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Abstract

The paper proposes a method for constructing models based on the anal-
ysis of birth and death processes with linear growth in semimartingale terms.
Based on this method, stochastic models of simple just-in-time systems
(analyzed in the theory of productive systems) and windows of vulnerability
(widely discussed in risk theory) are considered. The main results obtained
in the work are presented in terms of the average values of the time during
which the processes reach zero values. At the same time, they are considered
and used in the study of assessment models for local times of the processes.

Here, simple Markov processes with a linear growth of intensities (per-
haps, depending on time) are analyzed. At the same time, the obtained and
used estimates are of theoretical interest. Thus, for example, the average
value of the stopping time, at which the process reaches zero, depends on
functions such as the harmonic number and the remainder term for the log-
arithmic function in the Taylor theorem.

As the main result, the method of mathematical modeling of just-in-
time systems and windows of vulnerability is proposed. The semimartingale
description method used here should be considered as the first step of such
a modeling, since, being a trajectory method, it allows diffusion (including
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non-Markov processes) generalizations when constructing stochastic models
of windows of vulnerability and just-in-time. In the theoretical part of the
article, we formulate statements for the average values of the local time and
the stopping times when the birth and death processes reach a given value.
This allows us to uniformly present estimates for the models of the just-in-
time system and for windows of vulnerability, the result for which is given
in the form of a limit theorem. The main results are formulated as theorems
and lemmas. The proofs use semimartingale methods.

Keywords: modeling, process of birth and death, stopping time, compen-
sator, intensity, counting process, martingale, trajectory, local time, just-in-
time, window of vulnerability.
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Introduction
In the paper, we propose a method for constructing models based on an anal-

ysis of the processes of birth and death with linear growth in semimartingale
terms. As the main examples of stochastic models, simple just-in-time systems
and windows of vulnerability are considered. Just-in-time systems (abbreviated
as JIT are analyzed in the theory of productive systems, and windows of vulnera-
bility (abbreviated as WoV are widely discussed in risk theory. The main results
obtained in the work are presented in terms of the average values of the time
during which the processes reach zero values. The work also considers (and uses
when studying models) estimates of the local times of the studied processes.

We note that here, simple Markov processes with a linear growth of intensities
(perhaps, depending on time) are analyzed. Nevertheless, the obtained and used
estimates are of a certain theoretical interest. Thus, for example, the average value
of the stopping time, at which the process reaches zero, depends on functions such
as the harmonic number and the remainder term for the logarithmic function in
the Taylor theorem.

However, as one of the main results, it is proposed to consider the presented
method of mathematical modeling of JIT and WoV systems. The semimartingale
description approach used here should be considered as the first step of such a
modeling, since, being a trajectory method, it allows diffusion (including non-
Markov processes) generalizations when constructing stochastic models of WoV
and JIT.

At present, when constructing probabilistic models of WoV, in the theory of
risk, researches have appeared that analyzes the average values of the time during
which the trajectories are in a certain area and therefore the system is vulnerable
(see, for example [1–3] and references in them). Studies of average values of the
local time for such models are interesting.

And if the WoV descriptions in the risk theory are predominantly stochastic,
then the models based on JIT are mostly deterministic. Although it is obvious that
a probabilistic approach to the study of such processes is in demand. We also note
that the stochastic description of JIT systems proposed here is in a certain sense
a logical (and analytic) continuation of [4], in which a semimartingale description
is given for problems of optimal control of such systems.
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In this article, statements for the average values of the local time and the stop-
ping times when the birth and death processes reach a given value are obtained.
This allows us to consistently present estimates for the models of the JIT system
and for WoV, the result for which is given in the form of a limit theorem.

The principle of JIT is well known and used in many areas. However, its emer-
gence and development is associated primarily with the analysis of productive
systems (see, for example, [5–9], as well as [4] and references therein). Here, as in
cite [4], we touch on the time reversal method. A number of papers are devoted to
the study of this method for stochastic systems represented in the semimartingale
description (see, for example, [10–12] and references therein). Also close to this
method are studies of stochastic bridges (see, for example, [13–15] and references
therein). Descriptions in terms of the processes of birth and death are devoted
primarily to models in biology (see, for example, [16]). However, the semimartin-
gale approach allows for significant generalizations. So, it allows one to describe
and investigate models of random walk processes for a wide class of objects (see,
e.g., [17–20] and [4]).

