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Abstract

In this paper, stationary dynamic equilibria of the rotating mass of a
nonisothermal fluid are discussed within the accuracy limits of the Boussi-
nesq approximation. It is demonstrated that, in this case, a fluid exhibits
a finite number of counterflows, higher values of velocities than those spec-
ified on the boundary and the formation of zones of positive and negative
pressures and temperatures.
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Introduction. The study of the motion of a rotating self-gravitating fluid
was started as long ago as by Isaak Newton [1, 2], and it is currently far from
being completed. Newton proved to be the first to endeavour to obtain, from
the motion equations, a solution simulating the shape of the Earth. Newton’s
pioneering study gave rise to numerous investigations in this field of mechanics
and physics and a great impetus to the development of the mathematics used
practically in all the sections of mathematics. The development of the potential
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theory, the creation of the theory of special functions and the formation of the
rapidly developing theory of integrable systems should be mentioned first.

Practically all the most prominent scientists, such as Appel, Basset, Betti,
Gagen, Helmholtz, Dedekind, Dirichlet, Kirchhoff, Lipschitz, Lame, McLoren,
Poincare, Riemann, Chandrasekhar, Jacoby, took part in the construction of the
theory [3–13]. This list of discoverers of exact solutions can be extended [3–
13]. The history of discovering the solutions can be found in the monographs
and surveys [3–13]. It should be noted that the scientific breakthrough in the
simulation of rotating equilibrium figures was made by the Russian scientists
Steklov, Lyapunov, Ovsyannikov and Zel’dovich.

Note that the development of the theory of motion stability described by
systems of ordinary differential equations was initiated by studying the stability
of equilibrium figures and the motion of an elastic body partially filled with a
fluid [4, 5]. It is the work in these fields that offered a formulation to the well-
known Lyapunov theorems of stability and instability, among other things, from
the first approximation [4, 5]. Original research has currently been done on the
stability of Dirichlet and Jacobi ellipsoids [8].

Ovsyannikov’s exact gas-hydrodynamic solution became the first solution si-
mulating gas cloud motion in the class of linear velocities [8]. Afterwards models
of Dyson and Fujimoto were proposed [8].

There is another substantial model, which influenced the development of the
theory of rotating fluids. It is the generalized solid proposed for research by
Arnold [14]. In the survey made by Dolzhansky [15] there is a detailed analysis
of this approach with some generalizations for different classes of fluids.

As a rule, dynamic fluid equilibria are simulated with the application of two
mathematical models. One model is Lagrangian fluid simulation, i.e. the use of
the ordinary differential equations of Lagrange, Hamilton and Jacoby to describe
the relative equilibrium (solid-state) of the continuum. The other model consists
in using the Euler equations with potential forces to analyze the structures of
a relative fluid equilibrium. Thus, in the simulation of dynamic fluid equilibria
no account is taken of dissipation and temperature effect. In other words, an
isothermal perfect incompressible fluid is dealt with.

It is apparent that this deficiency in studying fluid flows can be compensated if
this problem is analyzed with the application of the Oberbeck–Boussinesq system
of equations. Note that it is not only the Boussinesq approximation that has not
been used before to describe dynamic fluid equilibria, but also the characteristic
scale of solutions. This statement needs to be clarified. Despite Chandrasekhar [6]
used the Boussinesq approximation to simulate astrophysical objects, he used the
virial method of physical field expansion for solving his problems. The application
of this body of mathematics enabled one to reduce the Oberbeck–Boussinesq
system to a system of ordinary differential equations and to use the classical
problem statements when interpreting results. Similar reasoning holds for [14, 15].

There are studies dealing with large-scale fluid or gas motions [6], when it is
necessary to take into account the inhomogeneity of the gravitational field, and
with scales for which surface tension forces are principally important, e. g. the
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Hadamard-Rybczynski problem [16, 17]. In both extreme cases, the principal
equilibrium shape is spherical. The consideration of rotation was always viewed
as some disturbance of the principal flow, however it was not viewed as a forming
factor for equilibrium structures.

Note that the very possibility of the existence of equilibrium figures in the
region of intermediate scales, when neither the inhomogeneity of the gravitational
field nor the surface tension forces are essential, does not seem to have been
studied. At any rate, the authors are unfamiliar with works viewing the problem
this way.

