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Abstract

We propose a new and simple approach for the mathematical descrip-
tion of a stochastic system that implements the well-known just-in-time
principle. This principle (abbreviated JIT) is also known as a just-in-time
manufacturing or Toyota Production System.

The models of simple JIT systems are studied in this article in terms of
point processes in the reverse time. This approach allows some assumptions
about the processes inherent in real systems. Thus, we formulate and solve
some, very simple, optimal control problems for a multi-stage just-in-time
system and for a system with the bounded intensity. Results are obtained
for the objective functions calculated as expected linear or quadratic forms
of the deviations of the trajectories from the planned values. The proofs of
the statements utilize the martingale technique. Often, just-in-time systems
are considered in logistics tasks, and only (or predominantly) deterministic
methods are used to describe them. However, it is obvious that stochastic
events in such systems and corresponding processes are observed quite often.
And it is in such stochastic cases that it is very important to find methods for
the optimal management of processes just-in-time. For this description, we
propose using martingale methods in this paper. Here, simple approaches for
optimal control of stochastic JIT processes are demonstrated. As examples,
we consider an extremely simple model of rescheduling and a method of
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Stochastic models of simple controlled systems just-in-time

controlling the intensity of the production process, when the probability of
implementing a plan is not necessarily equal to one (with the corresponding
quadratic loss functional).

Keywords: modeling, martingale, intensity, optimization, rescheduling,
just-in-time.
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Introduction. In this paper, we consider some stochastic models of simple
just-in-time systems. The well-known principle of just-in-time system (abbre-
viated as JIT system) is used in many areas. Examples include just-in-time
production systems (see [1, 2| and references therein), pedagogical strategies of
Just-in-time teaching (often abbreviated to JiT'T; see, e.g., [3,4]), and just-in-time
compilation methods in computer programming (see [5,6]). It should be noted
that at present mathematical, especially stochastic, models for JIT systems are
not sufficiently developed. Such models are necessary for solving optimal control
problems, which could allow optimizing the allocation of system resources and
implementing optimal planning of a stochastic JIT system. The purpose of this
article is to present an approach to the stochastic description of JIT systems,
which would be suitable for both analytical methods and computer simulation.
Mathematical models of such systems should allow assuming that the trajecto-
ries of processes must take the given values at a fixed time. Such behavior of
processes is known in stochastic bridges and stochastic processes in the reverse
time. Thus, we should consider models of systems with the requirement of JIT
in terms of processes with the behavior of trajectories close to stochastic bridges.
Models should also allow investigating possible violations of this requirement that
are unavoidable for real systems.

The time reversal of stochastic processes has been studied for many years. For
example, see [7-10] and references therein. We note that a number of works related
to stochastic bridges (for example, the Brownian bridge, the Poisson bridge, also
known as the Poisson bridge), is devoted to the investigation of these processes. In
addition, some works on reversible Markov processes adjoin process descriptions
in reverse time (see, e.g., [11]). In this article, we study models of simple JIT
systems in semimartingale terms for point processes close to the Poisson bridge
mentioned above. Here we allow some assumptions about the processes inherent
in real systems. Thus, simple cases of multi-stage JIT systems and a system with
bounded intensity are investigated. As shown, for these cases simple optimal
control problems can be formulated and solved. The proofs of the results utilize
the semimartingale technique.

1. Time reversal method for a simple JIT system. Consider a JIT
system that can be described in terms of point (counting) processes. We assume
that in the system some integer number K of operations must be performed to a
fixed time T > 0 (starting from the zero moment). This means that at each time
t € [0, T] the number of remaining operations Xy, is equal to the number K minus
the value V;, of some counting process N = (N¢)i=0 @ Xy = K — Ng,. That is,
the jumps of this process N are such that their total number at time 7T is exactly
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K. A formal description of such a process X in the simple case corresponds to
a Poisson process in reverse time, provided that its value at time T is exactly K
(or to the Poisson bridge N, see, e.g., [8,10,12]).