All the main results in the paper are formulated as theorems and lemmas. The
proofs of the results use semimartingale methods.

1. Preliminaries and necessary theoretical results
1.1. Notations, definitions and assumptions

Let B = (Ω,ℱ ,F = (ℱ𝑡)𝑡>0,P) denote a stochastic basis, that is, a probability
space (Ω,ℱ ,P) with a nondecreasing right-continuous family of 𝜎-algebras F =
(ℱ𝑡)𝑡>0, complete with respect to P (see e.g., the conditions of [21]).

Notation 1. For any special locally square-integrable semimartingale 𝑈 =

(𝑈𝑡)𝑡>0 on the basis B, we denote by ̃︀𝑈 = (̃︀𝑈𝑡)𝑡>0 and 𝑚𝑈 = (𝑚𝑈
𝑡 )𝑡>0 the compen-

sator of 𝑈, and the local martingale, respectively : 𝑈𝑡 = ̃︀𝑈𝑡+𝑚𝑈
𝑡 . For definiteness,

we also assume that ̃︀𝑈0 = 𝑈0 and 𝑚𝑈
0 = 0. The predictable process of locally

bounded variation ̃︀𝑈 , and the martingale 𝑚𝑈 are locally square-integrable. We
denote by ⟨𝑚𝑈 ⟩ =

(︀
⟨𝑚𝑈 ⟩

𝑡

)︀
𝑡>0 the predictable quadratic characteristic of 𝑚𝑈 .

Notation 2. For any process of birth and death 𝑈 on B with strictly positive
initial value 𝑈0 > 1 we denote by 𝜏𝑈 = 𝜏𝑈 (𝜔), 𝜔 ∈ Ω, the Markov time at which
𝑈 reaches zero: 𝜏𝑈 = inf {𝑡 > 0: 𝑈𝑡 = 0} (where inf{∅} = +∞).

Notation 3. We denote by 𝐿𝑈 (𝐾) the function of 𝐾 ∈ N = {1, 2, . . .}, which
is the average value of the stopping time 𝜏𝑈 for the process 𝑈 with the initial value
𝑈0 = 𝐾: 𝐿𝑈 (𝐾) = 𝐸𝜏𝑈 .

Definition 1. Let 𝑙𝑈𝑡 (𝑛) be the local time of any process of birth and death 𝑈
on B: for 𝑛 ∈ N0 and 𝑡 ∈ R+ = [0,+∞) :

𝑙𝑈𝑡 (𝑛) =

∫︁ 𝑡

0
I{𝑈𝑠 = 𝑛} 𝑑𝑠,

where I{·} is an indicator function (i.e., I{true} = 1, I{false} = 0).

Consider on the basis B a locally square-integrable birth and death process
𝑋 = (𝑋𝑡)𝑡>0 with trajectories in the Skorokhod space, 𝑋𝑡(𝜔) ∈ N0 = {0, 1, 2, . . .},
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with 𝑋0(𝜔) = 𝐾 ∈ N and Δ𝑋𝑡(𝜔) = 𝑋𝑡(𝜔)−𝑋𝑡−(𝜔) ∈ {−1, 0, 1} P-a.s. We can
represent X as a difference 𝑋 = 𝑋0+𝐴−𝐵 (see, for example, [18] and [19]), with

𝑋𝑡 = 𝑋0 +𝐴𝑡 −𝐵𝑡, (1)

where 𝐴 = (𝐴𝑡)𝑡>0 and 𝐵 = (𝐵𝑡)𝑡>0 are the counting processes of the number of
positive and negative jumps of 𝑋, respectively:

𝐴𝑡 =
∑︁

0<𝑠6𝑡

I{Δ𝑋𝑠 = 1}, 𝐵𝑡 =
∑︁

0<𝑠6𝑡

I{Δ𝑋𝑠 = −1} for all 𝑡 > 0 P-a.s.

with the initial values 𝐴0 = 𝐵0 = 0 and 𝑋0 = 𝐾 > 1.
Assumption 1. Suppose that 𝑋 is a process of birth and death with linear

growth, that is, the compensators of the submartingales 𝐴 and 𝐵 on B are

̃︀𝐴𝑡 =

∫︁ 𝑡

0
𝛼 ·𝑋𝑠 𝑑𝑠 and ̃︀𝐵𝑡 =

∫︁ 𝑡

0
𝛽 ·𝑋𝑠 𝑑𝑠 for all 𝑡 > 0. (2)

Then the quadratic characteristics of the locally square-integrable martingales
𝑚𝐴 = (𝑚𝐴

𝑡)𝑡>0 and 𝑚𝐵 = (𝑚𝐵
𝑡)𝑡>0 are

⟨𝑚𝐴⟩𝑡 = ̃︀𝐴𝑡, ⟨𝑚𝐵⟩𝑡 = ̃︀𝐵𝑡 and ⟨𝑚𝐴,𝑚𝐵⟩𝑡 = 0 for all 𝑡 > 0. (3)

Assumption 2. We suppose that

𝛼 > 0, 𝛽 > 0 and 𝛽 > 𝛼.

