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Abstract

In this paper, new representations of three-dimensional asymmetric stress
tensor and the corresponding form of the differential equilibrium equations
are given. Asymmetric theories of solid mechanics continues to attract at-
tention in connection with the necessity of mathematical modelling of the
mechanical behaviour of the advanced materials. The study is restricted to
such asymmetric second rank tensors, for which it is still possible to keep
the notion of real eigenvalues, but not to accept the mutual orthogonality
of the directors of the principal trihedron. The exact algebraic formulation
of these asymmetry conditions is discussed. The study extends the dyadic
tensor representations of the symmetric stress tensor based on the notion
of asymptotic directions. The obtained results are a clear evidence in favor
of algebraic hyperbolicity both the symmetric and asymmetric second rank
tensors in three-dimensional space.
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Asymmetric tensor representations in micropolar continuum mechanics theories

Preliminary remarks. Asymmetric tensors are rarely used in mechanics
and physics in compare to symmetric second rank tensors. The latter are usu-
ally required in order to describe strains and stresses in all classical theories of
continuum mechanics. However many new models of mechanical behaviour are
based on asymmetric stress tensors. It is the case of the micropolar theory of
elasticity, where asymmetric stress tensor lies in the foundation of mathematical
description of three-dimensional stress states. Asymmetric theories of continuum
mechanics at the present time still attract attention of researchers due to neces-
sity of mathematical modelling of the mechanical behaviour of advanced materials
(e.g., auxetics by hemitropic micropolar theory of elasticity).

Micropolar theories of continuum mechanics are characterized by the following
equilibrium equations, written in terms of the force and couple stresses [1,2] (see
also [3]):

vitik — *Xk,

. (1)
Vipl, — 21, = =Yy,

wherein X* are volume forces; Y, are volume couples; t'* is the asymmetric force
stress tensor which is the sum of the symmetric t(*) and antisymmetric ¢t/ parts
pik — 40k | 4],

,u’k is the asymmetric couple stress tensor; 7;, 1’ are the vectors associate to the
force stress tensor and the couple stress tensor, defined according to the formulae

—TJ = *ejikt[ik],
k ik

£lik] ey,

+ i 1 iks
H= e ),

In this paper, the asymmetric second rank tensor t will be of primary interest
and we will talk about it, although all of the study can equally be applied to the
couple stress tensor ,u?','c.

The paper is arranged as follows. After the Preliminary remarks in Sec. 1
we discuss a special class of second rank asymmetric tensors similar to diagonal
tensors. For such asymmetric tensors it is possible to keep the notions of real
eigenvalues and eigenvectors. There the algebraic condition providing the tensor
similarities is formulated. It involves the characteristic equation discriminant of
the second rank asymmetric tensors t. Then in Sec. 2 a dyadic representation of
an asymmetric second rank tensor with a multiple real eigenvalue is obtained and
discussed. The representation formula involves two spatial directors. The notion of
asymptotic direction for the asymmetric second rank tensor t is introduced. Spa-
tial polarizations of eigenvectors of t are considered. The analogous considerations
but adopted for an asymmetric second rank tensor with all different eigenvalues
are given in Sec. 3. Dyadic representation of t requires four spatial directors. New
forms of the equilibrium equations for the asymmetric force stress tensor t cor-
responding to the dyadic tensor representations obtained in the previous sections
of the paper are obtained in Sec. 4.
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1. Asymmetric tensor similar to a diagonal tensor. We restrict ourselves
to such second rank asymmetric tensors t, for which it is possible to preserve the
notions of the principal axes and real eigenvalues, but not to presume the mutual
orthogonality of the directors of the principal trihedron. Therefore, we assume
that the tensor t is similar to a diagonal tensor. The latter means that the tensor
t can be represented (up to the tensor similarity) in the following form

b
where S is a nondegenerate second rank tensor; 1 (a = 1,2,3),1 (b =1,2,3) are
a

reciprocal vector triples; t, (a = 1,2,3) are real eigenvalues of the tensor StS~!
and also of t.
Recall that the reciprocal triples of linearly independent vectors 1 (a = 1,2, 3),

a

b
1 (b=1,2,3) satisfy the fundamental relation

ISESSES ]

b
1-1=
a

As an example (required for the further study) we give a diagonal representa-

tion of the unit tensor I: .
I= _Z 1ol (2)