We now give a formal description of the mathematical model. Let (Q, .7, P) be
a probability space populated with a nondecreasing right-continuous family of o-
algebras F = (.%#):>0, complete with respect to P (i.e., the conditions of [13] hold).
On the stochastic basis B = (2,.#,F = (%;)i=0,P) the process X = (Xi)i>0
is supposed to be the point process with trajectories in the Skorokhod space,
X: € Ng={0,1,2,...} and AX; = X; — Xy € {—1,0} (see, e.g., [14-16]). The
process X can be represented as a difference:

X=Xy~ N=K—N,
where N = (Ny)i>0 is the counting process of the number of negative jumps
of X, with the initial value Xo = K > 0 (i.e., K € N = {1,2,...}, Ny = 0,

and Xy = K — Ny, for all t > 0). We suppose that the submartingale N and
supermartingale X on B admit the well-known Doob—Meyer decompositions (see,

e.g., [13]):
Nt:Nt—i—'miV, Xt:Xt—miV (1)

with the compensators N = (Ny);s0 and X = (X;);>0, and the square-integrable

martingale m?" = (m}");>0 with the quadratic characteristic

(m™), = N, for all t > 0.
We also suppose in this article that
- ¢ 1
Nt:/(K—NS)--]I{s<t}ds, 2)
0 T—s

where I{-} is an indicator function (i.e., I{true} = 1, I{false} = 0). From (1) and
(2) it follows that the process X has the decomposition:

t
1
Xt:K—/ Xy —— s <t}ds—ml. (3)
0 T*S

In the general case, for the basic model we assume that the point process X
admits the representation:

t
Xt:K—/ hsds +m;~. (4)
0

with the intensity of negative jumps h = h(X) = (h(X))¢>0 and the martingale

m* = (mi*);>0. In the particular case (3), the following equality holds:
ht:ht(X):Xt'H{S<t}/(T—S), (5)
and m* = —m¥ ie. m¥ = —m} forall t > 0.

It is well known that the compensator of the point process defined by formula
(2) corresponds to the bridge of a Poisson process, [12]. We also should recall
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the results of [7,8]. Consider a standard Poisson process 7 = (7s)e[0,7] on the
stochastic basis B with the initial value my = 0 and any positive intensity A > 0.
Let #) = o{ns : T—t < s <T}fortel0,T], F) = FP fort > T, and
nondecreasing family o-algebras F = (.%;):>0 be the right continuous completion
of (Z)i=0. Define the reverse time supermartingale Y = (Y;)iz0 as Y = mp_4
for t € [0,7] and Y; = mp = 0 for t > T. Then Y is F-adapted and it has the
decomposition (as it easily follows, from Theorem 2.6 in [8]):

t

Y.

Y}:ﬂT—/ TS I{s < t}ds+m,, (6)
0 — S

Y=

where m m) )i=0 is a square-integrable martingale with the quadratic char-

acteristic

Y ROERVRPHY
)= [ s s <ty

The comparison of (3) and (6) illustrates the fact known for bridge processes:
the representation of the process X = K — N (with the initial value K and the
Poisson bridge N) coincides with the reverse time representation Y of the Poisson
process 7 (with any strictly positive intensity A) under the condition for the initial
value Yy = mp = K. Thus, we can consider the behavior of the trajectories of
the process X with Xg = K and Xy = 0 for ¢ > T as the embodiment of the
just-in-time requirement. Therefore, the main idea of the presented description
of JIT systems is the realization of the corresponding behavior of trajectories by
means of proper control of h = (ht)¢>0, which is the intensity of the negative
jumps of X in the base model (4). This intensity can be regarded as a negative
feedback tending to —oo as t — T in the case of nonzero X;. Note that in (6) it
does not directly depend on the intensity A of the initial process .

