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Abstract

Continuous fluid and gas flows with closed vortex tubes are investigated.
The circulation along the vortex line of the ratio of the density of the re-
sultant of all forces (applied to the fluid or gas) to the density of the fluid
or gas is considered. It coincides with the circulation (along the same vor-
tex line) of the partial derivative of the velocity vector with respect to time
and, therefore, for stationary flows, it is equal to zero on any closed vortex
line. For non-stationary flows, vortex tubes are considered, which remain
closed for at least a certain time interval. A previously unknown regularity
has been discovered, consisting in the fact that at, each fixed moment of
time, such circulation is the same for all closed vortex lines that make up
the vortex tube. This regularity is true for compressible and incompressible,
viscous (various rheologies) and non-viscous fluids in a field of potential and
non-potential external mass forces. Since this regularity is not embedded in
modern numerical algorithms, it can be used to verify the numerical calcu-
lations of unsteady flows with closed vortex tubes by checking the equality
of circulations on different closed vortex lines (in a tube).

The expression for the distribution density of the resultant of all forces
applied to fluid or gas may contain higher-order derivatives. At the same
time, the expression for the partial derivative of the velocity vector with
respect to time and the expression for the vector of vorticity (which is nec-
essary for constructing the vortex line) contain only the first derivatives;
which makes it possible to use new regularity for verifying the calculations
made by methods of high and low orders simaltaniously.
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Introduction. The classical Helmholtz theorems on the motion of vortices
in barotropic fluid were summarized in Zoravski’s criterion [1], which is also re-
ferred to the Friedmann theorem [2]. This criterion deals with the possibility of
considering the evolution of an arbitrary vector field (not only the vorticity field)
as the movement of vector lines and vector tubes of this field with the fluid par-
ticles. Later, other patterns of vortex movements were discovered. One group of
laws is associated with the conservation of certain quantities (which depend on
the flow parameters) along streamlines or vortex lines in the general 3D case in a
non-barotropic gas [3-6|. These laws deal with “generalized” circulation or “gener-
alized” velocity and vorticity fields (which makes it difficult to use them to verify
numerical calculations). The regularities have a simpler form, especially for plane
and axisymmetric flows with an additional assumption on the isoenergeticity of
the vortex gas flow (which is valid, for example, in the flows behind the detached
shock wave). These regularities, in the first place, include the result of Crocco |7].
It comnsists in the fact that, in the plane case, along the streamlines, the ratio
of vorticity to pressure I; = €/p is maintained, and in the axisymmetric case
the invariant is Io = Q/(pr), where r is the distance from the axis of symmetry.
Another group of regularities includes the results discussed in [8-11]|, where for-
mulas are obtained for calculating vorticity at some points of the flow behind a
detached shock wave through the free stream parameters and through parameters
determined by the shape of the shock wave (slope, curvature). We can also men-
tion studies dealing with the existence of vortex flows of incompressible fluid with
certain properties [12-16] and the principles of maximum in vortex flows [17-21].

In this paper, we study flows with closed vortex tubes. In some cases, it is
possible a priori (before making calculations) to state that vortex lines and tubes
will be closed (for example, a flow behind a detached shock wave [22]) and checking
the closure of vortex lines can serve to verify the calculations. In other cases, closed
vortex tubes are detected as a result of a calculation (for example, [23-28|), and
checking the regularities specific to vortex tubes would allow verification of the
calculation. This article is devoted to the search for such regularities in the general
3D case for continuous flows of fluid and gas, hereinafter called as fluid flows.

1. Basic notation and Zorawski’s criterion. In what follows, we consider
the fluid flows whose velocity field V = V(x,y, z,t) is described by the equation

E?;—FQXV—FV(‘;Q):F, (1)

where V' = |V|, Q = rotV is vorticity, F = F(z,y, 2,t) is the ratio of the
density of the resultant of all forces (applied to the fluid) to the density of the
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fluid. Such flows include stationary and non-stationary flows of compressible and
incompressible, viscous (various rheologies) and non-viscous fluids.

