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Abstract

This article discusses the solvability of an overdetermined system of
heat convection equations in the Boussinesq approximation. The Oberbeck—
Boussinesq system of equations, supplemented by an incompressibility equa-
tion, is overdetermined. The number of equations exceeds the number of
unknown functions, since non-uniform layered flows of a viscous incompress-
ible fluid are studied (one of the components of the velocity vector is identi-
cally zero). The solvability of the non-linear system of Oberbeck—Boussinesq
equations is investigated. The solvability of the overdetermined system of
non-linear Oberbeck—Boussinesq equations in partial derivatives is studied
by constructing several particular exact solutions. A new class of exact solu-
tions for describing three-dimensional non-linear layered flows of a vertical
swirling viscous incompressible fluid is presented. The vertical component
of vorticity in a non-rotating fluid is generated by a non-uniform velocity
field at the lower boundary of an infinite horizontal fluid layer. Convection
in a viscous incompressible fluid is induced by linear heat sources. The main
attention is paid to the study of the properties of the flow velocity field. The
dependence of the structure of this field on the magnitude of vertical twist
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is investigated. It is shown that, with nonzero vertical twist, one of the com-
ponents of the velocity vector allows stratification into five zones through
the thickness of the layer under study (four stagnant points). The analysis
of the velocity field has shown that the kinetic energy of the fluid can twice
take the zero value through the layer thickness.

Keywords: exact solution, layered convection, tangential stress, stagna-
tion point, counterflow, stratification, Oberbeck—Boussinesq equation sys-
tem, vertical twist.
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Introduction. Mathematical models that describe viscous fluid flow are gen-
erally based on the Navier—Stokes equations [1-5]. Assumptions regarding specific
mass forces involved in these equations make it possible to distinguish regularities
that are imperceptible when these equations are considered in general terms. One
of the most well-known and widely used assumptions is the linear temperature
dependence of fluid density: p = po(1 — BT'), where pg is the average density, 3 is
the coefficient of volumetric expansion. After substituting the expression relating
density and temperature into the Navier-Stokes equation, we obtain the equa-
tion of the motion of a viscous fluid in the Boussinesq approximation (the Ober-
beck—Boussinesq system) [6-10]. In addition to the velocity vector components,
the equations of the Oberbeck—Boussinesq system include scalar pressure and tem-
perature fields. The system of equations is not closed. To close the Navier—Stokes
equations and the continuity equation, use the energy equation (heat equation)
[6, 11].

The difficulty of finding the exact solutions of the system of differential Ober-
beck-Boussinesq equations (partial differential equations) stems from its nonlin-
earity due to the presence of a convective derivative in the equations describing
pulse transfer and in the heat equation. The properties of the solution are influ-
enced by the boundary conditions, the physical parameters of the fluid and the
environmental characteristics [12-14].

A number of interesting flows arising in technical problems and technological
processes, for example, a submerged jet [15-17], trail behind the body [18-20], or
the flow of fluid or gas from a hole [2, 21] belong to the class of so-called shear flows
[22—26]. Shear flows have the property that one of the three velocity components
is assumed to be zero. In this case, the closed system of equations describing the
motion of a fluid becomes overdetermined (the number of equations exceeds the
number of unknown functions).

One of the approaches that allow one to solve overdetermined systems aris-
ing in mathematical physics when considering shear flows is the construction of
generalized classes of exact solutions [27-29], the substitution of which into the
system of equations under consideration leads to the identical satisfaction of some
of the equations from the Oberbeck—Boussinesq system and reduces the initially
nonlinear system of partial differential equations to a simpler system.

These solution families differ, among other things, in the way the vorticity
calculated for the selected class behaves. A family of exact solutions for a vectorial
velocity field generating no vertical twist was discussed in [30-34|. Taking into
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account vertical twist [35-43] changes the form of the particular solution of the
boundary value problem and complicates its structure.

This article discusses the effect of constant vertical twist on the topology of
the velocity field of the flow in a boundary value problem describing the flow of
a fluid in an infinite horizontal layer, induced by tangential stresses specified on
the free surface. A comparison is made with the case when the vertical twist is
set equal to zero in the selected velocity class.

