Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
|[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2019, vol. 23, no. 3, pp. 452—463
ISSN: 2310-7081 (online), 1991-8615 (print) d  https://doi.org/10.14498/vsgtul705

%

Mechanics of Solids

MSC: 74A10, 74R20 E

Continuum approach to high-cycle fatigue.
The finite life-time case with
stochastic stress history

H. Orelma

Tampere University,
4, Kalevantie, Tampere, 33100, Finland.

Abstract

In this paper, we consider continuum approach for high-cycle fatigue in
the case where life-time is finite. The method is based on differential equa-
tions and all basic concepts are explained. A stress history is assumed to be
a stochastic process and this leads us to the theory of stochastic differential
equations. The life-time is a quantity, which tells us when the breakdown
of the material happens. In this method, it is naturally a random variable.
The basic assumption is, that the distribution of the life-time is log-normal
or Weibull. We give a numerical basic example to demonstrate the method.
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1. Introduction. Mechanical fatigue phenomena occurs when a material is
subjected to repeated application of stresses or strains which produces changes in
the material microstructure, initiation, growth and coalescence of microdefects,
thus degrading the material properties, see books by V. Bolotin [1], S. Suresh 2],
and Y. Murakami [3]. It is customary to distinguish between high-cycle (HCF)
and low-cycle fatigue (LCF). In low-cycle fatigue plastic deformations occur in
a macroscopic scale while when the loading is in the high-cycle fatigue regime
the macroscopic behaviour can be considered primarily as elastic. If the loading
consist of well defined cycles, the transition between LCF and HCF regimes is
typically considered to occur between 103—10% cycles.
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Continuum approach to high-cycle fatigue

In this study, only high-cycle fatigue is considered. Classical methods for HCF-
analysis can be broadly classified as stress invariant, critical plane, strain energy
and average stress based approaches. Well known examples are the models by
G. Sines [4], W. Findley [5], K. Dang Van [6], A. Carpinteri and A. Spagnoli [7]
and I. Papadopoulos [8|. These approaches are well defined if the loading consists
of well-defined cycles. For arbitrary loading histories they need the definition of
an equivalent uniaxial loading cycle. Another deficient is that heuristic damage
accumulation rules have to be applied. To remove these shortcomings N. Ottosen
et al. [9] proposed a continuum based model where they postulated a moving
endurance surface in the stress space where the movement and damage evolution
are governed by properly formulated evolution equations. This evolution equation
based continuum approach to HCF is also used by R. Brighenti et al. [10, 11].
Extension to transverse isotropy is given in [12] and gradient effects are included
in [13].

There is inherently stochastic nature in fatigue phenomenon. The fatigue life
has inherent scatter even under constant cyclic loading. Weibull weakest link-
theory [14] has been used to describe the statistically distributed flaws and defects
in the material that is reflected in the fatigue behavior [15-18|. In many cases the
loading which is acting to the structure is random and we can only describe it
by statistical distributions. For irregular loading histories, the classical method to
predict a life time is the Rainflow method, which is based on a construction of an
equivalent cycle. The method is essentially one dimensional, but can be extended
to the multiaxial case considering an equivalent stress criteria. It could also be
extended to a stochastic case, c.f. [19]. A common process is to estimate the
autocorrelation function from the obtained stress data, then the spectral density
function can be found by using the fast Fourier transform, and the life time can be
approximated with a level crossing formula, usually the so called Rice’s formula,
see, e.g., [20].

The stochastic Rainflow method works best in one dimensional cases, because
the generalization to a multiaxial case is somewhat artificial. Considering only
one equivalent stress process is a gross simplification. Another problem is that
generalisation of the method is limited. The main reason is of course that it is
derived using a minimal amount of methods from “stochastic toolbox”. In this pa-
per, a stochastic approach is described for an evolution equation based multiaxial
fatigue model applicable for arbitrary loading histories. The stochastic version
of an evolution equation based continuum HCF-model is not only a particular
method, but a broad concept to handle stochastic fatigue in a new way. The con-
cept is essentially multiaxial and it is easily extensible to take into account all
the stochastic properties, of which are of interest. In this paper, we describe the
fundamental idea of the method.