The distribution of the main process X in (4) is determined by the intensity
of the negative jumps h, which in the particular case of (5) depends on the values
of K and T' > 0. Along with X, we define for the base model (4) the auxiliary
functions for EX;, EX? and E(X;— R;)? = Gy — R? (i.e., for the mean, the second
moment, and the variance of X, respectively). For the functional h = h(X) of
general form in (4), and the initial value K, it is assumed that

R; = Ri(K;h) = EX}, Gy = Gy(K;h) = EX2, V; = Vi(K; h) = E(X;: — Ry)% (7)

In the particular case (5), these functions depend only on the values of ¢, K,
and T'. Therefore, for (5) we use the notations:

T’t(K,T):Rt:E(Xt‘X():K,Xt:O), (8)
g(K;T) =Gy =EB(X?| Xy =K; X, =0), (9)
w(K;T) =V, =E((X¢ — Rt)2|XO = K; Xy =0) = g(K;T) — e (K; T)Z' (10)

LEMMA 1. For the functions (8), (9) and (10) defined for X in (4) with the
intensity (5), we have

T—-1

r(K;T) =K - T

I{t < T}, (11)
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G (K:T) = (K %)2 It <T}+ K- (T_Tﬁ)t < T},  (12)
(i T) = k- L=t g ooy (13)

T2

2. Problems of optimal planning for a multi-stage JIT process.
Consider a model of simple multi-stage JIT systems in terms of the proposed
description. We assume that it is a set of separate processes in reverse time (or
bridges of corresponding processes) with a single aggregate plan. This section
presents a simple solution to the problem of the optimal times for changing the
stages for the model. In the cases considered here, the mean-square deviations of
the trajectories from the planned values are minimized. In addition, we consider
the problem of optimal rescheduling for the case of two stages and for its multi-
stage generalization.

2.1. Separate processes in reverse time. Let us consider optimal control
problem for the following scheduling model. Let the execution of (K + 1) opera-
tions in time 7" be subdivided into n € N stages: every successive K (i) operations
must be performed in stage ¢, which lasts the time ¢(i), for alli = 1,2,...,n. The
following conditions for the time and number of operations must be fulfilled:

S ) =1, (14)

K. (15)

> K(i)
i=1
We also define the condition for the uniformity of the operations:
K(i)=K(i)-<(i)/T forall i =1,2,...,n. (16)

Thus, the model of this JIT system is a set of separate processes in reverse time
(or of proper bridges). Suppose that we must insure the uniform fulfillment of
the plan § = {¢(1),¢(2),...,5(n)} in the sense of (16), minimizing the weighted
variance of the deviation from it.

We consider the problem of finding an optimal plan

¢ ={¢"(1),¢"(2),...,¢"(n)}
for which

P(¢*) = ir%f@(?), (17)

where the objective function ®(3) is the sum of weighted variances (10) for the pro-
cesses in (4) with initial values K (i) and times of performance ¢(i),i = 1,2,...,n:

. §(74) . .
B =Y o) [ k()< ds (18)
i=1 0
under conditions (14) and (15), and for strictly positive weights:
aft) >0foralli=1,2,...,n. (19)
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THEOREM 1. For the plan that minimizes the objective function ®(3),

n

—1/2
§*(i)—T-{a(i)-n-Zl/a(j)} foralli=1,2,...,n. (20)

Jj=1

REMARK 1. Theorem 1 implies the trivial consequence that for equal weights
the equal times are optimal: for a(1) = a(2) =... = a(n) >0,

S*(i) =T/n foralli=1,2,...,n. (21)

2.2. The problem of optimal rescheduling for a two-stage JIT pro-
cess. As it follows from (21), for n = 2, in the case of equal weights, it then holds
that

(1) =< @2)=T/2. (22)