1. Problem statement. An exact solution to the Oberbeck—Boussi-
nesq system. The following system of equations of thermal shear convection in
the Boussinesq approximation is considered [30, 31, 35, 36, 44, 45]:

v, AV, P
%"‘ yay - Oz +VAVx,

v, oV,  OP
Pe gy T oy TV
oP
02 9PT, (1)

8T 8T
. o,

8x+3y

Ve

Ve

—XAZ

=0.

Here, P is pressure deviation from hydrostatic, divided by constant average
fluid density p; T is deviation from the average temperature; v and x are the
coefﬁcients of kinematic viscosity and thermal diffusivity of the fluid, respectively;
A = 8932 + 8y2 + 8Z2 is the Laplace operator.

The system of equations (1) is overdetermined, since it consists of five equa-
tions for the determination of four unknown functions V,, V,, P, and T For the
solvability of system (1), it is necessary to make sure that the equations involved
in it are compatible and to construct exact solutions that are non-trivial. By
choosing a class of generalized solutions of a special type, one can achieve identi-
cal satisfaction of “extra” equations. It was shown in [30, 31, 46-48] that, for the
velocity field

Vo =U(), Vy=V(2) @)

the incompressibility equation holds identically. The choice of the class (2) allows
system (1) to be reduced to the form

022 Oz’ 922 oy 0z T
o*T  8°T  9*T or _orT
( )=V

922 " a2 T 922 ar oy

(3)

In the system of equations (3), the number of equations coincides with the number
of unknowns.

Ekman was the first to suggest considering solutions in the form (2) for the
description of large-scale flows of rotating fluids [49]. An exact solution of the
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form (2) generalizes the unidirectional Couette flow [50, 51| and the Birich-Ost-
roumov flow [52, 53] in the inertial reference system. Note that the exact solu-
tion (2) is not the only family, the substitution of which into the incompressibility
equation leads to an identity. Velocities of a more general form [54-56],

Ve = Vl‘(y7 2)7 Vy = %(I,Z), (4)

also possess the property under study and allow one to reduce the number of
equations in system (1). Substituting class (4) into system (1) also leads to the
identical satisfaction of the incompressibility equation:

oV, opP V<62Vm 82Vx)’

Y oy ™ 0y? 0722
ovy _ 0P V(any 32%)
Y Oz oy Ox? 022 )’
oP
az - gﬁT7
oT oT o’T  9*r 9T
Vx% +Vy(97y N X(@xQ + Oy? + 022 >

The procedure of constructing such classes is considered in detail in [8, 30,
31, 34-36, 45, 57, 58|. For the velocity field (4), it is possible, using a number
of transformations, to construct exact solutions to the three-dimensional Ober-
beck-Boussinesq system (1). In contrast to class (4), for which all the vorticity
components 2 =rot V,

v, oV, ov, IV,
Q=—""2 Q,=—" Q=2 == 5
0z Yooz Ox oy (5)
are non-zero in the general case, the vertical component €2, of vorticity (5) is
always zero for the velocity field (2),

ov oU
Qz = Q5 Q, = a0
Y 0z

In other words, the family of velocities (4) can describe vertical spin in a fluid,
which occurs without setting rotation at the boundaries of the region in question.
The class of exact solutions (4) for the Oberbeck-Boussinesq equation system
allows large-scale flows in the equatorial zone of the World Ocean to be studied
with the use of the traditional approximation for the angular velocity vector (one
Coriolis parameter is used) [38, 44, 55, 56, 59, 60].

We set the task to analyze how the consideration of vertical twist affects the
behavior of the flow. For convenience and clarity, we choose a family of exact
solutions [35, 36, 44, 61|

Ve =U(z)+u(2)y, V,=V(2), (6)

Q,=0.

which is a special case of class (4). The vorticity vector components calculated
for it take the form
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Class (6) differs from class (2) in that the additional term u(z)y in the expres-
sion for the velocity V; is taken into account. Note that, when u = 0, class (6)
degenerates into family (2).