Thus, we intend to ascertain the possible existence of equilibrium structures in
the region of the so-called intermediate scales, when the Boussinesq approximation
is obviously applicable to the simulation of a heat-conducting viscous incompres-
sible fluid.

1. Problem statement. In the Boussinesq approximation [6, 18] in the
Cartesian coordinates (the 𝑂𝑧 axis is directed upwards), the system of equations
describing the heat convection of a viscous incompressible fluid are written as

𝜕V

𝜕𝑡
+ (V · ∇)V = −∇P + 𝜈ΔV + g𝛽Tk,

𝜕𝑇

𝜕𝑡
+ V · ∇T = 𝜒ΔT, (1)

∇ ·V = 0.

The system of equations (1) involves the following symbols: V = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧)
is the flow velocity vector; 𝑃 is the pressure deviation from hydrostatic, which
is related to the constant average fluid density 𝜌; 𝑇 is the deviation from the
average temperature; 𝜈 and 𝜒 are the coefficients of kinematic viscosity and ther-
mal diffusivity of the fluid, respectively; 𝛽 is the temperature coefficient of fluid
volumetric expansion; k is the unit vector directed vertically upwards, ∇ is the
Hamilton operator, ∆ is the Laplace operator (Laplacian).

The solution of system (1) is sought in the approximation to the large scale.
For large-scale flows, the characteristic horizontal scale greatly exceeds in mag-
nitude the characteristic dimension during the entire fluid motion. Free surface
curvature can in this scale be neglected, the vertical velocity 𝑉𝑧 being assumed
zero. Thus, system (1) is transformed to the following system:

𝜕𝑉𝑥

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑥

𝜕𝑦
= −𝜕𝑃

𝜕𝑥
+ 𝜈

(︁𝜕2𝑉𝑥

𝜕𝑥2
+

𝜕2𝑉𝑥

𝜕𝑦2
+

𝜕2𝑉𝑥

𝜕𝑧2

)︁
,

𝜕𝑉𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑦

𝜕𝑦
= −𝜕𝑃

𝜕𝑦
+ 𝜈

(︁𝜕2𝑉𝑦

𝜕𝑥2
+

𝜕2𝑉𝑦

𝜕𝑦2
+

𝜕2𝑉𝑦

𝜕𝑧2

)︁
,

𝜕𝑃

𝜕𝑧
= 𝑔𝛽𝑇, (2)

𝜕𝑇

𝜕𝑡
+ 𝑉𝑥

𝜕𝑇

𝜕𝑥
+ 𝑉𝑦

𝜕𝑇

𝜕𝑦
= 𝜒

(︁𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑉𝑥

𝜕𝑧2

)︁
,

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
= 0.
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Obviously, system (2) is nonlinear and overdetermined, four unknown func-
tions of velocity and temperature being required from five equations. The hydro-
dynamic and temperature fields are computed as [18]

𝑉𝑥 = 𝑈 + 𝑥𝑢1 + 𝑦𝑢2, 𝑉𝑦 = 𝑉 + 𝑥𝑣1 + 𝑦𝑣2,

𝑃 = 𝑃0 + 𝑥𝑃1 + 𝑦𝑃2 +
𝑥2

2
𝑃11 +

𝑦2

2
𝑃22 + 𝑥𝑦𝑃12, (3)

𝑇 = 𝑇0 + 𝑥𝑇1 + 𝑦𝑇2 +
𝑥2

2
𝑇11 +

𝑦2

2
𝑇22 + 𝑥𝑦𝑇12.

For horizontal coordinates, all the functions in the formulae of system (3)
depend on the variable 𝑧 ant time 𝑡. Substituting relation (3) into system (2), we
arrive at the system

�̂�𝑈 + 𝑈𝑢1 + 𝑉 𝑢2 + 𝑃1 = 0,

�̂�𝑢1 + 𝑢21 + 𝑣1𝑢2 + 𝑃11 = 0,

�̂�𝑢2 + 𝑢1𝑢2 + 𝑢2𝑣2 + 𝑃12 = 0,

�̂�𝑉 + 𝑈𝑣1 + 𝑉 𝑣2 + 𝑃2 = 0,

�̂�𝑣1 + 𝑢1𝑣1 + 𝑣1𝑣2 + 𝑃12 = 0,

�̂�𝑣2 + 𝑢2𝑣1 + 𝑣22 + 𝑃22 = 0,

�̂�𝑇0 + 𝑈𝑇1 + 𝑉 𝑇2 − 𝜒 (𝑇11 + 𝑇22) = 0, (4)