However, in real systems, along with a priori stage planning, a procedure for
reviewing the plan during its implementation is encountered — rescheduling. In
this case, the operations of the JIT system are performed in accordance with the
intensity of the process in (3) for planned initial value K and planned time T for
t € [0,0], o € [0,T], where o is rescheduling time. Thus in the first stage, for
t € [0, o], the initial plan with the values of K and T is carried out. At time o, the
following re-planning procedure is implemented. The second stage is fulfilled on
the time interval [0, T]. Here, after rescheduling, the initial value of the number
of operations X,, and the new execution time (7' — o) are set in the interval [o, T
for the new process in the reverse time. For this model of rescheduling for the JIT
system, the task is to find a time point ¢ that minimizes the integral standard
deviation from the original plan in the first stage and the deviation from the new
plan in the second stage. Thus, we consider the problem of finding an optimal
value o* for which

U(o™) = igf\ll(a), (23)

where the objective function ¥(o) is the integrated variance (7) for the intensity
h = h(X) is equal to

V(o) = /T Vi(K; h) ds. (24)
Here the intensity for the rescheduling(;) is equal to
he(X) = K (X) - I{t € [0,0)} + BP(X) - T{t € [0,T)}, (25)
where
h(X) = Xo/(T—1), M(X)=X/(T -0 -1). (26)

LEMMA 2. For the time o that minimizes the objective function ¥ (o),

o =1T/3. (27)

REMARK 2. Note that 0* # ¢*(1) where <*(1) is defined in problem (17), and
for which (22) holds for n = 2.
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2.3. The problem of recurrent rescheduling for a multi-stage JIT
process. The procedure for rescheduling presented in Subsection 2.2 is deter-
mined a priori — at the time ¢ = 0. It is an intensification — an optimal increase
in intensity at any stopping time u. If there are no restrictions on intensification
in the system, then such a procedure after a stopping time u(1) = o can be re-
peated at a stopping time u(2) > u(1), etc. The procedure for rescheduling (or
re-planning) can be pre-established for all i € N. However, if for some number
7> Xu@) = 0, then hy(X) = 0 for all ¢ > u(j). And therefore, the implementation
of rescheduling is meaningless for all numbers ¢ > j, that is, after the process
X reaches zero. Let 7 = 7(w), w € Q, be the he Markov stopping time on the
stochastic basis B at which X reaches zero:

T=inf{t >0: X; =0} (where inf{@} = +00).

Then the number of all possible rescheduling procedures for the process X is equal
to

J{X} = Z]I{u <7h (28)

Thus, any set for the sequential stopplng times of rescheduling procedures is
a={u(l),...,u(J(X)},0<u(l) <u2) < - <u(i) < - <u(J(X)) <T.

Consider the problem of finding such an optimal set u* = {u*(1),...,u*(J(X))}
of recurrent stopping times of re-planning at u*(7),7 < J(X), for which

P(a*) = inf (@), (29)

T
P(@) = /0 Vi(I; ) ds,

where the intensity h = h(X) = (h(X))s0 is defined by the number J(X) from
(28), and by the set 4. In addition, we define auxiliary stopping times u(0) = 0,
and u(J(X)+1) =T. Then, in order to generalize the definition (25)—(26) of the
function hy(X), to the case of successive (multi-stage) re-planning, we obviously
use the following expression:

he(X) = X, - I{t < T} - Z( —t) ui) <t <ul+ 1)} (30)

For this model of the JIT system without restrictions on the intensification,
Lemma 2 implies the following result.

THEOREM 2. For the set u* of rescheduling times, which minimizes the objective
function T'(u),

W@ =T- (1 . (2/3)i) foralli=1,2,...,J(X). (31)

REMARK 3. Note that this optimal plan is finite and has the stochastic time
u*(J(X)) of the last rescheduling.
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3. The problem of the optimal level of resources of a simple system
with possible violations of the condition. In this section, we consider some
assumptions about violations of the JIT condition in processes inherent in real
systems. Thus, we assume that the intensities of point processes can be bounded.
We note that such a representation of the process X in (4) does not correspond
to the time reversal procedure for a point process with fixed initial value. Never-
theless, such a representation in terms of point processes is useful for describing a
controlled system with a violation of the condition of JIT. For such a model, the
task of optimal control arises — to find the value of the maximum level of intensity
of the point process for each operation under conditions of payment for the value
of this boundary, and payment for non-compliance with the JIT requirement.