The substitution of class (6) into the system of Oberbeck—Boussinesq equations
brings the system (1) to the form

02U  9%u oOP
V(G + o) = gy TV
2V 9P 9P
V@—aqu g—gﬂﬂ (7)

oT oT *T  9PT 9T
(U+uy)% Jrvaiy N X<8$2 + 0y? + 072 )

It follows from the second equation of system (7) that the horizontal pressure
gradient OP/0y depends only on the transverse (vertical) coordinate z; therefore,
the pressure P can be represented as

P = P (z,2) + Px(2)y.

Substituting the partial derivative 0P/dx = OP;/0z into the first equation of
system (7), we obtain that OP;/0z depends only on z, i.e. the pressure P proves
to be linear in the coordinate x. Finally, we arrive at the form

P=Py(z)+Pi(z)x+ Pr(2)y. (8)

At the end, we substitute (8) into the third equation of system (7),

oPy 0P 0P,
=gBT
0z + Ozx+ 62y 95
and we find that the temperature T is a linear function of the horizontal coordi-
nates, i.e.
T=Ty(2)+T(2)z+T2(2)y. 9)

In view of the chosen structure of the temperature and pressure fields (8), (9),
the equations of system (1) take the form

02U  9%u 0*V
V(G + gay) = Pw vaa =P
Py 0P 0P,
ottt o y = gB(To + Thx + Thy), (10)

O’y  0°Ty  0*Th
UTy + VT, +uTiy = x( )
VR ey =x{5z T 92T 52 Y
The equations of system (10) are equalities of the form
ar(z) + be(z)x + cp(2)y = 0. (11)

Applying the method of undetermined coefficients, we equate to zero the coef-
ficients at the independent variables z, y and the free terms in the polynomial
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expressions (11). Inasmuch as all the required functions depend only on z, we de-
note the derivatives with respect to the coordinate z by a prime. As a result, we
obtain the following system of equations to determine the unknown components
of the hydrodynamic fields (the equations in the system are written in the order
of integration):

=0, T{=0, P =gpTy, xTy=uTy, P)=gpTs,

(12)
vV = Py, vU" = Vu+ Py, XT// =UTy + VT, P(/] = gB1TyH.
Note that only the first two equations in system (12) are isolated. After integrating
the differential equations in order to determine the functions u and 77, the exact
solutions for which are the linear functions

u=crz+co, 11 =c3z+ cy,

we arrive at a solution for the remaining functions involved in system (1). Here-
inafter, we discuss the case of constant vertical twist, setting u = {2 = const.

2. Boundary value problem. As boundary conditions for the horizontal
temperature gradients 77 and T5, the horizontal pressure gradients P; and P,
the background temperature T, the background pressure Py and the velocities U
and V', we select the conditions described in [30, 31]. The absolutely solid bottom
surface z = 0 of the infinite horizontal layer under study is the reference level
of temperature measurement. Without loss of generality, we assume the reference
temperature to be zero,

T(x,y,0) =0.

The velocity of the lower boundary z = 0 is set as
Ve(0) =Qy, V,(0) =0.

On the upper undeformed (free) boundary z = h, a constant atmospheric pressure
is set and, by analogy with temperature setting, it is measured from zero,

P(z,y,h) =0.

We also assume that a homogeneous field of tangential stresses is specified on the
upper boundary as

o, U 0V OV

T, TMar TSt Moy T T

Here, n is the dynamic viscosity coefficient. Note that, due to the structure of
the velocity field V, the resulting tangential stress field, as well as in [30, 31], is

homogeneous. In addition, on both boundaries of the fluid layer, heat sources are
specified as

€2

T(z,y,0) = Az + By, T(x,y,h) =9+ Cz + Dy.

Taking into account the class of generalized solutions (6), (8), and (9), we
write the selected boundary conditions as follows:

U(0) = V(0) =0,
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nU'(h) =&, nV'(h) =&,

Tp(0) =0, T1(0) =4, T»(0)=B, (13)
To(h) =9, Ti(h)=C, Ts(h)=D,
Po(h) = Pi(h) = Py(h) = 0.