2. Continuum model in high-cycle fatigue. In this section, we recall the
basic definition of the continuum model for high-cycle fatigue, following [9,21-24].
The starting point is to define a proper endurance surface in the stress space.
In isotropic case, we usually use the following representation for the endurance
surface

/B:L(a'—i-AIl—O'_l):O, (1)
g1

where I; is the first invariant of the stress tensor o, that is I; = tr(o). The
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effective stress & is defined by the second invariant of the reduced stress s — «,

that is
o =1/3D(s—a)=1/3tr(s — a)2.

The deviatoric stress tensor is given by s = o — % tr(o)I, where the identity tensor
is denoted by I.

In [9], the authors study a one dimensional cyclical load case, where the stress
cycles between values oy, + 0,. They deduce, that in this case the parameters of
equation (1) satisfy the equation o, + Aoy, — o—1 = 0, which is the linear part of
the Haigh’s diagram. Hence, o_1 is a fatigue limit for a SN-curve with the mean
stress o, = 0 and A is the slope of the Haigh’s diagram.

The form of the endurance surface (1) is as simple as possible. Hence, the
estimation of the parameters A and o_ is straightforward. It would be temptating
to use more complex representations for the endurance surface, but then the
finding of corresponding parameters will be more complicated.

In the endurance surface, the tensor a represents a “centre” of the surface.
The position of o determines the position of the endurance surface in the stress
space. The fundamental idea of the continuum approach is that the endurance
surface moves in the stress space. The motion of the centre is determined by the
evolution equation

(2)

 [Cls— )b, when 8,330,

*= 0, otherwise.
We see that the tensor a moves if and only if the stress o is outside of the
surface and moves outwards. In the equation, the material parameter C' is posi-
tive and may be estimated from SN-curves, also known as Wohler curves, of the
material. A canonical initial value for the evolution equation is a(0) = 0, but
some cases this can cause a non-physical failure. The evolution equation is the so
called differential-algebraic equation (DAE) and we need to solve it by the proper
numerical procedures for DEAs (see, e.g., [25]). For this, we can write it in the
standard form

F(t &) = & — C(s — a) BH(B)H(B),

where H is the classical Heaviside step function.

The another fundamental idea of the continuum approach is to consider the
failure of the body as a process, that is, any cycle counting method is not needed.
The main postulate is that the failure growth occur at the same time with evolu-
tion of the centre tensor a. Hence, the failure is an increasing real valued function
D and its values are determined by the initial value problem

0, otherwise,

o) = {gwu),mt)), when A(t), (1) > 0, @

D(0) = 0.

The function g(D, ) is called a damage rule and it is normed such that the
material failure occur at ¢ty when D(t;) = 1. We will use the damage rule of the
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type Lemaitre and Chaboche, that is

K

9(D, ) = meXp(Lﬂ)ﬁ-

where K > 0, L > 0 and k£ > 0 are material parameters. The estimation of
dimensioless parameters C' > 0, K > 0, L > 0 and k > 0 is discussed in [9,12]. The
idea is to define a function N = N(C, K, L, k) in the case of one dimensional cyclic
loading such that the parameters may be found by the least square estimation.
The parameters 0_1 and A carry information of infinite life time and C, K, L
and k of finite life time.

In above, we are considered only one measured stress o. In practice, if any
measurement is attempted to repeat as accurately as possible, the result is not the
same. Repeating measurement many times, we have a collection of stress histories.
They can be really identical, but ever not exactly same. Hence, it is appropriate
to assume o to be a stochastic process.

3. Stochastic processes. Let us recall basic ideas of stochastic processes.
Let (2,T,P) be a probability space and let the index set T be an interval, for
example 7' = [0,00). A stochastic process is a mapping

X:QxT —R,
such that for a fixed ¢t € T each
X(',t):Xt29—>R

is a random variable. Hence, a stochastic process is a collection of random variables
{xt}ter. The index set is usually time, but it can also be another continuous or
discrete parameter. In the example in the later section of this article, the index
set is a number of cycles. If w € 1 is fixed, then the function

X(w,): T—R
is called a realization or a sample path of the process. For a stress process o (t),
we denote its realizations by &1 (t), o2(t),...,0,(t).
A stress process is a matrix valued stochastic process o (t) = [0;(t)] where

0i;(t) are real valued stochastic processes. A methodological consequence is that
the evolution equation (2) and the damage equation (3) need to be considered as
stochastic differential equations.

