Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
|[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2019, vol. 23, no. 3, pp. 464—474
ISSN: 2310-7081 (online), 1991-8615 (print) d  https://doi.org/10.14498/vsgtul689

MSC: 74A60, 74F05

On plane thermoelastic waves in hemitropic
micropolar continua

Y. N. Radayev', V. A. Kovalev’

1 A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences,
101, pr. Vernadskogo, Moscow, 119526, Russian Federation.

2 Moscow City Government University of Management,

28, Sretenka st., Moscow, 107045, Russian Federation.

Abstract

The paper deals with the coupled heat transport and dynamic equations
of the hemitropic thermoelastic micropolar continuum formulated in terms
of displacements, microrotations and temperature increment which are to be
determined in applied problems. The mechanism of thermal conductivity is
considered as simple thermodiffusion. Hemitropic constitutive constants are
reduced to a minimum set nevertheless retaining hemitropic constitutive be-
haviour and thermoelastic semi-isotropy. Solutions of thermoelastic coupled
equations in the form of propagating plane waves are studied. Their spatial
polarizations are determined. An algebraic bicubic equation for the determi-
nation of wavenumbers is obtained. It is found that for a coupled thermoe-
lastic wave actually there are exactly three normal complex wavenumbers.
Athermal wave is also investigated. Spatial polarizations in this case form
(together with the wave vector) a spatial trihedron of mutually orthogonal
directions. For an athermal wave there are (depending on the case) either
two real normal wavenumbers or single wavenumber.
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On plane thermoelastic waves in hemitropic micropolar continua

1. Preliminary remarks. The mechanics of hemitropic media is intensively
developing, due to the important theoretical significance of its results and methods
for the whole of continuum mechanics, as well as due to a wide range of applied
problems, where it acts as the basis for modelling the thermomechanical behavior
of modern materials and structures. Here we are talking about biological materials
(skin, bones, vessels), medical materials have used in transplantology, honeycomb
structures, ceramics, foams.

The theory of coupled thermoelasticity of micropolar solids looks now as al-
most complete (see, for example, [1], where there are also references to early
works). The word almost describes significant problems intrinsic to anisotropic
micropolar continua. In the general case of material anisotropy, the theory pre-
dicts 171 constitutive constants, therefore the handling of equations of anisotropic
micropolar continuum presents significant problems. In the hemitropic theory,
there are only 9 constitutive constants, three more than in the isotropic case. The
group of material symmetry of a hemitropic continuum consists of all proper or-
thogonal transformations of three-dimensional space, but it does not include such
orthogonal transformations that change the orientation of space, for example,
inversions.

The present paper primarily aimed at a study of plane harmonic coupled
waves of displacements, microrotations and temperature increment in hemitropic
micropolar media includes new results concerning evaluation of wavenumbers and
spatial polarizations of the amplitude vectors. The paper is arranged as follows.
After Preliminary remarks we discuss in Sec. 2 in details a system of dynamic
equations of the coupled micropolar thermoelasticity in the hemitropic case and
the constitutive constants responsible for thermomechanical coupling. Then a re-
duced variant of these equations is considered in an attempt to simplify basic
equations of the micropolar thermoelasticity theory. Results concerning evalua-
tion of wavenumbers and spatial polarizations of the plane thermoelastic waves
are given there. In Sec. 3, a theory of athermal plane waves in micropolar elastic
media is given. Conclusions on the present study are discussed in Sec. 4.

2. Plane thermoelastic waves in hemitropic micropolar media:
polarizations and wavenumbers. The theory of hemitropic continuum based
on three linear strain measures, namely the symmetric small strain tensor, the
relative microrotation vector and the spatial gradient of the total microrotation
vector (the torsion—curvature tensor), is developed in a number of papers (see, for
example, [2]). Nine constitutive constants are so chosen to determine the charac-
teristic micropolar linear scale. This approach is also applicable to the thermoelas-
tic micropolar models. If we employ the conventional notations [1,3|, the dynamic
equations for displacements and microrotations in the hemitropic thermoelastic
micropolar medium can be represented as follows:

(u+a)V-Vu+ (p—a+ANVV-u+ (x+v)V-Veo+
+(x—v+K)VV - -0+2aV x ¢p—nVl=pi,

(X +v)V-Vu+ (x —v+£)VV-u+2aV xu+ (y+¢)V-Vo+
+(y—e+B)VV -+ 4V X ¢ — dap — VO = T,

wherein u is the displacement vector, ¢ is the microrotation vector, 6 is the
temperature increment over the referential temperature g, p is the mass density,
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J is the microinertia, V is the spatial (3d) Hamilton operator, the rest of the
Greek symbols denote mechanical and thermomechanical constitutive constants
(among them those denoted by 1 and ¢ are responsible for the thermomechanical
coupling).

Heat propagation in a hemitropic medium in the case of the thermodiffusion
mechanism of heat transport is determined by the heat equation

200 =V'Vif) - ?0(778.6]3 +60.k7). (1)

We proceed to comments to the latter equation:

— € = Viuj — eijkqﬁk is the asymmetric strain tensor (e;jj is the permutation
tensor;

— V, is the operator of covariant differentiation);

— Kk;; = V;¢° is the torsion—curvature tensor or the wryness tensor;

— 0. is the operator of partial differentiation with respect to ¢ (the same as
superimposed dot);

— k is the coefficient of thermal conductivity (the heat conduction coefficient);

— c is the heat capacity per unit volume at constant zero strain;

— 0 is the referential temperature (natural state temperature);

1 UV x
- n=2G 7 +2 «, G is the shear modulus of elasticity, v is the Poisson ratio,
—2u

« is the linear thermal expansion coefficient;

* *
— ¢ = 2GL?*B, GL? = v, L is the micropolar characteristic length, /3 is the
thermal wryness coefficient.
The heat equation (1) complements the dynamic equations to a closed system.
Here we introduce new constants

K =k/0y, ¢ =c/b

in order to simplify the heat equation (1) and new notations
K —e J—c¢

in order to retain for the symbols k and c¢ their usual in wave physics meaning so
they will denote the wavenumber and the phase velocity of a wave respectively [4].

In the following, a simplified version of the equations of the coupled ther-
momechanics of the hemitropic medium is considered, when from the full set of
hemitropic terms only the temperature gradient ¢V# remains. As a result we
arrive at the following system of differential equations:

(L+a)V -Vu+ (p—a+A)VV-u+2aV x ¢ —nVo = pu,

(Y4+e)V-Vo+(y—e+B)VV - ¢+ 2aV x u—4dap — V0 =T, @)

d . 1 . .
EQZV-VQ—E(HV-U—I—gV-qb).
We are going to investigate the solutions of this system in the form of plane
waves of displacements, microrotations and temperature:

u= Aei(k-rfwt)’ ¢ = Sei(k-rfwt)’ 0 = Bei(k-rfwt)’ (3)

466



On plane thermoelastic waves in hemitropic micropolar continua

where r is the radius vector; k is the wave vector; w is the cyclic frequency; A,
S are the wave polarization vectors; B is the (complex) temperature increment
amplitude.

The wave vector k and polarization vectors A, S must simultaneously satisfy
the equations

—(p—a+N(k-A)k - [(z+ @)k* — pw?]A + 20ik x S — nikB = 0,
—(y—e+B)(k-S)k — [(v + )k? + 4o — TW?]A + 20k x A — ¢ikB = 0, (4)

— 2B+ %in - %w(k ‘A) - %w(k .8) =0,
where k? = k - k. The latter equations are obtained as a result of substitution in
the system of differential equations (2) of the displacements, microrotations and
temperature in the plane wave (3).
In view of (4), the projections of polarization vectors A and S on the wave
vector k are

A k= nik’B
S k- cik’B

(B4 —e)k? — (v +e)k? — 4o + Tw?’