�̂�𝑇1 + 𝑈𝑇11 + 𝑉 𝑇12 + 𝑢1𝑇1 + 𝑣1𝑇2 = 0,

�̂�𝑇2 + 𝑈𝑇12 + 𝑉 𝑇22 + 𝑢2𝑇1 + 𝑣2𝑇2 = 0,

�̂�𝑇11 + 2𝑢1𝑇11 + 2𝑣1𝑇12 = 0,

�̂�𝑇22 + 2𝑢2𝑇12 + 2𝑣2𝑇22 = 0,

�̂�𝑇12 + 𝑢1𝑇12 + 𝑢2𝑇11 + 𝑣1𝑇22 + 𝑣2𝑇12 = 0,

𝑢1 + 𝑣2 = 0,

𝜕𝑃0

𝜕𝑧
= 𝑔𝛽𝑇0,

𝜕𝑃1

𝜕𝑧
= 𝑔𝛽𝑇1,

𝜕𝑃2

𝜕𝑧
= 𝑔𝛽𝑇2,

𝜕𝑃11

𝜕𝑧
= 𝑔𝛽𝑇11,

𝜕𝑃12

𝜕𝑧
= 𝑔𝛽𝑇12,

𝜕𝑃22

𝜕𝑧
= 𝑔𝛽𝑇22.

Here, the following differential parabolic operators in partial derivatives are intro-
duced:

�̂� =
𝜕

𝜕𝑡
− 𝜈

𝜕2

𝜕𝑧2
, �̂� =

𝜕

𝜕𝑡
− 𝜒

𝜕2

𝜕𝑧2
.

2. Analyzing the solvability of system. In what follows we do not discuss
the solvability of system (4) as a whole, but restrict our analysis to one special
case. We will seek a solution to the system of equations when the boundaries of
the fluid layer rotate. In [19] the validity of equalities for the velocity gradients
in the simulation of axisymmetric flows within class (3) was demonstrated,

𝑢1 = 0, 𝑣2 = 0, 𝑢2 = −𝑣1. (5)
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Next the lower boundary of the layer 𝑧 = 0 is assumed to be immobile. The
upper boundary describable by the equation 𝑧 = ℎ rotates with constant angular
velocity Ω. Using equalities (5), we obtain the following solutions to system (4),
which determine a number of functions in class (3) for the coordinates 𝑥 and 𝑦:

𝑢2 =
Ω𝑧

ℎ
, 𝑣1 = −Ω𝑧

ℎ
, 𝑃12 = 0,

𝑃11 = 𝑃22 = −𝑢2𝑣1 =
Ω2𝑧2

ℎ2
, 𝑇12 = 0, (6)

𝑔𝛽𝑇11 = 𝑔𝛽𝑇22 =
2Ω2𝑧

ℎ2
.

For the homogeneous summands in expressions (3), due to solution (6), system
(4) yields two closed subsystems. First system has of the form

�̂�𝑈 +
Ω𝑧

ℎ
𝑉 + 𝑃1 = 0,

�̂�𝑉 − Ω𝑧

ℎ
𝑈 + 𝑃2 = 0,

�̂�𝑇1 +
2Ω2𝑧

𝑔𝛽ℎ2
𝑈 − Ω𝑧

ℎ
𝑇2 = 0, (7)

�̂�𝑇2 +
2Ω2𝑧

𝑔𝛽ℎ2
𝑉 +

Ω𝑧

ℎ
𝑇1 = 0,

𝜕𝑃1

𝜕𝑧
= 𝑔𝛽𝑇1,

𝜕𝑃2

𝜕𝑧
= 𝑔𝛽𝑇2.

Second system has of the form

�̂�𝑇0 + 𝑈𝑇1 + 𝑉 𝑇2 =
4𝜒Ω2𝑧

𝑔𝛽ℎ2
, (8)

𝜕𝑃0

𝜕𝑧
= 𝑔𝛽𝑇0.