Usually an explicit definition for the probability space is not needed. We
need to know finite dimensional distributions of a process. More precisely, if
t1 < tg--- < tp, are arbitrary points of the index set, we have to know the joint
distribution of random variables x,,Xy,, ..., X¢,, given by its probability density
function or its cumulative distribution function. Conversely, the following famous
theorem by Andrej Nikolaevich Kolmogorov holds true: “If we know a family of
finite dimensional distributions, then under some regularity conditions they define
a stochastic process uniquely.”

In practise, the most used technique to find a “best estimate” of a stochastic
process at the current moment is the so called stochastic filtering problem. The
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filtering problem is a mathematical model for a number of state estimation prob-
lems in signal processing. Most used filtering methods is the Kalman filter and its
extensions, see, e.g., [26].

4. Distributions for life-time. In the preceding section, we deduced the
basic idea of the continuum approach and made the assumption, that the stress
o(t) and hence B(t), a(t) and D(t) are stochastic processes. In the finite life-time
case, the failure criteria is

D(tf) =1.

Hence, the life-time t; is a real valued random variable. Different realizations
of the stress process o1 (t),o2(t),...,0,(t) produce a corresponding sample th,l,
%vfjg, een ?f’n for the life-time which we can use to study its statistics. In general,
the stochastics of life-time is well studied (see, e.g., [27]) and the usual choice for
the life time distribution is log-normal or Weibull distribution. In [21], we consider
the log-normal case and in the paper [24] we assume that the distribution of the
life time ¢; is Weibull!. General information of Weibull distribution can be found,
for instance, in [28].

To compare different distributions, W. Nelson [27] writes: In many applica-
tions, the Weibull and log-normal distributions (and others) may fit a set of data
equally well, especially over the middle of the distribution. When both are fitted to
a data set, the Weibull distribution has an earlier lower tail than the corresponding
log-normal distribution. That is, a low Weibull percentile is below the correspond-
ing log-normal one.

Log-normal distribution. We say that a random variable ¢y is log-normal dis-
tributed
ty ~ LogN(u,v?)

if and only if In(tf) ~ N(u, %), where N(u,v?) denotes the classical normal dis-
tribution. The parameters of the distribution satisfies —oo < u < 0o and v > 0.

The log-normal distribution can be considered also independently, without
considering normal distribution. Then the distribution function and the cumula-
tive distribution function are given by equations

() — )2
funltiny) = by exp(~ B9 450

and

Fu(tipv) = §+ Bt (2020) 4> 0,

The expectation value and the variance are respectively

Ern(t) = exp(,u + ”72)

and
Varpn (t) = (exp(v?) — 1) exp(2u + v?).

"Waloddi Weibull, 1887-1979, Swedish engineer, scientist, and mathematician.
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The estimators i and 7 can be computed from a sample %}71, %vag, . ’;f,n by com-
puting the normal distribution parameter of the sample In(ts1),In(t¢2), ..., In(tsy),
that is
n
A= (i)
j=1
and
n
1
= Z ln tf7
7j=1
Hence,

tp ~ LogN(fi, 0?).
Weibull distribution. Recall that the distribution function and the cumu-
lative distribution function of Weibull distribution are given by equations

fw(t;a,b) = 5t Vexp(—(£)"), t>0,

and
Fw(t,(l,b) :1_exp(_(£)b)7 t>07

where @ > 0 and b > 0 are the parameters of the distribution. For a Weibull
distributed random variable ¢, the expectation value is

Ew(t) =al'(1+ )

and the variance
Vary (t) = a2F(1 + %) — EW(t)Q,

where I is the classical gamma function. After some simplification, we obtain the
log-likelihood function

la,bitr, ... trn) =nln(b) — nbln(a) + (b— 1) Zln (tr.5) Z(fT)b
7j=1

A straightforward computation gives us a system of equations
_ol(ad) _ mb b trg\b
{O—aa =T ta X () .
dl(a,b i T
0= 25 = 3 —nin(a) + Y7y ) — 35— (42) In(*2).

Unfortunately, there is no analytical solution to this system. It follows that we
have to solve it numerically, for instance by Newton method. The solution gives

us the estimates @ and b for parameters and hence
t; ~ Weibull(@, b).