In what follows, we will study the velocity field in detail; therefore, the exact
polynomial solution of the boundary problem (12), (13) is not completely given.
The expressions for the functions Ty and Py are cumbersome; however, they can
be easily obtained by integrating the corresponding equations of system (12). The
exact solution of the boundary value problem (12), (13) has the form

u = T1:A+C;AZ' Pl—gﬁ ((C — A)z* + 2Ahz — (C + A)h?) ;

2t h
D—-B Q
T, =B - —2)2(24 ' :
2 + A 3!hX(h 2)z(2Ah + Ch z+ Cz);

P, = ;Bh(h — 2)(Bh+ Dh — Bz + Dz)+

Q
j'ﬁhx(h — Z)2<Ah2 + Ch?2 +2Ahz +2Chz — A% + 022);

V= 52: + 55};’/ [B(4h3 — 6h2z + 4h2® — %) + D(8h® — 6h2z + 2%)] —

Q
_ IO i 15t 10022 — 6t + 2Pt
6! hvy

+ C(16h° — 15h"z + 5h*2% — 2°)];  (14)

U~ 957 [A(4h® — 6h%2 + 4h2? — 2%) + C(8h® — 6h%2 + 2°)] -

6! hv
e
4! h?
+ D(66h° — 40h*2* + 15h%2° — 2°)|+

[B(24h° — 20R2% + 15h%2% — 6hz* + 2°)+

Q2
+ 9P [A(528h" — 392h°2% + 210h* 2" — 56h2° + 24h2° — 327)+
3-8 hi2y

+ C(648h" — 448h°2* + 210h"2° — 28h%2° + 327)| —

Note that, in view of the exact solution (14), the condition u = 0 determining
the degeneracy of class (6) into class (2), is equivalent to the condition = 0.
Therefore, the effect of the parameter {2 on the topology of the velocity field will
be further studied in detail.
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3. Velocity field analysis. We set the horizontal temperature gradients
B = D = 0 in the boundary conditions (13) and the exact solution (14). The flow
induced by this heating of the boundaries is a generalization of the unidirectional
Birich convective flow [52].

As we pass to the dimensionless coordinate Z = z/h € [0, 1], the expressions
for the velocities U and V' assume the form

h Qh®
&y, 9b Z[A(14 - 15Z + 1023 — 62* + Z°)+
i 6! vy
+C(16 — 152 + 52° — Z%)], (15)
Qﬁh?’ 2 3 3
U=" Z[A(4—6Z+42° - Z%)+ C(8 — 6Z + Z*)]+
Q2n7
- LZ[A(MS — 39222 + 21023 — 562° + 242°% — 327)+
3-8lv2y
+ C(648 — 4482° +2102° — 282° + 32")| -
szh?’ 9y, §1h
- 3-ZH+>=27 (16
Siw Z( )+ " (16)

The velocity field (15), (16) describes the convective flow of a viscous incom-
pressible fluid, which cannot be reduced to unidirectional flow at € # 0. Thus,
the boundary value problem (12), (13) is essentially non-one-dimensional.

Denote by UY and V? the velocities (15), (16) calculated in the absence of
vertical twist (2 = 0),

e,

V0=

3
951 1A — 67 + 472 — 7°) + O(8 — 67 + 7%)] + 11

U =
6! v n

Z.  (7)

Let us now study how the inclusion of the terms containing spatial accelera-
tion €2 in Egs. (15), (16) changes the structure of the flow velocities in comparison
with the velocity field V°, UY when different values of the temperature gradients
A and C are specified. We start with the simplest case, namely, the case of a
uniform heat source (A=B=C =D =0).

When a uniform heat source T7 = 15 = 0, Ty = 97 is set, the velocities U
and V are determined by linear functions as

§1h

2z v=v0= ©h
n

U=0"=

Thus, in the direction of both longitudinal axes, the flow is reduced to a
combination of unidirectional flows of the Couette type [50], which correspond to
a constant field of tangential stresses

_ U _nol_, vV _ndv_,
=, Thoz St T e, Thaz T ST
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Moreover, the direction of the vortex €2 remains unchanged everywhere in-
side the layer. Hereinafter, it is assumed that the flow is convective, i.e. that
A2+ C%#0.

We start by analyzing the velocity V' (15), since the structure of Eq. (15)
is simpler than Eq. (16) determining the velocity U. According to Eq. (15), the
velocity V is determined by the superposition of the flow caused by setting the
tangential stresses at the upper boundary and two convective flows induced by
setting the heat sources. Note that the contribution of each of these flows not only
is determined by the values of the parameters A, C, &, €, but also depends on
the thickness of the layer h. By choosing h, one can make the linear term %Z

prevail over the non-linear terms in the velocity expression (15). Let us consider
two limiting cases, A = 0 and C' = 0, which allow us to reduce the number of
streams contributing to the resultant flow.