Note that the integration of system (8) is possible only after the integration of
system (7). In order to find a solution to system (7), we introduce the following
complex functions:

𝑊 = 𝑈 + 𝑖𝑉, 𝑆 = 𝑃1 + 𝑖𝑃2, Θ = 𝑔𝛽 (𝑇1 + 𝑖𝑇2) .

Here 𝑖 is an imaginary unit. Thus, system (7) is in this case transformed to the
following form:

(�̂�− 𝑖Ω𝑧)𝑊 + 𝑆 = 0,

(�̂� + 𝑖Ω𝑧)Θ + 2Ω2𝑧𝑊 = 0, (9)
𝑑𝑆

𝑑𝑧
= Θ.
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To reduce the order of the system, the following transformation is made:

𝑆 = 𝑆1 + 𝑖Ω𝑧𝑊, Θ = Θ1 + 2𝑖Ω𝑊. (10)

Substituting (10) into system (9), we obtain the equalities

𝜈
𝑑2𝑊

𝑑𝑧2
+ 𝑆1 = 0,

𝜒
𝑑2Θ1

𝑑𝑧2
+ 𝑖Ω

(︁
𝑧Θ1 − 2

𝜒

𝜈
𝑆1

)︁
= 0, (11)

𝑑𝑆1

𝑑𝑧
= Θ1 − 𝑖Ω𝑧2

𝑑

𝑑𝑧

(︁𝑊
𝑧

)︁
.

For further transformations, we use the differential identity

𝑑2𝑊

𝑑𝑧2
=

1

𝑧

𝑑

𝑑𝑧

(︂
𝑧2

𝑑

𝑑𝑧

(︁𝑊
𝑧

)︁)︂
.

This identity holds for any twice-differentiable function. Consequently, by differ-
entiating the last equation in system (11), we arrive at a system for determining
the functions Θ1 and 𝑆1,

𝜒
𝑑2Θ1

𝑑𝑧2
+ 𝑖Ω

(︁
𝑧Θ1 − 2

𝜒

𝜈
𝑆1

)︁
= 0, 𝜈

𝑑2𝑆1

𝑑𝑧2
= 𝑖Ω𝑧𝑆1 + 𝜈

𝑑Θ1

𝑑𝑧
. (12)

Taking into account that equations (11) offer an explicit expression for 𝑊 , we
obtain an integral of the initial system with automatic order reduction, system
(12) being transformed to the operator equation[︂(︁

𝜈
𝑑2

𝑑𝑧2
− 𝑖Ω𝑧

)︁(︁
𝜒
𝑑2

𝑑𝑧2
+ 𝑖Ω𝑧

)︁
− 2𝑖Ω𝜒

𝑑

𝑑𝑧

]︂
Θ1 = 0.

Simplifying the latter equality, we derive the following fourth-order ordinary dif-
ferential equation with complex coefficients:[︁

𝜈𝜒
𝑑4

𝑑𝑧4
+ 𝑖Ω (𝜈 − 𝜒)

𝑑2

𝑑𝑧2
𝑧 + Ω2𝑧2

]︁
Θ1 = 0. (13)

3. Solving equation when the dissipative coefficients coincide. We
assume in equation (13) that 𝜈 = 𝜒 (the Prandtl number equals one). In this
case, equation (13) acquires the form

𝑑4Θ1

𝑑𝑧4
+
(︀
36𝜎3𝑧

)︀2
Θ1 = 0, (14)

where 𝜎 = 1
6

3

√︁
Ω
6𝜈ℎ is the dispersion relation. For the convenience of computa-

tions, in order to illustrate the physical meaning of the solutions and to make the
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notation concise, we introduce a new variable 𝑍 = 𝑧
ℎ𝜎 . The general solution of

equation (14) is written as

Θ1 = 3
0𝐹

[︁{︁1

2
,
2

3
,
5

6

}︁
,−𝑍6

]︁
𝐶1 + 3

0𝐹
[︁{︁2

3
,
5

6
,
7

6

}︁
,−𝑍6

]︁
𝐶2𝑍+

+ 3
0𝐹

[︁{︁5

6
,
7

6
,
4

3

}︁
,−𝑍6

]︁
𝐶3𝑍

2 + 3
0𝐹

[︁{︁7

6
,
4

3
,
3

2

}︁
,−𝑍6

]︁
𝐶4𝑍

3. (15)