As it is seen from the latter formulae in the coupled thermoelastic wave
(B # 0), both the polarization vectors A and S have nonzero projections on
the wave vector k, i.e. as there are longitudinal components of displacements and
microrotations the wave is always partially longitudinal. It can be shown that
the coupled thermoelastic wave is in fact longitudinal. These projections can be
excluded from the system (4), as they are expressed in terms of the complex
temperature increment amplitude B.

For the squared wavenumber a separate equation can be derived. By intro-
ducing the dimensionless wavenumber k = k/ k, and omitting the tilde sign we
obtain

52 ) Sﬁk2 Hs‘zlkzz
—k =1 6
iw/ + ]. — kz + ]- 91.2 ’ ( )
1—— —d2k
w I
where
w,zg’ Q2:4Ta; 82_937 62:>\+2u;
Q J ccﬁ I p
$2 = —?72 $° = <
[ pécﬁ’ B JEcﬁ7
2
o _ 1 2 B+ 2y
I @2 3

It should be noted that the equation (6) has no meaning for the wavenumbers
given below

=1, kK =d4d?(1-w?).
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It is easy to demonstrate that these wavenumbers correspond to athermal
waves characterized by zero temperature increment amplitude B = 0.
If instead of cyclic frequency we employ the dimensionless imaginary quantity

_ .
T =,

then for the squared wavenumber the following bicubic equation can be obtained
eok® 4 ekt + eak? +e3 = 0, (7)
where the coeflicients are given by
ey = —i(iT)Szdﬁ,
—ep = —i(i7)52(dﬁ +1—(3Gr)?) +(1+ 52)dﬁ + Msﬁ,
ez = [1 — (ir)?][=i(ir)s + &7 + 1] + 57 + d7,
ez = —[1 — (i1)?].

Formal roots of the bicubic equation (7) are to be determined by well known
from the higher algebra formula. All of them have nonzero imaginary parts. Three
of them correspond to normal wavenumbers. The rest of this Section is devoted
to representation of the formal roots of (7).

On a complex plane consider a general algebraic cubic equation’

eow® + eqw? + eqw + e3 = 0, (8)

where w denotes a complex variable; ey, e1, eo, e3 are coeflicients of the cubic
equation treating in general as complex numbers.
Dividing this equation by eg and introducing the new complex variable w’ in
accordance with e
w=w — —1,
360

we come to the following incomplete cubic equation

w' + eqw’ + ey =0,

2
o =2
T eg 3ed (9)
3
, 2ey elea €3

€q — 7 — —.
2T 27ed 3e2 e

The discriminant of incomplete cubic equation (9) is determined according to
D = —27e — 4ef}

and can be recalculated in terms of the coefficients of the original cubic equation
(8) as follows:

D = E}E2 — AE} B3 — 2TE3 — AE3 4 18E) Ey B, (10)

!The theory of a cubic equation with the required completeness is given, for example, in the
classical book [5, pp. 211-217].
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wherein

(1 =1,2,3).

The formal roots of the incomplete cubic equation are found by using the
Cardano formula as the sum of two cubic radicals (they will be denoted by A

and p)
/ /
/ 3 63 D 3 63 D
Sy Y (Y B Y (. 11
v 2 " 4.27+\/ 2 1-27 (11)

while implying operating with cubic radicals from complex numbers. The cubic
radical of the complex number z has three values; if one /z = ¢ is found, then
the other two will be equalled to €, £2€, where

TV 5 -1V
B 2 B 2
Therefore, the Cardano formula (11) under all possible interpretations of the

two cubic radicals entered it gives nine values, six of which are discarded by
considering the condition that the product of the cubic radicals observed in (11)

1
must be equalled to —=¢}. If a combination of cubic radicals w' = A + p in

1
the formula (11), which satisfies the equation Ay = —56,2, is found, then the

combination itself is a root of the equation (9) and the other two roots will have
the values w' = e\ + €2, w' = €2\ + epu. With a nonzero discriminant all three
roots of an incomplete cubic equation are different.