5. One dimensional toy modell (cyclic load with noise). In this exam-
ple, we consider a one dimensional cyclic load with the amplitude o,, mean stress
om, stress intensity 7 and noise W (t):

o(t) = oasin(2nt) + oy + TW(2).
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Figure 1. A sample of a stress history

This is a classical sinusoidal cyclic stress history perturbed by a Gaufsian noise
(see Fig. 1).

In this case, the index set T' = [0, 00) corresponds the number of cycles. The
stress intensity 7 may be estimated from sinusoidal type noisy data o () as follows.
We compute the pure noise by

on(t) = o(t) — o4 sin(27t) — oy,

and hence the expectation, in the normal distribution sense, is E(N(¢)) = 0. We
assume that the noise is a stationary stochastic process and we obtain

on(t) = TW(t) ~ TN(0,1) = N(0, 72),

and thus the estimator 7 may be found as a standard deviation of noise estimates
on(ti) = o(t;) — ogsin(2mt) — o, i =1,2,...,n.

Now assume that the material is AISI-SAE 4340 alloy steel. From [9] we get
the following parameters:

A=0225 C=125 K=265-10°, L=144, k=0.

In addition, we assume that o, = 0.80_1, 0, = 0_1 and 7 = 0.10_1. Computing
n = 50 realizations for the stress process {5;(¢)}2,, we obtain a sample {t ; }?gl
of life-times. The histogram of the sample and tﬁe fitted log-normal density func-
tion is given in the Fig. 2.

Hence, we may estimate log-normal parameters

tp ~ LogN(10.7337,4.9767 - 1077).
We may compute the expectation value for a life-time
Ern(t) = 4.5876 - 10%,

and the variance

Varpy(t) = 1.0474 - 103
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Figure 2. Histogram approximation for a normal distribution of logarithmic life-time
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Figure 3. Histogram approximation for a Weibull distribution of life-time

Similarly, using the sample, we may estimate the Weibull parameters and we have
tp ~ Weibull(4.5895 - 10%, 1.1952 - 10%).

The histogram of the sample and the fitted Weibull density function is given in
the Fig. 3.

We can see that the density function fits good with the histogram approxima-
tion of the life-time. The expectation value for a life-time is

Ew(t;) = 4.5874 - 10*

and the variance
Vary (t7) = 1.3309 - 10°.

Now we may pose questions, which are interested from engineering point of
view. As an example, we consider the question:
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Q : What is the life-time, what we get with probability 95 %?
We need to find ¢ such, that

P(t <t;)=1—P(t; <t) =1— F(t) = 0.95,

where F' is a cumulative distribution function of a distribution. Using the quantile
functions of distributions to solve F(t) = 0.05, we obtain

to5% /TogN = 4.5875 - 10%,
t95% /Weibull = 4.5800 - 10%,

6. Conclutions. In this paper, we study the so called continuum approach
to high-cycle fatigue. The method is introduced in [9] and recently actively ex-
tended. We consider only finite life-time case and complete the method assuming
that measured stress o (t) is a realization of a stochastic process. This allow us to
estimate the stress process it self and generate its realizations. The assumption
is natural, since the nature of measured stress is always stochastic, at least some
level. The fundamental consequence is that we can consider all quantities in the
theory stochastically. The biggest advantage is that the life-time is a random vari-
able, what is natural. This method allow us to find numerical approximation for
the life-time. A distribution of life-time should fulfill certain basic requirements,
such as it should contain only positive numbers. The natural two candidates are
the log-normal and Weibull distributions. We demonstrate the method by com-
puting the one dimensional example in Sec. 4. In future, more practical cases
should be studied and the estimation of stress should be carefully discussed.
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KonTunyanbHbI 110/IX0 K MHOTOIMKJIOBOI YCTAJIOCTH.
ITonnbIi CPOK CIIy>KOBI CO CJIyYaiiHOI MCTOpPHUEN Harpy KeHusl

H. Orelma

Tampere University,
4, Kalevantie, Tampere, 33100, Finland.