Here, 3
0𝐹 = 𝐹 (𝑎; 𝑏;𝑍) = 𝐹 (𝑎1, 𝑎2, . . . , 𝑎𝑝; 𝑏1, 𝑏2, . . . , 𝑏𝑞;𝑍) is a generalized hy-

pergeometric function [20]. The choice of using the generalized hypergeometric
function for writing the solutions is dictated by notation conciseness. Note that
there is another form of writing the solution of equation (14), which is based on
using the Mittag–Leffler functions [20]. Note that each particular solution (15)
is a function of a real variable and that the general solution is considered in the
complex plane. Thus, at least one integration constant is a complex number.

We now turn to finding the generalized pressure 𝑆1 from the differential equa-
tion (11)

𝑆1 = − 𝑖

2𝜎

𝑑2Θ1

𝑑𝑧2
+

𝑧

2
Θ1. (16)

The substitution of solution (15) into equation (16) gives

𝑆1 = 3
0𝐹

[︁{︁1

2
,
2

3
,
5

6

}︁
,−𝑍6

]︁𝐶1

2
𝑍 + 3

0𝐹
[︁{︁2

3
,
5

6
,
7

6

}︁
,−𝑍6

]︁𝐶2

2
𝑍2+

+ 3
0𝐹

[︁{︁5

6
,
7

6
,
4

3
,
}︁
, 𝑍

]︁
3
√

36𝜎2
2 · 5𝐶3

6!
𝑍3 + 3

0𝐹
[︁{︁7

6
,
4

3
,
3

2

}︁
, 𝑍

]︁
𝜎

2 · 5𝐶4

6!
𝑍4−

− 1

72𝜎
𝑖

{︂
3
0𝐹

[︁{︁5

6
,
7

6
,
4

3

}︁
, 𝑍

]︁
3
√

676𝜎2𝐶3𝑍
3 − 3

0𝐹
[︁{︁7

6
,
4

3
,
3

2

}︁
, 𝑍

]︁
6𝜎𝐶4𝑍+

+ 3
0𝐹

[︁{︁5

6
,
7

6
,
4

3

}︁
, 𝑍

]︁
3𝜎2𝐶1𝑍

4+

+ 3
0𝐹

[︁{︁5

3
,
11

6
,
13

6
,
}︁
, 𝑍

]︁24 · 33𝜎2

7!
3

√︂
3𝜎

4
𝐶2𝑍

5+

+ 3
0𝐹

[︁{︁5

3
,
11

6
,
13

6
,
}︁
, 𝑍

]︁24 · 34𝜎2

7!
3
√

6𝜎𝐶2𝑍
5+

+ 3
0𝐹

[︁{︁11

6
,
13

6
,
7

3

}︁
, 𝑍

]︁22 · 34𝜎2

7!

3

√︂
9𝜎2

2
𝐶3𝑍

6+

+ 3
0𝐹

[︁{︁13

6
,
7

3
,
5

2

}︁
, 𝑍

]︁2 · 5 · 11𝜎3

7!
𝐶4𝑍

7−

− 3
0𝐹

[︁{︁5

2
,
8

3
,
17

6

}︁
, 𝑍

]︁27 · 33 · 7𝜎4

11!
𝐶1𝑍

10−

− 3
0𝐹

[︁{︁8

3
,
17

6
,
19

6

}︁
, 𝑍

]︁29 · 36𝜎4

13!
3

√︂
3𝜎

4
𝐶2𝑍

11−

− 3
0𝐹

[︁{︁17

6
,
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6
,
10

3

}︁
, 𝑍

]︁28 · 35 · 5𝜎4

14!