Assume that A = 0, then the expression (15) for the velocity V' becomes

_ &h, Cobn®

V
! n 6! vy

Z(16 — 1572 +52° — 7°) =

CgBQRd 5 3 6! vyés
= —7Z\Z° -5 157 —16 + ——
6! vy + + CgBnQhtl’

wherefrom it follows that the velocity Vi can have stagnant points only if the
polynomial equation
Z° — 573 + 157 4+ a1 = 0,

with some
6lvxés

CgpnQLh?t’
has roots within the interval (0, 1). The analysis of the solvability of the equation
shows that such a root in the (0, 1) interval is unique and that it exists only when
the control parameters of the problem satisfy the condition
1 1
< vx§2 <

144 = CgBnQht = 45°

a1 = —16 +

The dependence of the position of the stagnant point of the velocity V; on the
value of the parameter a; is shown in Fig. 1 (curve 1).

Note that in the case under consideration, for A = 0, there is such a value Z;
of the vertical coordinate Z that the tangential stress

SN ndvi  CgBnQh

= = 62° — 2073 + 307 18
v 4z 6ly | +30Z + ] (18)

vanishes. In this case, the stress changes its type (from tensile to compressive).
Such Z; exists only for a; € [—16,0], i.e. when

vx&2 < 1

= CgpnQahd 45

The dependences of the coordinate Z; (the zeros of the polynomial (18)) on
the parameter a; are shown in Fig. 1 (curve 2).
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0.6

0.4

0.0t

—15 —10 -5 0 5 10
ay, a2, ag, a4
Figure 1. Dependencies of the position of the stagnant points of the velocities Vi, Vo, U?, US
and the critical point of the corresponding stresses Tz}z, TyQZ, 791 791 on the parameters a1, az,
as, aq: curve 1 — the set of points satisfying the condition V; = 0; curve 2 — the set of points
satisfying the condition T;Z = 0; curve 3 — the set of points satisfying the condition V2 = 0;
curve 4 — the set of points satisfying the condition 7'52 = 0; curve 5 — the set of points satisfying
the condition U = 0; curve 6 — the set of points satisfying the condition 70} = 0; curve 7 —
the set of points satisfying the condition U = 0; curve 8 — the set of points satisfying the
condition 792 = 0

Consider another limiting case, assuming that C' = 0 in (15). Then the velocity
Vo = V‘C:o takes the form

B @Z B AgpQnd
n 6! vy

B AgpQnd
- 6! vy

Va Z(14 —15Z + 1023 — 62 + 2°) =

|
Z[Z5_GZ4+1OZ3_15Z+14_% .

Obviously, the velocity V5 can have stagnant points only if the equation
75 —6Z* +102% —15Z + a3 =0

has solutions inside the layer (0,1) for some

l
4y = 14— 6! vx&2

AgBnQht”
The tangential stress
d AgpnQht
72, = %d—? - —965'7;)([6Z5 — 3024 + 4023 — 30Z + as)]
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corresponding to the velocity V5 can also change its type. The corresponding
dependencies are shown in Fig. 1 (curves 3 and 4). Similarly, one can obtain
estimates for the control parameters of the boundary value problem, at which the
velocity Vo and the tangential stress TyZZ vanish. We have the following inequality
for the velocity Va:
Lo wmb 7
180 = AgBnQh* ~ 360
For the tangential stress Ty22, it is written as follows:
vx&2 < e
= AgBnQht T 360

Note that, even in these limiting cases, the velocity V' can have one stagnant
point.
Next, we assume in (15) that A # 0, C' # 0,

5
V= Cg?)?;bz[z5 —52°+15Z + ay — a(Z° — 62" +10Z° — 15Z + 14)].
Here, a = A/C is a dimensionless parameter. The velocity V' can have two stag-
nant points (Fig. 2).

Thus, in the chosen case of heating of the boundaries (B = D = 0), the
velocity V' (15), when the vertical twist (£2 # 0) is taken into account, can have
up to two zero points.