Let us find out the conditions when all eigenvalues of the asymmetric tensor
t are to be real. At this aim consider the characteristic equation of tensor t:

N TN — A+ J3 =0, (3)

where
Jp =trt,

2.Jy = (trt)? — tr(t?),
6.J3 = (trt)® — 3trttr(t?) + 2tr(t®) = 6det t.
In the case of a general cubic equation
o\ + e N2 + e\ +e3 =0 (4)

as a result of variable replacement according to
€1

A=) - —

360

the reduced cubic equation is obtained

A3+ 6'2)\’ + eg =0,

2
€2 €1
€2 ="~ 302
, 2@‘? eies €3
€3=—%——5 +—

T 272 32 e
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with the discriminant
d= —27e — 4¢ef

or
d= E?E3 — AE}E3 — 27TF% — AE5 + 18E, F» Ej,
wherein o
E;j=-  (j=1,2,3).
€0

The roots of the cubic equation (4) are real if and only if (see [4] for details)
d > 0.
As for the tensor t we have
Ei=—-J1, Ey=Jy, E3=—J3,
then the discriminant of its characteristic equation (3) is obtained in the form

d=J2J3 — 4T3 T3 — 21J2 — 4J3 + 18.J1J2.J3. (5)

2. Dyadic representation of an asymmetric second rank tensor with
a multiple eigenvalue. The tensor dyadic representations obtained earlier in
[5-7], and valid for symmetric second rank tensors (e.g. for the stress tensor)
can be adopted for asymmetric tensors similar to diagonal tensors thus allowing
to keep notions of the real eigenvalues and eigenvectors. The most important
generalization is related to the notion of asymptotic direction known from [6].

Let the characteristic equation of the tensor t have a multiple eigenvalue:

t1 = to.

The third eigenvalue t3 of t is to be different from the first one.

It is then possible to give the algebraically exact formulation for the case:
the tensor t characteristic equation discriminant (5) should be equalled to zero,
whereas the second coefficient of the reduced equation should be nonzero, that
reads

d=0, 3Jy — J2#0.
By the aid of the unit tensor representation (2) after a number of transforma-

tions we obtain
3

StS™! =1+ (t3 — tlel,

and then ,
t =t 1+ (t3 —11)(S7*- VK (sT-1).

By introducing spatial directors
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the following representation for the asymmetric tensor t in terms of the two di-
rectors is derived

t =61+ (tg — tl)(*l ®d, (6)
wherein
* 3 3
d-d:(;-S*T).(ST.l)zg-lzL (7)

*
that means the directors d and d in the dyadic representation (6) are to satisfy
*

to single scalar relation (7).
The dyadic representation (6) leads us to the following conclusions:
1) d is the eigenvector of t corresponding to the eigenvalue ts;
*

2) any vector which orthogonal to é is the eigenvector of t corresponding to
the multiple eigenvalue t; = to;

3) directions determined by (3 and fi can be treated as asymptotic for the
asymmetric tensor t;

4) the cross product (*1 X gl is the eigenvector of t corresponding to the multiple
eigenvalue t; = to;

5) the double cross product c*l X (d X c*l) is the eigenvector of t corresponding
to the multiple elgenvalue t = tg,

6) the triple d d X d d X (d X d) forms an eigenbasis of t in space.

It is worth to note the equatlons

rdod) =d-d=1

The tensor dyadic representation (6) remains valid if the dyad d ® d by the
scalar product d - d, which in view of (7) equals 1. The resulting ratio keeps its

*
value after renorming the asymptotic directors d and d thus setting their lengths

*
to 1. Consequently for the asymmetric tensor t the following representation is
held:

*

ded
t:t11+(t3—t1)* )
d-d

wherein

d-d=1, d-d=1.

The symmetric and antisymmetric parts of the asymmetric tensor t can be
easily determined from the dyadic representation (6) resulting in the formulae
given below:

* *

1
symt = ;1 + 5(tg ~t)(dod+dod),

*
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1 * *
asymt = 5(753 — tl)(d® d - d@d)

When the directors have the unit lengths for the symmetric and antisymmetric
parts of the asymmetric tensor t are expressed as follows

1t3—t £
symt:t11+§3 Lldod+ded),
d.d * *
*
1t5—t £
asymt:§3 *1(d®d—d®d)
d.d * *

In the mathematical theory of plasticity operating with the symmetric stress
tensor the value given by
[t3 — t|
2
is the maximum (over all spatial orientations) shear stress at a given point in
space.