3

√︂
9𝜎2

2
𝐶3𝑍

12−
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−3
0𝐹

[︁{︁19

6
,
10

3
,
7

2

}︁
, 𝑍

]︁27 · 32 · 5 · 11𝜎5

14!
𝐶4𝑍

13

}︂
. (17)

Complex velocity 𝑊 can be expressed in two ways. Firstly, it can be obtained
by integrating the first equation in system (9), but it is a second-order equation.
Hence, we obtain a solution depending on six integration constants, whereas sys-
tem (11) is a fifth-order equation system. Thus our problem is complicated by
additional analysis of overdetermination. A correct expression for velocity 𝑊 can
be obtained by the integration of the third equation in system (9),

Ω𝑊 = 𝐶5𝑍 +

(︂
3
0𝐹

[︁{︁2

3
,
5

6
,
7

6

}︁
, 𝑍

]︁
− 1

)︂
𝑖

2
3

√︂
𝜎

36
𝐶2𝑍−

− 4
1𝐹

[︁{︁
−1

6

}︁
,
{︁1

2
,
2

3
,
5

6
,
5

6

}︁
, 𝑍

]︁2𝑖Γ
(︀
−1

6

)︀
4!Γ

(︀
5
6

)︀ 𝐶1𝑍
2+

+ 4
1𝐹

[︁{︁
−1

6

}︁
,
{︁5

6
,
7

6
,
4

3
,
3

2

}︁
, 𝑍

]︁2 · 5Γ
(︀
−1

6

)︀
6!Γ

(︀
5
6

)︀ 𝐶4+

+ 4
1𝐹

[︁{︁1

6

}︁
,
{︁5

6
,
7

6
,
7

6
,
4

3

}︁
, 𝑍

]︁2 · 5𝑖Γ
(︀
1
6

)︀
6!Γ

(︀
7
6

)︀ 3

√︂
𝜎2

6
𝐶3𝑍

2+
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1𝐹
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3
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,
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,
4

3
,
4

3
,
3

2
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, 𝑍
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(︀
1
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4
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{︁4

3
,
3

2
,
5

3
,
11

6
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3
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+ 4
1𝐹
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,
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,
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,
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,
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,
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,
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6
,
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,
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,
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,
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,
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18. (18)

Here Γ (𝜆) =

∫︁ +∞

0
𝑟𝜆−1 exp (−𝑟) 𝑑𝑟 is the Euler gamma function [20]. Solu-

tions (15), (17), (18) are written as a linear combination of generalized hypergeo-
metric functions in the form of infinite power series. Consequently, examination of
solution convergence is an urgent problem. Using the properties of convergence of
these functions, we can state that the convergence radius for each solution equals
infinity [20]. It means that the solution of our problem always converges.

Let us now formulate the boundary conditions to determine the integration
constants of equation system (7). Without any claim to solution generality and
without studying the shapes of the fluid, we give a simple example of such solu-
tions. Let the simplest and most physically meaningful solution be a flow between
two infinite disks rotating with free velocities. This is possible, since the solution
can always be shifted along the 𝑂𝑧-axis, an appropriate distance between the disks
being chosen. The disks must be nonuniformly heated to a proper temperature
(the temperature must be related to the radius by a well-defined law). Assume
that the lower boundary is isothermal (the temperature of the lower disk is zero);
the adhesion condition holds on both boundaries. Thus, the following equalities
are valid:

when 𝑧 = 0, 𝑈 = 𝑉 = 0, 𝑇1 = 𝑇2 = 0;

when 𝑧 = ℎ, 𝑈 = 𝐴 cos𝛼, 𝑉 = 𝐴 sin𝛼, 𝑇1 = 𝐵, 𝑇2 = 𝐶, 𝑃1 = 𝜏1, 𝑃2 = 𝜏2.

The conditions for determining the integration constants, written on the bound-
ary, do not determine the integration constants uniquely. The system of linear
algebraic equations for determining the integration constants is underdetermined,
since there are few boundary conditions. To close the system of equations, we
specify the fluid flow rate conditions as∫︁ ℎ

0
𝑈𝑑𝑧 = 𝑄1,

∫︁ ℎ

0
𝑉 𝑑𝑧 = 𝑄2.
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When the flow rate is specified, it is generally assumed that 𝑄1 = 𝑄2 = 0 [19].
It is a physically justified convention [18, 19]. However, it is possible to obtain
a solution by specifying a nonzero flow rate. Next, not limiting the generality of
the reasoning, we will study the solutions simulating fluid motions with the zero
flow rate.

