︁ 𝑖
~
𝑝(𝑥′′2 + 𝑥0)

)︁
𝑑𝑝

)︂⃒⃒⃒⃒
𝑦1(𝑡)

𝑑𝑥′′2

)︂
.

The subscriptions 𝑥(𝑡) and 𝑦(𝑡) specify the paths of the subsystem 𝑆, corre-
sponding to the transition amplitude of the subsystem 𝑅. After integrating over
the paths of free motion [7, 12], the functional 𝑆𝐴 takes on the form

𝑆𝐴[𝑥(𝑡), 𝑦(𝑡)] =

= − ln
1

(2𝜋~)2

∫︁ ∞

−∞

(︂∫︁ ∞

−∞

(︂
exp

𝑖

~

(︁
−𝑝(𝑥2 + 𝑥0)−

𝑝2

2𝑚2
(𝑡− 𝑡′′)

)︁)︂⃒⃒⃒⃒
𝑥1(𝑡)

𝑑𝑝×

×
∫︁ ∞

−∞

(︂
exp

𝑖

~

(︁
𝑝(𝑥2 + 𝑥0) +

𝑝2

2𝑚2
(𝑡− 𝑡′′)

)︁)︂⃒⃒⃒⃒
𝑦1(𝑡)

𝑑𝑝

)︂
𝑑𝑥2.

If the momentum of the subsystem 𝑆 is specified, then, in accordance with
the relations (4), the paths 𝑥1(𝑥′′1, 𝑡) and 𝑦1(𝑦′′, 𝑡) are well defined. Thus, we have
the quantity 𝑆𝐴 in the form of a functional on the sets of the virtual paths of the
system 𝑆.

If the value 𝑥2𝑚 of the position of the particle 𝑅 is obtained after the mea-
surement at the time 𝑡𝑟, then the factor

exp
𝑖

~
𝑈𝐴(𝑡− 𝑡𝑟)

appears in the transition amplitude formed by the paths having origin in the
position 𝑥0 at the time 𝑡′′ and passing trough the point with the coordinate 𝑥2𝑚
at the time 𝑡𝑟. In accordance with the conclusions of section 3, this means that
at the time 𝑡𝑟 the time derivative

𝜕𝑆𝐴
𝜕𝑡

=
2𝑈𝐴

~
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for the particle 𝑆 position 𝑥1(𝑡) corresponding to the position 𝑥2𝑚 of the particle
𝑅 at the same time. Using the relations (4) and the fact that the collision takes
place in the point with the coordinate 𝑥0 at the time 𝑡𝑟, for the position of the
subsystem 𝑆 corresponding to the infinite value 𝑆𝐴, we obtain

𝑥1𝑚 =
𝑚2

𝑚1
𝑥2𝑚 +

(︁
1 +

𝑚2

𝑚1

)︁
𝑥0.

Since the quantity ~𝜕𝑆𝐴
𝜕𝑡 for the positions 𝑥1 ̸= 𝑥1𝑚 as well as and the other terms

in the right side of equation (3) have a microscopic order of magnitudes, following
the logic of section 3, we can conclude that the solution after normalization is

𝜌(𝑥, 𝑦) = 𝛿(𝑥1 − 𝑥1𝑚)𝛿(𝑦1 − 𝑥1𝑚).

If the value 𝑝2𝑚 of the momentum 𝑝2 is obtained after the measurement at
the time 𝑡𝑟, the time derivative 𝜕𝑆𝐴

𝜕𝑡 at the time 𝑡𝑟 has a macroscopic value for
the paths of the particle 𝑆 having the momentum 𝑝1 = 𝑝2𝑚, and

𝜕SA

𝜕t
(𝑥1) ∼

{︃
2𝑈𝐴 exp 𝑖

~𝑝1𝑥 exp
(︁
− 𝑖

~𝑝1𝑦
)︁

for 𝑝1 = −𝑝2𝑚,
~

(𝑡−𝑡𝑟) for 𝑝1 ̸= −𝑝2𝑚.

The Fourier transform of the quantity 𝜌(𝑥1, 𝑦1)𝜕𝑆
𝐴

𝜕𝑡 has the form∫︁ ∞

−∞

∫︁ ∞

−∞
exp

𝑖

~
𝑝1𝑥1𝜌(𝑥1, 𝑦1)

𝜕𝑆𝐴

𝜕𝑡
exp
(︁
− 𝑖

~
𝑞1𝑦1

)︀
𝑑𝑥1 𝑑𝑦1 ≈

≈ 2𝑈𝐴

~
𝛿(𝑝1 + 𝑝2𝑚)𝛿(𝑞1 + 𝑝2𝑚).

Thus, for a reduced density matrix after the normalization, we have

𝜌(𝑝, 𝑞) = 𝛿(𝑝+ 𝑝2𝑚)𝛿(𝑞 + 𝑝2𝑚).