3. Dyadic representation of an asymmetric second rank tensor with
all different eigenvalues. Let all of the tensor t eigenvalues be different from
each other. In this case we can order them (for instance in the decreasing order)

t1 >t > t3.

This situation is described by involving the tensor t characteristic equation
discriminant (5), namely the discriminant should be positive:

d>0.

By the aid of the unit tensor representation formula (2) we obtain

1 3
StS™! = tol + (t; — )l @1+ (ts — o)l ®1,

and therefore
1 T 1 1 T 3
b=l (t —£2)(ST D@ (ST 1) + (b5 — t2)(S - D@ (ST 1),
By defining the spatial directors in accordance with
* 1 * 3
h:S_l-}, h=ST.1, d:S_l-%, d=S".1,

the following dyadic representation for the asymmetric tensor t is derived:

t=tol+ (1 —t2)h®@h+ (i3 - f2)d ®d, (8)
wherein the directors are involved in the relations
d-d=1, h-h=1,
. . 9)
h-d=0, d-h=0

It is easily seen from (8) that:
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1) the director d is eigenvector of t, corresponding to the minimum eigenvalue
*
t3;
2) the director h is eigenvector of t, corresponding to the maximum eigenvalue
*
t1;
* *
3) any vector orthogonal both the vectors d and h is eigenvector of t, corre-
sponding to the intermediate eigenvalue ¢y, thus the third eigenvector of t

* *
can be chosen as the cross product d x h;
* *

4) the triple of vectors d, d x h, h constitutes eigenbasis of t in space.
* *

By renorming the directors (i.e. redicing their lengths to 1) the formula (8) is
replaced by

h®h dod
t = tol + (t1 — to)— + (t3 — to) *—r,
h-h d-d

which should be supplemented by the relations

h-h=1, h-h=1 d-d=1, d-d=1I;
h-d=0, d-h=0.

After simple considerations the formulae for the symmetric and antisymmetric
parts of the asymmetric tensor t can be found:

1t —t o 1t —t £
symt =61+ o= (h@h+hoh) + ;7" (dod+ded),
h-h d-d
1t —t £ 1tg—t £
%mn:§1 2(h®h—-hah) 53 2(dod-ded)
h.h * * d.d * *

The above formulae give the symmetric and antisymmetric parts in terms of
the spatial directors and are to be considered simultaneously with the relations (9).

4. New forms of the equilibrium equations for the asymmetric force
stress tensor. The tensor dyadic representations of asymmetric t obtained in the
previous Sections of the paper allows us to find out new forms of the equilibrium
equations (1) intrinsic to micropolar theories of continuum mechanics.

We start from co-ordinate formulation of the equations (1). In the rectangular
co-ordinate net in space these equations read

ajtji =-X;
Ojpji + €ijtin = —Yi.
The dyadic representations of asymmetric tensor t given by (6), (8) in the
rectangular co-ordinate frame can be rewritten as

*
tji =t105 + (t3 — tl)*jdia
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*

tji = ta0j + (t1 — tz)@jhi + (t3 — t2)§kljdi'

Then after rather simple calculations with partial differentiations we come to

6jtjz- = 0;t1 + diiljaj (tg — tl) + (t3 — tl)[diajdj + djajdi], (10)

8jtjz' = O;tg + hihjaj(tl — tg) + (tl — t2)[hi8jhj + hjajhi]—
—did;0;(t2 — t3) — (t2 — t3)[di0;d; + d;0;di].

In view of (10) and (11) the equilibrium equations (1) involving the asymmetric
force stress tensor t read as follows:
in the case of a multiple eigenvalue t; = to:

*

Vi +d(d - V)(ts— ) + (65— 0)[d(V - d) + (d- V)d = -X,  (12)

*

in the case of all different eigenvalues (t; > to > t3):

Vio-d(d - V)(tz — ts) — (t2 — £)[A(V - d) + (d - V)d}+ s
13

th(h- V)t — t2) + (t1 — £2)[A(V 1) + (b - V)h] = ~X.

The latter equations are to be considered simultaneously with (7) (for equation

(12)) and (9) (for equation (13)).
5. Conclusions.