For the above-introduced complex velocities, pressure and temperature (15),
(17), (18), in view of transformations (10), the following boundary conditions are
valid:

when 𝑧 = 0 : 𝑊 = 0, Θ1 = 0; (19)
when 𝑧 = ℎ : 𝑊 = 𝐴 exp (𝑖𝛼) , Θ1 = 𝐵 + 2𝐴Ω sin𝛼 + 𝑖 (𝐶 − 2𝐴Ω cos𝛼) ,∫︁ ℎ

0
𝑊𝑑𝑧 = 0.

With the boundary conditions (19), it follows from equality (15) that 𝐶1 = 0,
and from solution (18) that 𝐶4 = 0. Thus, the expressions for the determination of
hydrodynamic fields become much simpler. Remember that, in the computation
of the integration constants, the variable 𝑧 = ℎ𝜎𝑍 is to be replaced.

4. Analysis of the solutions. Using conditions (19), it is easy, but rather
cumbersome, to compute the complex 𝐶2, 𝐶3, and 𝐶5 which are related to the
dispersion relation 𝜎 (kinematic viscosity) by the fractional linear law. Analyzing
conditions (19), we find that the boundary value problem under study is mean-
ingful at any positive value of 𝜎. Nevertheless, the structure and behavior of the
solutions depend considerably on the value of 𝜎.

It is well known that, to analyze the polynomial solutions of system (7), it
would suffice to localize the roots of the linear combination of the generalized hy-
pergeometric functions [20]. Any hypergeometric function is known to be mono-
tonically increasing with a zero value at the origin. Therefore, the appearance of
other zero values is possible only when there is a combination of functions with at
least one negative weight coefficient [20]. The appearance of negative coefficients
depends on 𝜎 and the function domain, which also depends on the dispersion rela-
tion 𝑍 ∈

[︀
0, 1

𝜎

]︀
. Temperature is characterized by three types of solutions. When

𝜎 > 3
2 , the function describing temperature is a strictly monotonically increasing

or decreasing function (fig. 1). If the evaluation 9
10 < 𝜎 < 3

2 is valid for the
dispersion relation, there is exactly one zero value of temperature inside the fluid
layer (fig. 2). With the further decrease, temperature gets a finite number of zeros
(fig. 3). Consequently, the fluid layer is divided into the regions with positive and
negative temperature, which are characterized by alternating signs. The analysis
of pressure is similar to that of temperature.

Velocities are characterized by only two qualitative behaviors of the functions
(figs. 2 and 3). Thus, at any 𝜎, there appear fluid counterflows. It was shown
in [21–27] that the appearance of counterflows is a purely nonlinear effect, i. e.,
the viscous forces are comparable to the convective acceleration, and even without
Coriolis forces. However, when 𝜎 tends to zero, counterflow zones are formed,
whose thickness decreases with 𝜎. Other values of the dispersion relation are
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characteristic of velocity, and they are easy to compute. However, the values
obtained for the temperature and pressure fields are a good reference point for
refining the characteristic dispersion numbers of velocities.

When analyzing the solutions (fig. 3), we can see their “fluctuation”. In [28]
localized convective flows in terms were studied in the axisymmetric formulation.
Solution “damping” was observed there. We use a wider class of solutions. There
may be not only “damping” (when 𝜎 is close to one), but also “resonance” initi-
ation. Yet, the solution does not become singular, and the Boussinesq approxi-
mation is not violated in the simulation of the convective flow. This difference is
attributed to the account of the quadratic summands for temperature. If tempera-
ture is considered to be a linear function with respect to the horizontal coordinates,
the solutions obtained in this study coincide with those discussed in [22].

Figure 1. A qualitative form of the solu-
tions 𝑇1, 𝑇2, 𝑃1, 𝑃2 of system (7) when
𝜎 > 3

2
(1 − 𝜏1 > 0, 𝜏2 > 0, 𝐴 > 0, 𝐵 > 0,

𝐶 > 0; 2 − 𝜏1 < 0, 𝜏2 < 0, 𝐴 < 0, 𝐵 < 0,
𝐶 < 0)

Figure 2. A qualitative form of the solu-
tions 𝑇1, 𝑇2, 𝑃1, 𝑃2, 𝑈, 𝑉 of system (7)
when 9