We suppose that the intensity h in (4) can be represented as

he = hy(X) = X, - min{A, I{t < T} /(T — 1)}, (32)

where A € [0,00) is a finite maximum level of intensity for each operation. Under
this assumption for h, the JIT-condition X7 = 0 may not hold, and obviously
P{w : X7r(w) > 1} > 0 and EX7 > 0. We assume that the payment for this
violation of the JIT condition is proportional to the mean value of the number of
uncompleted operation EXp. The coefficient of proportionality is denoted by a.
The greater the upper level A, the smaller the value of EX7p and the closer to the
fulfillment of the JIT requirement. Since the resources of the real system provide
the level A, it also has a certain positive cost with a proportionality factor of 5.
Moreover, A can serve as a control parameter in the system (4).

Thus, we consider the problem of optimal control of the process X in (4) for
fixed K € N and 7" > 0, and under the assumption (32) for h. It is necessary
to find an optimal value A* for which the problem is analogous to the problems
(17), (23) and (29):

O(A") = nf O(A), (33)

where the objective function ©(A) is equal to
OAN) =a-EXr+4-A (34)

under the conditions:
a>0,8>0. (35)

THEOREM 3. For the mazimum intensity level, which minimizes the objective

function O(A),

A = T if a-K-T/Bele,+x),  (36)

A= [ogla K -T/AYT if a K-T/Be (e, (37)
and

A = 0 if o K-T/3e(0,1] (38)

REMARK 4. As can be seen from the proof of the theorem, the coefficients o
and B can be regarded as functions of the time T. In this case the statement of the
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theorem remains true with the replacement of a by a(T), and B by B(T). Thus,
for the case of the objective function

OA)=a-EXr+~-A-T (39)

under conditions (35) for o and 8 = B(T) =~ - T, the problem (40) (which is the
(33) analog)

mmp*%@m (40)

has similar to (36), (37) and (38) solutions. Thus, for the level of intensity that

minimizes the objective function O(A),

A = O’;"[;/T if a-K/vye€le,+00),

AT = log(a- K/MT if a-K/ye(l,e),
and

A = 0 if a-K/ye(0,1].

Note that (39) (which is the (34) analog) is interesting for the models of systems
with payments for mazximum level of resources, proportional to the time of their
reservation.

4. Proof of the results.
4.1. Proof of Lemma 1. From (3) and (8), it follows that for all K € N,
T>0,andt >0

r(K:T) = K — /Ot ro(K;T) - ﬁ s < t} ds. (41)

From (41) we obtain (11). Then, from (3), (9) and the Ito formula, it follows that
forallt >0

t 1 K
K;T)=K*-2. S(KGT) - —— -1 = .t
(K T) | Ty g T < s
which results in (12). From (11) and (12) and the equality
v (K, T) = g:(K,T) — ri(K, T)?

we obtain (13). O

4.2. Proof of Theorem 1. To prove (20), we consider the sequence of
functions v (K (i);5(7)), ¢ = 1,...,n. From (13) and the equality (16), we obtain

<@ . L 1 K
| wlEs@yar = Ki)-<@)/6 = G- <0
which gives (18) with constants (19):
¢©:éw§- a(i) - (i) (42)
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It is clear that > ; a(i)-s(i)" = > i (x/ ) . Hence, from the Cauchy—
Bunyakovsky—Schwarz inequahty and the equahty (14), it follows that

Y;( a(i) -<(i)>2 : é <\/jﬁ)2 > (gqi)f _

which results in the inequality

K-T

Q) 2 - (43)
6> i1 1/a(i)
Then, from (42) and the representatuin (20), it follows that
K.-T
P(S*) = (44)

6-> 25 1/a(h)’