1. Dyadic tensor representations usually used in the theory of perfect plasticity
[5—7] and valid for symmetric second rank tensors can be extended to the
case of asymmetric tensors similar to diagonal tensors.

2. The generalized dyadic representation of an asymmetric second rank tensor
with a multiple eigenvalue is characterized by the greatest formal simplicity,
since it includes only two spatial directors related by a single scalar equation.

3. The generalized dyadic representation of an asymmetric second rank tensor
with different eigenvalues includes the four spatial directors related by the
four scalar equations.

4. The obtained special forms of equilibrium equations are expressed in the
terms that are most natural from an algebraic point of view.

5. The obtained results are an additional evidence in favor of algebraic “hy-
perbolicity” of the second rank symmetric and asymmetric tensors in three-
dimensional space discussed earlier in [8].
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TenzopHble IIpeJicTaBJI€HNS aCUMMETPUYHbIX TEH30POB
MUKPOIIOJIIPHBIX TEOPU MEeXaHUKMN KOHTHUHYYyMa

IO. H. Padaes

WMucruryt npobiaem mexanuku uMm. A. FO. Mmummackoro PAH,
Poccus, 119526, Mocksa, npoct. Bepuajckoro, 101, kopi. 1.

AnHOTan M

Ilosrydennr HOBBIE IPEACTABIEHNST TPEXMEPHOTO ACUMMETPUTHOTO TEH30-
pa HaIPs2KEHUIT U COOTBETCTBYIOITIE UM (DOPMBI TudHepeHINATbHBIX YPaB-
HEHUIl paBHOBeCHs. ACHMMETPUYHBIE TEOPUU MEXAHWKHU J1e(HOPMUDPYEMOro
TBEPJIOTO Tesa IO-NPEeXKHEMY IPUBJICKAIOT IIPUCTAJIbHOE BHUMAHUE B CBA3N
¢ HEOOXOIMMOCTBHIO MATEMATIIECKOTO MOJEIMPOBAHUS MEXAHIIECKOTO TIOBe-
JIeHUsI COBPEMEHHBIX MATEPUAJIOB (HAIIPHMED, ayKCETUKOB C IIOMOIIBIO Teo-
puii reMUTPOIHON MUKPONOJISPHON yupyroctu). VccienoBanue orpanudu-
BaeTCd TOJIbKO TaKUMU aCUMMETPUYHLIMHU TEH30paMH BTOPOI'O paHra, HJId
KOTOPBIX YJIA€TCsI COXPAHUTH [IOHATHE O BEIIECTBEHHBIX COOCTBEHHBIX 3HATE-
HHUAX, HO OTKA3aThCA OT B3aNMHON OPTOrOHAJIBHOCTI HAIIPABJICHUN TJIaBHOT'O
tpudapa. O6cyxKIaeTcss TouHast ajgrebpandeckast (GOPMYJTUPOBKaA YKA3aHHBIX
YCJIOBUI aCUMMETPUIHOCTH. B crarhe 0600IIA0TCsT TEH30PHBIE IIPECTaBIIe-
HUS CUMMETPUYHOI'O TEH30Pa HAIPAXKEHUN, OCHOBAHHbLIC Ha €CTECTBECHHOM
perepe acCUMITOTHYECKNX Hampassenuii. [lomydennble pe3yabTaThl SBJIAIOT-
Cs SIPKUM CBHUIETEJIBCTBOM B IIOJIb3Y aareOpamdecKoil «TUImepOOTnIHOCTH
CUMMETPHUYHBIX U ACUMMETPUYHBIX TEH30POB BTOPOI'0 PaHra B TPEXMEPHOM
IIPOCTPAHCTBE.

KurouyeBbie ciioBa: MUKPONOJSPHBI KOHTHHYYM, CHJIOBBIE HAIIPSXKEHUS,
MOMEHTHBIE HAIPSIKEHNs, ACUMMETPUIHBIN T€H30D, COOCTBEHHOE 3HAYEHUE,
COOCTBEHHBIII BEKTOP, aCHMIITOTAIECKOE HAIIPABJICHHE.

IMonyuenue: 14 ausapsa 2019 r. / Ucnpasienue: 8 anpesa 2019 r. /
Mpungarue: 29 anpens 2019 r. / I[Ty6uukanus onnaiin: 30 anpess 2019 1.
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