In the case when all of the coefficients ey, e, €2, e3 of the cubic equation (8)
are real, the following three cases can be discriminated according to the sign of
the discriminant of the equation (10):

3el 3el
1) D =0, all roots of the equation (9) are real; the roots are ? and —2i§)’
€2 €2

(the double root);

2) D < 0, under the signs of cubic radicals in (11) there will be real values,
therefore the cubic radicals A\, p can be taken as real; one root of the
equation (9) is real and reads w’ = A 4 p, and the two remaining roots

, At V3 , A pu V3

W =2TE L), W = -2 B0

are complex conjugates;

3) D > 0, the cubic radicals ), p are complex conjugates; the pairs e\, €2
and €2, eu are also complex conjugates; all three roots of the equation (9)
are real and equalled to 2R\, —RX — V33X, =R\ + V3.

3. Athermal plane wave in micropolar media. For an athermal plane
wave propagating in micropolar elastic medium the zero temperature increment
amplitude takes place, i.e. B = 0.

In this case, we are talking about hyperbolic model of wave propagation |[6].
The polarization vectors A, S of the athermal wave according to (5) have no
projections on the wave vector k, i.e. the athermal wave is transvers:

A=A, S=8S,.
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The system (4) for the athermal wave looks much more simple and reads

—((p+ a)k? — pw?)A + 2aik x S = 0, (12)
— (v + €)k* 4+ 4a — Jw?)S 4 2aik x A = 0.

It can be found from the second equation of system (12) that the polarization
vectors A, S are mutually orthogonal and

05— 2 KXA

) (13)
‘;ci k2 4+ Q2 — w2
where
W2 v+e
poL 5

By substituting S known from (13) in the first equation of system (12)
obtain

N 272 O‘Q2k2
A=0.
( Lk )+2cik2+92—w2 0

It is then seen that

21.2

W 272 2 afd’k
k‘ — =0
p( w’) 2031{:24-(22 —w? ’

or introducing dimensionless quantity

- k
- \\kl’
where
\\2:(")2 \\02:,“+O‘
1L \\Ci, 1L p )

and omitting the tilde sign over k finally the following equation can be given

(k% — 1[,d* k* — (1 — (i1)%))] = (i)*d* k*.

In this equation we use the new symbols

(14)

\ 2 W .2
dz_‘l 2o g S
_\\ci’ J__p7 HJ__\\CQ

Corresponding to an athermal wave the values of k are determined from a
biquadratic equation (14) and are presented here as

2,d2 k3, = (ir)?d> + ,d> +1— (i1)* £ V2, (15)
wherein
9 = [(it)’d> — d> + (1= (i7)*)]* + 4(iT)? d> d* .
470
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It is clearly seen that the discriminant & is positive:

2 >0,
therefore the both values of k? given by (15) are real.
Since (ir)?
1—(ir
212 _

if 1 > (i7)? then the both values k% and k3 are positive, otherwise (when 1 < (i7)?)
the first value k% is positive whereas the second k3 is negative.

We proceed to discussion of the first case assuming 1 > (i7)?. The wavenum-
bers of athermal wave are found as four real values

V2,d bz = 1\ (T2 + 2 41— (i7) £V

among them only two are normal: k1.3 and k1, 4.

In the second case discriminated by the inequality 1 < (i7)? there is single
normal wavenumber thus concluding that if (i7)? < 1 then there are two real
normal wavenumbers, otherwise ((i7)? > 1) — single wavenumber.

4. Conclusions.

1. The coupled thermal and dynamic equations for the hemitropic micropolar
medium have been formulated in terms of displacements, microrotations
and temperature. The equation of thermal conductivity corresponds to the
thermodiffusion mechanism of heat transport.

2. Constitutive constants of hemitropic thermoelastic media have been reduced
to a minimum set nevertheless retaining hemitropic thermoelastic constitu-
tive behaviour.

3. Solutions of the coupled thermoelastic equations in the form of propagating
plane waves of displacements, microrotations and temperature have been
investigated.

4. A plane thermoelastic wave is characterized by spatial polarizations, which
have longitudinal components. Bicubic equation for the wavenumber is ob-
tained. It has been shown that there were exactly three normal complex
wavenumbers.