We now study in a similar way the velocity U (16) of fluid flow along the
Oz axis. The expression for the velocity U, in contrast to the velocity V' (15),
is determined by the superposition of six streams: two streams caused by setting
the tangential stresses £; and &» and four streams induced by the temperature
gradients A and C'. Besides, some of these streams are caused by the presence of
a vertical twist in the fluid, characterized by the 2 parameter. In the same way as

0.6

04

-0.15 —-0.1 —0.05 0 0.05 0.1 0.15 0.2
v

Figure 2. The profile of the velocity V for a1 = —15.2,a = —1.1
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in the analysis of the velocity V' (15), we start with the limiting cases, when one
of the longitudinal temperature gradients appears to be zero. The vanishing of
each temperature gradient reduces the number of flows forming the velocity (16)
by two.

Note that, when there is no vertical twist (when Q = 0 and the velocity U is
determined by the expression (17)), the type of velocities

_ CypBr® IS
Ud = Z8—6Z+ 73 +>—-7 =
1 ‘A 0 G!V ( + ) n
Cgph? 5 6lv&
= AV AR VA St
6l Ca +8+C’gﬁh2n>’
~ Agph? &1h
U =u° I 74— 67 +42% -7+ 27 =
2 ‘c 0 gly ( + ) n
= Z(-7° +47% —6Z +4
6!v ( + 02+ 4+ Agﬁh%})

is similar to the form of the velocities V7 and Vs in the sense that any of them is
determined by the interaction of two streams, linear and nonlinear. By analogy, it
can be shown that the velocities U and U2 , as well as the corresponding tangential
stresses 700 = 70 { 2| agr and 792 = 70 | _o» can vanish inside the layer. The
location of the stagnation points depends o_n the combination of the parameters
ngﬁfILQ and Agyéllﬂn (Fig. 1, curves 5 to 8).

Let us now study the effect of the vertical twist €2 on the behavior of the
velocity U (16) in the limiting cases A = 0 and C' = 0. If A = 0, then the velocity

Ui = Ul a—o takes the form

CypBh? 5 Q&h? 9y, §1h
:Z[ 67247 7%) 4
U, G, 802+ 2% — S22 42
QZ 7
M(G% — 44877 + 21023 — 287° + 3Z7)] =
3-8lv2y
CgpQ*n’ 7 5 3 2 3-812x&
- 2[2—22 2102° — 44822 + 64
Rt 82° + 210 B2 + 648+ Zzom i
18vy 3 4-Tlvxée 9
Z+73 - X823z }
o 862+ 20 - a3 =2

by virtue of (16).

The polynomials 3Z7 — 2825 421023 — 44822 + 648, 8 —6Z + Z3, and 3 — Z?
involved in the expression of the velocity U; are strictly monotonic on the domain
of definition [0, 1], and each coefficient in front of these polynomials contains at
least one independent control parameter. The profile of the velocity U; with three
stagnant points is shown in Fig. 3.

When C' = 0, it follows from (16) that the velocity Us = Ul|c=o can be
transformed in the same way
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Figure 3. The profiles of the velocities U; and Uz when they have three stagnant points

AgBh3 Q&h3 h
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217
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3-8y
AgBO2RT
_ AGPYR 1 gy + 2425 — 562° 4+ 21023 — 39222 + 528+
3-8y
168y 0 3 4-Tluxés o 3-8lUx&h
462 4427 — 7% - — A2 (3 72y 4 T AT
+ e 462+ ) = agaant C 2  Aosaent, J

whence it follows that Us also can have up to three stagnant points (Fig. 3).

Thus, in the considered limiting cases (A = 0 and C' = 0) with Q = 0, the
velocity U can have no more than one critical point, and when the vertical twist
(© # 0) is taken into account, their number can reach three.

In the case A # 0,C # 0, the structure of the velocity U° (17) is similar to the
structure of the expression (15) for the velocity V'; namely, the expression of veloc-
ity UV, as well as the velocity V, is determined by the superposition of three flows:
two non-linear flows, caused by temperature factors, and one linear flow induced
by tangential stresses specified on the upper boundary z = h. Consequently, the
velocity U? (17) can have up to two stagnant points.