5. Conclusion. In general, a nonlinear evolution does not conserve the
norm of the trace of a density matrix. The necessity of this condition, for phys-
ical reasons, requires considering the procedure of the trace normalization as a
mathematical image of a real physical process. Obviously, such a process has to
take place simultaneously in a whole space. Then, the nonlinear local effect on
the quantum system instantly generates the change of this system state in any
remote area of space. In the opinion expressed in a number of publications (for
example the papers [16, 17]), this fact under the condition of a deterministic law
of a nonlocal evolution contradicts the special relativity theory. As a solution to
this contradiction, the process of nonlocal evolution is proposed to be considered
random. Although such an evolution mechanism does not allow signaling using
the processes like a wave function reduction, it does not solve the problem of non-
local correlation of quantum states [18, 19], thereby, limiting the scope of special
relativity to a macroscopic level.

This contradiction with the special relativity can be eliminated if the nonlocal
property is attached to the interacting objects themselves. Really, let us consider
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the mathematical formalism of Feynman’s quantum mechanics as the image of a
real physical situation. Suppose that a wave function has a material carrier and
virtual paths form real paths of this carriers like in classical continuum mechanics6.
Then, the set of all virtual paths in the considered volume of space describes
a mechanical motion of the corresponding set of individual particles7 . These
individual particles occupy all the considered volume, even that where the wave
function is zero.

If to transform the equation (3) for the function of a measure density8 , we
obtain

𝜕𝜌(𝑥, 𝑥)

𝜕𝑡
+ div j =

𝜕𝑆𝐴

𝜕𝑡
𝜌(𝑥, 𝑥),

where

div j =
𝑖~
2𝑚

𝜕

𝜕𝑥

(︁𝜕𝜌(𝑦, 𝑥)
𝜕𝑦

− 𝜕𝜌(𝑦, 𝑥)

𝜕𝑥

)︁⃒⃒⃒
𝑦=𝑥

is the divergence of the measure density flux. This equation has to be added by
the normalization condition ∫︁ ∞

−∞
𝜌(𝑥, 𝑥) 𝑑𝑥 = 1.

When the measure density flux can be neglected, as, for example in the case
of reduction process, change of the probability in a volume is possible if 𝜕𝑆𝐴

𝜕𝑡 ̸= 0.
Thus, this change is possible without any measure carrier transfer in space, i.e.
without a mechanical motion. It is the result of the internal structure transfor-
mation of a quantum particle described by the density matrix. This means that
there can be no question of any contradiction with special relativity. Interaction
between particles under the conditions of the EPR paradox can be considered as a
local when particles are matter fields in the same volume of space. They are not a
distant system actually. The last assumption makes it possible to avoid violating
the principle of causality [21]: indeed, we have allocated objects with respect to
some specific interaction, and the definition of the spacing between them requires
the exploration within the framework of the special relativity.
Competing interests. I declare that I have no competing interests.
Author’s Responsibilities. I take full responsibility for submitting the final manuscript
in print. I approved the final version of the manuscript.
Funding. The research has not had any funding.

6If the wave function of the particle is instantaneous localized under the position measure-
ment, then Schrödinger’s wave function interpretation “. . . as giving somehow the density of the
stuff of which the world is made” [3] does not create the “problem of the wave packet spreading”.

7In addition to the specific properties of individual particles of such a continuous medium [20],
its fundamental difference from the classical one is that individual particles of this continuum
actually form an everywhere dense set in the volume accessible to a quantum particle (there is no
empty space in it), whereas for a classical continuous medium, this property is a mathematical
abstraction.

8We use the concept of measure, not probability, to emphasize the deterministic nature of
the equation for the reduced density matrix of the part of a closed system
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Нелинейная динамика открытых квантовых систем

А. Ю. Самарин
Самарский государственный технический университет,
Россия, 443100, Самара, ул. Молодогвардейская, 244.

Аннотация

С помощью интегрального волнового уравнения с ядром оператора
эволюции в виде интеграла по траекториям рассматривалось изменение
волновой функции замкнутой системы, состоящей из двух подсистем.
Предполагалось, что одной из подсистем системы является квантовая
частица. На основе интегрального волнового уравнения для замкнутой
системы описана динамика матрицы плотности этой частицы и выве-
дено соответствующее уравнение. Это нелинейное уравнение зависит от
предыстории эволюции всей замкнутой системы. Показано, что в про-
цессе эволюции открытой квантовой системы в общем случае не сохра-
няется след матрицы плотности и необходима процедура нормировки
следа, которая в данном случае является математическим образом ре-
ально существующего нелокального физического процесса. В качестве
иллюстрации этого предположения представлено описание нелокальных
явлений коллапса волновой функции при измерении и ЭПР-корреляции.

Ключевые слова: нелинейная эволюция, ЭПР-корреляции, нелокаль-
ное взаимодействие, открытые системы, интеграл по траекториям, немар-
ковский процесс.
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