5. The athermal wave has been studied. Spatial polarizations in this case form
(together with the wave vector) an orthogonal trihedron in space. Wavenum-
bers have been determined from the biquadratic equation. For an ather-
mal wave depending on case, either two real normal wavenumbers or single
wavenumber are found.
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AHHOTaNNSA

PaccvaTrpuBatorcs cBsi3aHHBIE TEPMUYECKHE U JIMTHAMUYIECKUE YPABHEHUST
IeMUTPOIIHON TEPMOYIIPYI'Oil MUKPOIIOJIAPHON Cpelibl OTHOCUTEJILHO MOJIe-
ZKaIlX OIIPEJIeJICHUIO TI0JIeH ITepeMele N, MUKPOBPAIIEHUIT 1 TeMIIepaTyp-
HOTO MHKpeMeHTa. MeXaHu3M TeIIOPOBOIHOCTH IIPEIIIONIAraeTCsl TEPMO-
muddysnonubiM. Ompeessonue MOCTOSHHbIE TeMITPOITHOIO TePMOYTIPY-
TOro TeJia PeIyIMPOBAHBI K MAHUMAJIBHOMY HAOOPY, 00ECIIeInBAIOIIEMY €ro
TEPMOYIPYTYIO MOJYU3OTPOITHOCTh. 3y1datoTcs peneHus CBSI3aHHBIX yPaB-
HEeHUi B pOopMe PACIIPOCTPAHSIONMXCS IIOCKUX BOJIH. OTIpe/iesieHbl ux mpo-
CTpaHCTBeHHBbIE ToJsgpu3anuu. llosydeno anredpandeckoe OWKyOMIecKoe
YPaBHEHHE JJId OIIpeJleJIeHUsI BOJTHOBBIX YUCEJI U YCTAHOBJIEHO, UTO JIJIs CBSI-
3aHHON BOJIHBI B JIEMCTBUTEJBHOCTH CYIIECTBYIOT POBHO TPU HOPMaJbHBIX
KOMILJIEKCHBIX BOJTHOBBIX 4ucja. Vcciaemyercs Tak»Ke XOJIOTHAsST aTepMUIIe-
ckast BostHA. IIpocTpaHCTBEHHBIE MOJSIPU3AIMU B 9TOM Ciydae o0pa3yiorT
(BMecTe ¢ BOJIHOBBIM BEKTODPOM) TPHIJP B3aUMHO OPTOIOHAJILHBIX HAIIPaB-
sennii. [Ty arepMudeckoil BOJIHBI HAXOAATC (B 3aBUCUMOCTH OT CJLydas)
JinbO JBa BEIECTBEHHBIX HOPMAJIBHBIX BOJIHOBBIX UHUCJIA, JTUOO OJIHO.
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Pagaes IO. H.,, Kopasen B. A.

ABTOpCKUIT BKJIAJ 1 OTBETCTBEHHOCTDb. Bce aBTOPHI MPpUHUMAJN yIACTHE B pa3pa-
6GOTKE KOHIIEIIUU CTAThU U B HAIUCAHUYM PYKOMUCH. ABTOPBI HECYT MOJIHYIO OTBETCTBEH-
HOCTB 3a IIPeOCTaBJIeHe OKOHYATEIbHON pyKomucHu B medarb. OKOHYATE/bHAsT BEpCUst
pyxomucu 6bL1a 0100peHa BceMu aBTOPaMU.

PdunaHncupoBauue. PaboTa BbIOJHEHA TPU YACTUIHON PUHAHCOBOI To/11epKKe Munn-
CTEepCTBa HAYKHU U BhICHIEro obpa3oBanus (HOMED rocyapeTBeHHblii perucrpanun AAAA—
A17-117021310381-8) u Poccuiickoro douma dyniaMmenTaabHbIX UCCAEI0BaHUiT (IIPOEKT
Ne 18-01-00844 _a).

BaaromapHocTu. ABTOPBI 61ar0IapsAT PEIEH3EHTa 38 BHUMATEIbHOE IPOYTEHNE CTAThH,
[IEHHbBIE TIPEJIJIOKEHUST U KOMMEHTAPUU.
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