AHHOTaNMS

PaccmarpuBaercs KOHTHHYAJIBHBII TOIXO, IS OMMCAHUS MHOTOIMKJIO-
BOIl ycTayiocTH, KOrJa CPOK CJIIyKObI W3Jesius KoHedeH. lIpemjioxkeHo wuc-
[I0JIH30BATH IBOJIIOIMOHHYIO MOJIEJIb HAKOIJIEHUsI YCTAJIOCTHBIX MUKPOIIOBDE-
X(‘ZLQHHIZ B CTOXaCTHUYECKON ITOCTAHOBKE. ﬂaHHbeI IIO/IXO/T ITO3BOJIAET yIUTbBI-
BaTh CTOXACTUYECKUI PazdpOC MapaMeTpOB MOBTOPSIONIETOCS HAI'DYKEHUS.
B pamMKkax 3TOro mojxoja CpoK CJIy:KObl uzjesns (BpeMs ero KU3Hu) OTOK-
JIECTBJISETCA C HAYAJOM DPa3PyIIeHAs MATEPHUAJIA, a CIIyUYaHbBIl IPOIECC
HArpy2KEHUs ONUCHIBAETCHA C IOMOIIBIO CTOXACTUIeCKUX IuddepeHimaib-
HBIX ypaBHeHuit. OCHOBHOE TIPEJIITOJIOKEHIE COCTOUT B TOM, ITO PACIIpe/iesie-
HUE CPOKA CJIYKOBI U3/1eJIUs IO TTUHSIETCSI JIOTHOPMAJILHOMY PACIIPEJIEICHITO
niu pacupenenennio BeitOyma. [IpejcraBierHnass METOIIKA TO3BOJISIET OIlE-
HUTH CaM IIPOIECC HAIPYKeHUsI, ChOPMUPOBATH PEAIM3AINI0 TAKOI'O HAIPY-
2KEHUs ¥ HAfTH YUCeHHOe PUOJINYKEHNE [0 CPOKY CayKObI m3esust. st
JIEMOHCTPAIMY METOJa IIPUBOAUTCS JHUCJIEHHBI IPUMEP, B KOTOPOM pac-
CMATPUBAETCS OJHOMEPHAs HAYAJIbHAS 3aJ1a9a OlPEIeSIeHUsT BPEMEHH YKU3-
HU 00pa3Iia P ero HEOTHYJIEBOM CHHYCOMIAIHLHOM IIUKJINIECKOM HAIDY2Ke-
HUN DacCTAKEHUEeM-C2KaTHueM, 3alllyMJIEHHOM BHHEPOBCKUM CTOXaCTUYIECCKUM
nporeccoMm. [locraBiennast 3ajiada pelieHa TUCICHHO JJIsT HSTUAECCITH pe-
ajm3anuii, B pe3yJibTare 4ero OTBET JaH B BEPOSTHOCTHON (DOPMYJIMPOBKE,
ITO3BOJIAIONIEH 00JIee OCOZHAHHO HA3HAYATH 3aIaC ITPOIHOCTH.

KiroueBrnie cioBa: MHOI'OITUKJIOBasl YCTaJIOCTH, CPOK CJIy)K6I>I7 9BOJIIOII-
OHHO€ ypaBHEHHE.

Ionyuenue: 21 mag 2019 r. / Ucnpasienune: 12 asrycra 2019 r. /
[Ipunstue: 26 asrycra 2019 r. / I[Ty6aukamnus oraiin: 2 centsopst 2019 r.

Konkypupyomiye nHTepecsl. { 3asBiIsA0, YTO y MeHs HeT KOHKYPHUPYIOIIUX UHTEPe-
COB B OTHOIIEHUN JAHHON CTATHU.

ABTOpCKaH OTBETCTBEHHOCTB. $1 HECy IIOJIHYIO OTBETCTBEHHOCTH 3a IIPEIACTAaBJICHUE
OKOHYATEJIbHOI PYKOIIICH B II€9aTHOM BHUJIE. a OILO6pI/IJI OKOHYATEJIbHBII BapUaHT PYKO-
IIICH.

Baarogapuoctu. Asrop 6aromaput npod. Muxanina CaymkuHa 3a TOMOITH Tpu 0hOpM-
JleHnn pykommcu. Takke aBTOp OJIATOIAPUT JBYX AHOHUMHBIX DEIEH3EHTOB 33 ICHHbBIE
[IPEJJIOZKEHUSI 10 YIIYUIIEHUIO TOU CTATHU.
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