Let the spatial domain G be located inside a fluid with a velocity field V =
V(z,y,2,t) and inside this field is vortex for some open time interval (2 # 0).
In the domain G, we also consider the flow of an imaginary fluid whose particles
move with a velocity q = q(x,y, z,t). The particles of an imaginary fluid do not
interact with the particles of a real fluid and do not affect its movement. Suppose
that, in the domain G, within the time interval (t1,¢2), the vorticity of a real fluid
Q2 and the velocity of an imaginary fluid q are related by the equation

o0 +rot(Q2 xq)=0. (2)
ot
In this case, Zoravski’s criterion [1] states that, in the interval (¢, t2), the evolution
of vorticity € can be viewed as the movement of vortex lines (and vortex tubes
with preservation of their intensity), together with the particles of an imaginary
medium moving with a velocity q as long as these particles are inside G. This
conclusion from Zoravski’s criterion will be used below. For brevity, the particles
of an imaginary fluid will be termed g-particles.
All the parameters of the flows discussed in this paper are considered suffi-
ciently smooth.

2. The velocity q in a closed vortex tube. Consider the region of vortex
motion of a fluid (2 # 0) in which there is a fixed flat region (surface) o such
that during a nonzero time interval (¢1,t2) each vortex line intersects this surface
at an acute angle to the normal, and only once.

Denote by G, a fragment of space, the points of which can be reached if we
fix the time and move from the flat region ¢ along the vortex lines starting at o
(due to the closedness of the vortex lines you can move to either side of o). In
other words, the fragment G, is the union of all vortex lines passing through o.
Although the surface o is fixed in space, but, due to the change in the shape of
the vortex lines with time, the shape of the G, fragment may change with time,
i.e. G5 = G,(t). The fragment G, (t) consisting only of closed vortex lines at each
moment of time is a closed vortex tube.

We construct the function f(z,y, z,t) as follows. At first we define it at points
of the surface o. Let for each time ¢ C (¢1,t2) at the points of the surface o the
function f be equal to zero. The surface o has two sides. Let one of the sides be
called the first, the other being called the second. We continue the function f in
the rest part of the vortex tube G,(t) by integrating along the vortex lines (from
the first side of o to the second side of o), so that the following equality holds
(the dot denotes the scalar product):

QVf=Q-F. (3)

It follows from the theory of ordinary differential equations [29] that the
field f constructed in this way will be uniquely determined for each time in-
stant ¢t C (t1,%2) at all points of the vortex tube G,(t). In this case, at points of
the surface o, the field f will be continuous from the first side of o (from which
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integration began), and it may prove to be discontinuous from the second side
of 0.
We use the well-known formula for a double vector product

AQx[QAx{F-Vf}|=QQ - {F-Vf})—{F-Vf}(Q- Q).
The first term in the right-hand side is zero by virtue of (3). Therefore,

[ x {F - Vf}]
Q2

F=V/-

Substitute this expression for the vector F into equation (1):

%\;H}x(VHQX{EQ_WH):v(f—‘;Q). (4)

Let n, denotes a unit vector normal to the flat surface o on the side from which
integration began when constructing the function f; (Vf); and (Vf), denote the
limiting values of the gradient of the function f from the first side ¢ and from the
second side o, respectively.

The surface o is chosen so that € - n, # 0 everywhere on this surface. There-
fore, there are an infinite number of functions g(z,y, z,t) defined (and smooth)
at all the points of the tube G,(t), except for the points on the surface o, such
that the limiting values of g; and go on different sides of the surface o satisfy the
conditions

(@ > {F — (Vf),}]
02

(v+ +9:2) me =0, =12

(These conditions mean that on both the first and second sides of the surface o,
the vectors in round brackets are parallel to o.) Let g(x,y,z,t) be one of such
functions. This function is defined in the tube G, (t) = G,(t)\o (the tube G/ (t)
is obtained by cutting out the surface o from the tube G, (t)). Inside the tube
G/(t), we consider the vector field

[ X {F - Vf}]
02

q=V +Q x + g€2.

Since 2 x ©Q = 0, equation (4) is equivalent to

88‘;—i-ﬂ><q:V(f—‘f).

Applying the rot operator to both sides of the latter equality leads to the equation

%quot[ﬂxq]:O.

Comparing this equation with (2) and using Zoravski’s criterion, we arrive at
the following conclusion.
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The evolution of the vorticity in the tube G.(t) can be considered as moving
the vortex lines (and vortex tubes with preserving their intensity) together with
q-particles moving with velocity q.