From (43) and (44), we conclude that ¢* = {¢*(1),...,¢"(n)} minimizes the ob-
jective function ®(<). O

4.3. Proof of Lemma 2. From (24), (25) and (26), it follows that

o T—o
‘I’(U)Z/ Ut(K;T)dt+/ v (re(K;T), T — o) dt.
0 0
Therefore, from (11) and (13) of Lemma 1, we obtain

K
6-T2

Note that V(o) < ¥(T') = K -T/6 for 0 € (0,T). The value of ¢* in (23) and
(45) is easy to calculate from the requirement 0W(o)/9o = 0, which results in the
equality (27). For the objective function, we have ¥(o*) = (19/27) - (K - T/6).
Thus, Lemma 2 is proved. U
4.4. Proof of Theorem 2. It follows from (30) and Lemma 2 that for each
successive rescheduling with the number ¢ > 1 the process X evolves in accordance
with the model of Subsection 2.2, but with the initial value of X, ;) and in the
time interval [u(7), 7] with the length (T"—wu(7)). Hence, from (27) we obtain that
u(i +1) — u(i) = (T — w(i))/3, which implies that (31) is true. O
4.5. Proof of Theorem 3. From (4), (7) and (32), it follows that

(o) = (T°-2-T?* c+4-T-0°—2-0°). (45)

Ri(K:h) = K — / ) min{A, I{s < T}/(T — s)} ds.

Denote U = T — 1/A, for which A = 1/(T" — U). Then, from (7) and (11),
it follows that for A > 1/T, EX; = R(K;h) = Rr_y(EXy; X - A). Hence,
EXt = RT_U(TU(K, T),X . A) = Rl/A(K/(T : A>7X : A) = exp{—l} . K/(T . A)
For A € [0,1/T), we have EX; = K -exp{—A-T}. Therefore, for ©(A) from (34),
we obtain

‘ <]I{A >1/TY  HAe0,1/T]}

Ol)=a-K e-T-A exp{A - T}

)+ B8 (46)
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The value of A* in (33) can be easily calculated from (46) and from the requirement
0O(A)/OA = 0, taking into account the cases a- K -T/f € [e,+o0), a- K -T/j €
(1,e) and a- K -T/B € (0, 1]. O

5. Discussion. The main purpose of this article is to show the possibilities
of using of the time reversal approach in problems concerning just-in-time. We
demonstrate simple methods for optimizing JIT systems, for the case of a point
(counting) process, represented in semimartingale terms. We also note that the
statements of Theorem 1, Lemma 2, and Theorem 2 are valid in the case of
a random walk in reverse time (Lemma 1 and Theorem 2 remain true if the
coefficients are properly replaced). In this case, the semimartingale representation
methods and optimal control problems are close to that of [17]. In the case of
nonstationary processes in direct time, the results are also anticipated. Finally,
note that the method of representing JIT systems discussed in the article in terms
of predictable semimartingale characteristics creates opportunities for simple and
clear computer modeling. Obviously, the simulation is easy to implement on the
basis of the infinitesimal relation for X : P{AX; = Xyn — Xy = —1|.%} =
hi(X)-A+o(A) as A — 0,for all t > 0.

Thus, it follows that the discussed approach can serve as an initial step for
the analysis of stochastic JIT systems.
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CroxacTuyeckKue MOoAdeJ it IIPOCTBhIX YIIpaBJId€eMbIX
cucremMm MmMo4YHoO-6-CpoxK

A. A. Bymos, A. A. Kosaaenkro

VAbSHOBCKUN TOCYJaPCTBEHHBIN YHUBEPCUTET,
dakysbTeT MaTEMATUKU U UHAMOPMAIMOHHBIX TEXHOJIOTUH,
Poccus, 432017, Ynbanosck, yi. JIeBa Toscroro, 42.