10
< 𝜎 < 3

2
(1 − 𝜏1 > 0, 𝜏2 > 0,

𝐴 > 0, 𝐵 > 0, 𝐶 > 0; 2 − 𝜏1 < 0, 𝜏2 < 0,
𝐴 < 0, 𝐵 < 0, 𝐶 < 0)

Figure 3. A qualitative form of the solu-
tions 𝑇1, 𝑇2, 𝑃1, 𝑃2, 𝑈, 𝑉 of system (7)
when 𝜎 6 9

10
(1 − 𝜏1 > 0, 𝜏2 > 0, 𝐵 > 0,

𝐶 > 0; 2− 𝜏1 < 0, 𝜏2 < 0, 𝐵 < 0, 𝐶 < 0)
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5. Solution of equation with the Prandtl number different from one.
An important particular case of equation (13) was studied above; namely, when
the values of kinematic viscosity and thermal diffusivity of the fluid coincide. Let
us now write the solution of equation (13) in the general case:

Θ1 = Ai
(︁
𝜉 +

4Ω𝑧
√
𝜈𝜒

3

√︂
𝜈2𝜒2

16Ω2

)︁
(𝐶1Ai (𝜉) + 𝐶2Bi (𝜉)) +

+ Bi
(︁
𝜉 +

4Ω𝑧
√
𝜈𝜒

3

√︂
𝜈2𝜒2

16Ω2

)︁
(𝐶3Ai (𝜉) + 𝐶4Bi (𝜉)) . (20)

Here
𝜉 = 3

√︀
𝜈2𝜒2

𝑖 (𝜈 − 𝜒) + 2
√
𝜈𝜒Ω𝑧

𝜈𝜒
3
√

16Ω2

is an auxiliary variable introduced in order to make the solution notation concise;
Ai (𝜉) and Bi (𝜉) are the Airy function and the associated function [20]. Solution
(20) is complex-valued, since it is written for arbitrary differences between 𝜈 and
𝜒. This is done for the convenience of the solution analysis. Solution (20) being
known, pressure 𝑆1 and velocity 𝑊 are computed similarly to the previous case.

When the dissipative coefficients 𝜈 and 𝜒 of the nonisothermal fluid are equal,
solution (20) is reduced to formula (15). Studying the convergence of series (20),
we find that the solution expressed in terms of this series converges on the solution
domain, i. e. layer thickness.

The consideration of equation (13) with an arbitrary relation between 𝜈 and 𝜒
offers solutions to system (7), (8) in qualitative terms, see figs. 1 to 3. In the sim-
ulation of the hydrodynamic fields by the linear combination of the Airy functions
the behavior of the solutions is predictable from the very beginning, since these
special functions satisfy the simplest differential equation having a point where
the fluctuation of the solution is replaced by its exponential growth. It was shown
above that the solution does not go off to infinity.

6. Conclusion. The problem of simulating rotating fluid masses has a long
history. To describe fluid motion (relative equilibrium), ordinary differential equa-
tions are used that enable one to obtain solutions simulating fluid flows by the
theory of motion stability with the disturbance of the background (principal)
flow. This paper discusses the exact solution to an overdetermined boundary
value problem, which describes stationary flow at any scales where the Boussi-
nesq approximation is valid. In this case, stationary dynamic fluid equilibria are
characterized by the formation of counterflows, the sign of velocity being able to
alternate several times, depending on the boundary conditions and the geometric
dimensions of the fluid layer. A similar situation is true for temperature and
pressure, namely, the formation of zones with the negative and positive values of
temperature and pressure with respect to the reference value.
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Динамические равновесия неизотермической жидкости

Е. Ю. Просвиряков1,2
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Россия, 620049, Екатеринбург, ул. Комсомольская, 34.
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Аннотация

В рамках точности приближения Буссинеска рассмотрены стацио-
нарные динамические равновесия вращающейся массы неизотермиче-
ской жидкости. Показано, что в этом случае в жидкости наблюдается
конечное число противотечений и усиление скоростей по сравнению с
заданными на границе значениями, а также формирование зон положи-
тельного и отрицательного давления и температуры.

Ключевые слова: динамическое равновесие, вращающийся поток жид-
кости, точное решение, аппроксимация Буссинеска, противотечение, уве-
личенные скорости.
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