3. The theorem on closed vortex tubes. At time t; C (t1,t2), we choose
any closed vortex line in the tube G,(t]). Consider a set of g-particles that make
up a part of this line lying in G/ (#}), i.e. the part of the closed line without a
point on the surface o (where the velocity q is not defined and where there are
no g-particles). The function ¢ is chosen in such a way that the limit value of
the velocity q on both sides of surface o is parallel to this surface. Therefore, the
g-particles cannot “get out” of the tube G/ (t) through the surface o, and new
g-particles cannot “get in”. Consequently, the considered set of g-particles inside
G4 (t) will constitute a closed vortex line (except for one point on the surface o)
for some non-zero time interval (t],t,) C (t1,t2). Since the vortex lines are closed,
this means that, during the time interval (¢},t5) C (¢1,t2), the velocity limits q
on different sides of the surface o must coincide,

[ > {F - (V/f),}] [ X {F — (V/),}]

V + 02 0?

+glﬂ:V+

+ 9252

After rearrangements of the terms, we obtain

Qx{(Vf)y = (Vhi} = (92 — 91)82 (5)

By the properties of the vector product, the left and right sides of equality (5) are
perpendicular to each other. This is only possible if both parts are zero. Therefore,

Qx{(Vf)y—(V)} =0,

i.e. the vectors {(Vf), — (Vf),;} and © # 0 are parallel. On the other hand,
according to (3),
Q- {(Vf)y = (Vi) =0,

i.e. these vectors are orthogonal. This is only possible if (V f), = (Vf);.

By construction, the projection of (V f), onto the surface o is zero. Therefore,
the projection of (V f), onto the surface o is also zero. The selected line and time
t) C (t1,t2) were chosen arbitrarily (see the beginning of this section). Conse-
quently, the projection (V f), on the surface o is zero at all points o during the
entire time interval (¢1,¢2). This means that, at each instant of time, the limiting
values of f at the ends of all lines are equal to one constant. This constant may
be different for different points in time. According to equation (3), the aforemen-
tioned constant is the circulation of the vector F along a closed vortex line, i.e.
the circulation of the right-hand side of equation (1) over a closed vortex line
is the same for different vortex lines crossing the surface o. Thus, the following
theorem is proved.

A necessary condition for the existence in time of vortex tubes,
consisting of closed vortex lines. Let the vortex flow of a fluid (2 #0) be
described by equation (1). And let, during the nonzero period of time (t1,t2), the
entire (stationary) flat surface o intersect with the closed vortex lines of this flow
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at an acute angle to the normal and, at the same time, each vortex line intersect
with o only once. Then, for any fixred moment of time t C (t1,t2), the circulation
of the right side of equation (1) along a closed vortex line is the same for different
vortex lines crossing the surface o.

Note that the theorem leaves open the question of the time dependence on
the circulation of the vector F.

The classical Thomson (Kelvin) theorem [2] is also true for all types of fluids.
It claims that the time derivative of the velocity circulation along a contour mov-
ing together with the fluid particles is equal to the circulation of the right-hand
side (1). In this theorem, no mention is made of the relation between the values
of the circulation on different contours. In the theorem proved above, such a con-
nection is found (equality of circulations) for contours of a special form (closed
vortex lines). These contours are different from the contours referred to in the
Thomson theorem since it cannot be stated in the general case that the vortex
lines move with the particles of the fluid. Therefore, the Thomson theorem and
the theorem proved above are incomparable and complementary.

4. Equivalent formulation of the theorem and some special cases.
The circulation of the second term in the left-hand side of equation (1) is zero,
since the vector {2 XV is orthogonal to the vortex line. The circulation of the third
term is zero due to the closedness of the vortex line. Therefore, the circulation of
F coincides with the circulation of %—Y Consequently,

a) under the conditions of the theorem proved above, for any fized moment of
time t C (t1,t2), the circulation of %—Y along a closed vortex line is the same
for different vortex lines intersecting the surface o;

b) for stationary flows, the circulation of the right-hand side of equation (1)
along any closed vortex line is zero.

For a non-stationary flow, it is also possible to specify a situation where the
circulation of the right-hand side of equation (1) along any closed vortex line is
zero. In particular, if there is a sequence of closed vortex lines in the vortex tube,
the lengths of which tend to zero, then this circulation will be equal to zero.

Conclusion. For all types of fluids (from an ideal fluid to a viscous gas),
a previously unknown property of closed vortex lines has been obtained. It is
formulated as a theorem, and it can be used both for qualitative analysis and
for verification of numerical calculations of flows in which there are closed vortex
tubes.
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SaMKHyTbIe BuUXpeBbl€ JIMHAU B 2KUJKOCTHU U ra3e

I. B. Cusvix

MOCKOBCKHH aBHAIIMOHHBIA MHCTUTYT (HAIMOHAJILHBIN HCCIIEI0BATEILCKII YHUBEPCUTET),
Poccusi, 125993, Mocksa, Bonokomamckoe 1occe, 4.