AHHOTaNsA

Mpsr npejyiaraem HOBBI M IPOCTOM TTOAXO [IJIsI MATEMATUIECKOTO OIU-
CAHHUS CTOXACTHIECKOW CHUCTEMBI, KOTOPasl Pean3yeT M3BECTHBIA HTPUHITAL
MOwH0-6-cpoK. DTOT upuHIWMI (coKpaleHHo JIT') TakKe N3BeCTEeH KaK moY-
HO-6-cpok. MaHydakTypa wiu IIpouseodcmeennasn cucmema Toyota.

Mogenu npocteix JIT-cucrteM M3y4daroTcs B 9TOH CTATHE B TEPMHUHAX TO-
YEYHBIX MPOIECCOB B OOPATHOM BpeMeHHU. Takoil MOX0J] MO3BOJISET JOITy-
CTUTH HEKOTOPBIE IIPEJINOJIOKEHNS O IIPOIEccaxX, HADIIOMAEMbIX B PeaIbHBIX
cucremax. Tak, B HacTosIelr pabore Mbl (GOPMYJIUPYEM U PENIaeM HEKOTO-
pble OY€Hb MIPOCThIE 33/[a9U OINTUMAJBHOIO YIPABJICHUS )i MHOTOCTA I~
HOH CHCTEMBI MOYHO-6-CPOK W 33Ja49M JJII CUCTEMbI C OTPDAHUYIECHHOU WH-
TEHCUBHOCTHIO 00C/TyKUBaHUsI. Pe3yIbTaThl MOy YeHbI JIJIs TeJIeBbIX (DYHK-
Ui, TPeJCTABIIONUX cOOON MaTeMaTUIeCKue OXKUJIAHUS JIMHEHHBIX HJIH
KBaJI[PATUIHBIX (DOPM OTKJIOHEHWIT 3HAYEHUN TPAEKTOPHIl OT 3aIJIaAHUPOBAH-
HBIX BesqimauH. J{0Ka3aTe/ibCTBa yTBEPXKIEHN OCHOBAHBI HA, UCIIO/IH30BAHUT
MapTUHTAJIBHBIX METOJOB. JacTO CUCTEMBI TO4HO-6-CPOK PACCMATPUBAIOT-
Cs B JIOTUCTUYECKUX 33J1a9aX, U JJId UX OMUCAHUS IPU ITOM HCIOIB3YIOT-
sl TOJIBKO (MJIM [IPEUMYIIECTBEHHO) JleTepMUHUCTUYecKue MeTobl. OHaKo
O4Y€BU/HO, 9YTO CﬂyqaﬁHbIe CO6I)ITI/I${ B TaKUX CUCTEMaX U COOTBETCTBYIOIIUX
Iporeccax HabJIIOIAIOTCS JTOBOJILHO 9acTo. VI MMEHHO B TAKHX CTOXACTUYE-
CKUX CJIy9asiXx O9€Hb BayKHO HANTH METOJBI JIJIsi ONTHMAJIBHOTO YIIPABJICHUST
IIPOTIECCAME TNOYHO-6-CPO%k. Jljisi TAKOTO ommcaHus MBI IIPejIaraeM B ITOMI
CTaThe WCIOJb30BATH MAPTHHTAJIBHBIE METOJbI. 3J1eCh MOKA3AHBI MPOCTHIE
IIOJIXOJIBI K ONITHMAJILHOMY YIIPABJIEHUIO cToxacTudeckumu JI T-miporeccamu.
B kadecTBe mpUMeEpPOB MBI pacCMaTpPUBAEM UPE3BLIYANHO IPOCTYIO MOJIEJIb
[IEPEIJIAHUPOBAHMS U METOJ YIIPABJIEHUsI MHTEHCUBHOCTHIO [TPOM3BOJICTBEH-
HOTO IIPOIIECCa, KOTJa BEPOATHOCTD PeAJIN3allUH IIJIAHA HeoDsI3aTeIbHO PABHA
ejuauIe (C COOTBETCTBYIOIUM KBaJIPATUIHBIM (DYHKIMOHAJIOM [OTEDD ).
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