Let us now analyze how the velocity U determined by the expression (16)
is affected by the contribution of the terms caused by the presence of a vertical
twist. We write (16) as follows:

h3
U= ggy Z[A4—6Z+42° - Z°)+ C(8 — 62+ Z°)|+
QQ 7
+ MZ[A(MS —3927% + 21023 — 562° + 242°% — 327)+
3-8lv2y
3
+O(648 — 4482% + 2102° — 982° + 327)] — f;f?h oL
‘ny
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g592h7
W(A%(Z) + 094(Z))_

Q&R
6y

_ Z[gﬁh?’

7900 (Ag1(Z) + Cg2(2)) +

() + 2. (1)

All the polynomials g;(Z) in (19) are strictly monotonic. The study of the
spectral properties of the polynomial (19) shows that the velocity (19) can have
no more than four stagnant points. The coefficient in front of g5 and the free term
are independent due to the arbitrariness of the choice of the control parameters
&1 and &o; it can be seen from (19) that the coefficients in front of the polynomials
g1, g2, g3, and g4 are related,

gBQ2RT B gBh®  Q2ht
3-81v2y  6lv 168vy’

i.e. we have only three independent parameters for all these four coefficients,
namely, A, C, €, and this imposes additional restrictions on the behavior of the
function U if we consider the properties of the flow of a particular fluid in a
horizontal layer of a fixed thickness h.

Thus, in the case AC' # 0, the number of critical points of the velocity U, as in
the cases A = 0 and C' = 0, increases by two when the vertical twist characterized
by the parameter €2 is taken into account. The qualitatively different profiles of
the velocity U are shown in Fig. 4.

Figure 4. The profiles of the velocity U with different numbers of stagnant points: curve 1 —
two stagnant points; curve 2 — three stagnant points; curve 3 — four stagnant points

Conclusion. This article provides a new exact solution for the Oberbeck-
Boussinesq equations describing the shear convection of a vertically swirling fluid.
The resulting exact solution allows you to resolve this overdetermined system.
Fluid motion is induced by specifying heat sources at both boundaries of an infi-
nite horizontal layer and taking into account external friction at the free boundary
(specifying tangential stresses). It has been demonstrated that no more than two
stagnant points can exist in a fluid, although one of the components of the velocity
vector can vanish up to four times through the layer thickness.
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KoHBeKTUBHBIE CJIONCThbIE T€YEHUS BEPTUKAJIBHO
3aBUXPEHHOI BA3KOI HECXKMMAaeMOM >KNIKOCTH.
HNccnenoBanue moJiss CKOpocTeii

H. B. Bypmawesa'?, E. IO. ITpoceuparos'?

I WUncruryr mammuosenenus YpO PAH,

Poccus, 620049, Exatepunbypr, yi. Komcomosbekast, 34.
Vpanbckuit deepasbHbIil YHUBEPCUTET

uM. niepsoro [Ipesuaenta Poccun B. H. Enbnuna,

Poccus, 620002, Exarepunbypr, yia. Mupa, 19.