AnHHOTan M

Wcciieryercst HenpepbIBHOE TedeHUE KUJKOCTH U ra3a ¢ 3aMKHYTBIMHI
BUXpeBBIME TPyOKamu. PaccMoTpeHa IUpPKYJIsIius BIOJIb BUXPEBOU JIMHUU
OTHOIIEHUSI IJIOTHOCTH PABHOJEHCTBYIOMEH BeeX CHl (IPUJIOKEHHBIX K KU
KOCTH WJIA Ta3y) K IJIOTHOCTU XKUAKOCTH Ui ra3a. OHa cOBNAJAET ¢ IUPKY-
JIAI7el 110 TON 2Ke BUXPEBOU JIMHUU YaCTHOU IPOU3BO/IHON BEKTOPA CKOPOCTH
110 BPEMEHU U TIO9TOMY JIJIsi CTAIMOHAPHBIX TE€UYeHWI paBHA HYJIIO HA JIIOOOM
3aMKHYTOW BUXPEBOit TuHUHU. [[jIs HeCTAIIMOHAPHDBIX TEUYEHUIT PACCMOTPEHBI
BHUXPEBbIe TPYOKM, KOTOPBIE OCTAIOTCS 3aMKHYTBIMU 110 KpaliHeil Mepe B Te-
JeHne HEKOTOPOro mHTepBaJia Bpemenn. QOHApyKeHa HEU3BECTHAs paHee
3aKOHOMEPHOCTh, COCTOAIIAsI B TOM, UTO B KaXKJbIil (DUKCUPOBAHHBIN MO-
MEHT BDEMEHH TaKas IUPKYIANNS OJIMHAKOBA JIJIA BCEX 3aMKHYTBIX BUXPe-
BBIX JIMHUIA, COCTABJIAIONINX BUXPEBYIO TPYOKy. YKa3zaHHAsT 3aKOHOMEPHOCTH
BepHA JJIsl TEYeHUH CXKUMAEMbIX M HECXKUMAEMbIX, BA3KUX (PA3JIAUHBIX PEO-
JIOruil) ¥ HEBSI3KUX KUJKOCTEHl B [0JIe IIOTEHIMAIBHBIX U HEIIOTEHIINAIbHBIX
BHEITHUX MaCCOBBIX cmI. 1I0CKOBbKY 3Ta 3aKOHOMEPHOCTH He 3aJIOKEHA B
COBPEMEHHBIE YHNCJIEHHBbIE aJITOPAUTMBI, OHA MOXKET HUCIIOJIb30BaThCs JJISI Be-
pudUKAIIN YUCTEHHBIX PACYETOB HECTAIMOHAPHBIX TEYEHUIT C 3AMKHY THIMU
BUXPEBBIMU TPYOKaMU IIyTeM IIPOBEPKU PABEHCTBA IUPKYJIANNAN HA PA3HBIX
3aMKHYTBIX BUXPEBBIX JIMHUSAX (B OZIHOI TPyOKe).

Briparkenne 71 IUIOTHOCTH PACIIPE/IEIEHUs] PABHOJIENCTBYIONMEN BCeEX
CHJI, IPAJIOZKEHHBIX K JKUJIKOCTH UJIN rady, MOXKeT COIepzKaThb IIPOU3BOIHbBIC
BBICIIINX MOPSIKOB. B TO 2Ke BpeMsi BbIpazKeHUe JIJIsk YacTHON MTPOU3BOIHOMN
BEKTOPa CKOPOCTH 110 BDEMEHU U BbIpaKeHHe I BEKTOpa 3aBUXPEHHOCTH,
KOTOPBINT HEOOXOIMM JjIsi ITOCTPOEHUsI BUXPEBO JINHUU, COJAEPXKAT TOJIHKO
[e€pBbIe MMPOU3BOJIHBIE, UTO MTO3BOJISIET MCIIOJIb30BATH OOHAPYKEHHYIO 3aK0-
HOMEDPHOCTD J1J1s1 BepuUKAIIMN PACIETOB, IIPOBEIEHHBIX METO/IAMHU HE TOJIb-
KO BBICOKOI'O, HO U HU3KOI'O IIOPSJIKOB.

Kuro4deBble ciioBa: 3aMKHYThIE BUXPEBBIE TPYOKM, BepUPUKAIHS PACIETOB
TEeYeHU KUJIKOCTHA U Ta3a, TEOPEMbI O BUXPAX, KpUTEPUil 30paBCKOro.
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