AnHOTaINSA

O6cyxkmaercss pa3penmMOCThb T€PEOIPEIeSIEHHON CUCTEMBI yPaBHEHUIA
TEIJIOBOIl KOHBeKIUu B npub/mkenunn byccumuecka. Cucrema ypaBHEHHi
Obepbeka—Byccunecka, H0mMOTHEHHAS YPABHEHUEM HECKUMAEMOCTH, SBJIsI-
ercs nepeonpezenennoii. KommdecrBo ypaBHEHUN TPEBOCXOIUT KOJUIECTBO
HEU3BECTHBIX DYHKIHIL, IOCKOJIbKY U3Y4YaI0TCs HEOIHOPOHBIE CJIOUCTHIE 10~
TOKM BSI3KOH HECXKMMaeMoil KuakocTu (OfHA M3 KOMIOHEHT BEKTODA CKO-
POCTH TOXK/JIECTBEHHO PaBHa HyI0). [IpoBejieHO HCCiie[0BaHne PAa3PEeIIIMO-
cru HeJmHEHOU cucTembl ypaBueHuii Obepbeka—byccunecka. UcciemoBanne
Pa3pENIIMOCTH IIEPEOTIPE/IETIEHHON CHCTEMbI HEJIMHENHBIX YPABHEHUIT B 9aCT-
HBIX TPon3BOAHBIX Obepbeka—bByccnHecka OCyIeCTBIISIOCH TPH TOMOIITH 110~
CTPOEHUSI HECKOJIBKUX YaCTHBIX TOYHBIX pernenuii. [IpuBenen HoBbIil Kiacc
TOYHBIX PEIeHU JIJIsi ONUCAHUS] TPEXMEPHBIX HEJIMHEHHBIX CJIOUCTHIX Tede-
HUI BEpTUKAJIBHON 3aBUXPEHHON BI3KOW HECXKMMAEMOM KuJIKocTU. BepTn-
KaJIbHasl KOMIIOHEHTa 3aBUXPEHHOCTH B HEBPAIAIOIIENCS 2KUIKOCTU TeHepU-
pPyeTcst HEOIHOPOIHBIM [TOJIEM CKOPOCTEN Ha HUXKHEIN rpanniie OECKOHETHOTO
TOPU30HTAJILHOTO CJI0S KUIKOCTH. KOHBEKIINs B BA3KOI HEC2KIMAEMOIT K11~
KOCTHU MHIYIIUPYETCs JTUHEHHBIMU UCTOIHIKAaMK Teria. OCHOBHOE BHUMAHUE
V/JIeJIEHO WCCJIEIOBAHUIO CBOWCTB II0JIsI CKOpOCTeil TedeHnus. Vccienosana 3a-
BUCHMOCTH CTPYKTYPBI 9TOTO IIOJIsI OT BEJIMYUHBI BEPTUKAJBHONU 3aKPYTKU.
Ilokazano, 4TO OHA U3 KOMIIOHEHT BEKTOPA CKOPOCTH ITPU HEHYJIEBOM BEp-
TUKAJIbHON 3aKPYTKE JOIYCKAET PACCIOCHNE HA MSITh 30H IO TOJIIMHE PAC-
CMaTPUBAEMOro cJiog (JYerbipe 3acToiinble TOUKH). AHa/IU3 [0Sl CKOPOCTel
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Bypmamesa H. B., [IpocBupsikos E. FO.

IIOKa3aJl, YTO KHHETHYICCKAad dHEPIrud 2KUJIKOCTHU MOXKET ABaKIbl IPUHUMATH
HyﬂeBOfI 3Ha4YCHHE 110 TOJIIIUHE CJIOLA.

KurouyeBbie cjioBa: TOYHOE pellleHne, CJIOUCTasi KOHBEKIINsI, KacaTeJbHOe
HAIPSIXKEHNEe, 3aCTOMHAs TOYKA, TPOTUBOTEUEHUE, CTPATH(MUKAIIST, CUCTEMA
ypasuenuit Obepbeka—Byccunecka, BepTuKaJbHAs 3aKPYTKA.

Iosnyuenue: 16 ausaps 2019 r. / Wcnpasienue: 27 mapra 2019 1. /
Hpungarue: 29 anpens 2019 r. / [y6aukanusa omnaitn: 2 mag 2019 r.

Koukypupyroiiiue nHTepechl. Mbl 3agB/sieM, 9TO y HAC HET KOHMJINKTa WHTEPECOB B
OTHOIIEHUU aBTOPCTBa 1 IIy6J'II/IKaI_[I/II/I 9TOM CTATHHU.

ABTOpCKasi OTBETCTBEHHOCThb. MBI HeceM IMOJIHYI0 OTBETCTBEHHOCTH 32 IIPEIOCTAB-
JIEHWe OKOHYATEJILHON PYKONMCH B IMevaTh. KakKaplit n3 Hac oa00pm/I OKOHYATETHHYIO
BEPCUIO PYKOIIUCH.

®dunaHcupoBaHue. Pabora BBIOJHEHA [TPU MTOJIEPYKKe (DOHJIA COEUCTBUS PA3BUTHIO

MaJIbix (hopM IpeAnpusThii B HayYHO-TexHuIecKoh cdepe (mporpamma YMHUK, noro-
Bop 122811V /2017).
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