It is clear that under the representation (2) and (3) the process 𝑋 with the
definition (1) is a square-integrable birth and death process with linear growth.
For such a process, it easily follows from Assumption 2 that

lim
𝑡→∞

𝐸𝑋𝑡 = lim
𝑡→∞

𝐸𝑋2
𝑡 = 0.

Therefore, from Chebyshev’s inequality we obtain

lim
𝑡→∞

𝐸 I{𝑋𝑡 > 𝑖} = lim
𝑡→∞

P{𝑋𝑡 > 𝑖} = 0 for all 𝑖 ∈ N. (4)

Thus,
P{𝜏𝑋 <∞} = 1− lim

𝑡→∞
P{𝑋𝑡 > 0} = 1,

and 𝜏𝑋 is the stopping time on B.
Notation 4. For any process of birth and death 𝑈 on B we denote by 𝜆𝑈 (𝑛)

the average value of the local time on R+ for 𝑛 ∈ N :

𝜆𝑈 (𝑛) = 𝐸 𝑙𝑈∞(𝑛),

where
𝑙𝑈∞(𝑛) = lim

𝑡→∞
𝑙𝑈𝑡 (𝑛)

528



Stochastic models of JIT systems. . .

and 𝑙𝑈𝑡 (𝑛) is set in Definition 1.
From Definition 1 it follows that

𝜆𝑋(𝑛) =

∫︁ ∞

0
P{𝑋𝑠 = 𝑛} 𝑑𝑠. (5)

Since for X under consideration, 𝜏𝑋(𝜔) <∞ P-a.s., then we have

𝜏𝑋 =

∫︁ ∞

0
I{𝑋𝑠 > 1} 𝑑𝑠 = lim

𝑡→∞

∞∑︁
𝑛=1

𝑙𝑋𝑡 (𝑛) =

∞∑︁
𝑛=1

𝑙𝑋∞(𝑛), (6)

where
𝑙𝑋∞(𝑛) = lim

𝑡→∞
𝑙𝑋𝑡 (𝑛).

From (5), Notation 4 and (6) it follows that

𝐿𝑋(𝐾) = 𝐸 𝜏𝑋 =
∞∑︁
𝑛=1

𝜆𝑋(𝑛). (7)

We define the following auxiliary functions.
Definition 2. Let 𝐻(𝑛) be the harmonic number (i.e. the partial sum of the

harmonic series) for 𝑛 ∈ N:

𝐻(𝑛) =

𝑛∑︁
𝑖=1

1

𝑖
.

Definition 3. Let 𝑅𝑛(𝑥) be the remainder term in Taylor theorem of the func-
tion log(1− 𝑥) for 𝑛-th order Taylor polynomial 𝒫𝑛(𝑥) of 𝑥 ∈ (0, 1), 𝑛 ∈ N:

𝑅𝑛(𝑥) = log(1− 𝑥)− 𝒫𝑛(𝑥) = log(1− 𝑥) +
𝑛∑︁

𝑖=1

𝑥𝑖

𝑖
= −

∞∑︁
𝑖=𝑛+1

𝑥𝑖

𝑖
.

Definition 4. We define the following auxiliary constants:

𝜂 = 𝛽 − 𝛼, 𝛾 = 𝛼/𝛽 (where 0 < 𝜂 6 𝛽, 0 6 𝛾 < 1).

1.2. Theoretical results necessary for the study of models
Theorem 1. For the average value of the stopping time 𝜏𝑋 ,

𝐿𝑋(𝐾) =
1

𝛽 − 𝛼
·
{︂
𝐻(𝐾) + log

(︁
1− 𝛼

𝛽

)︁
−
(︁𝛽
𝛼

)︁𝐾
·𝑅𝐾

(︁𝛼
𝛽

)︁}︂
if 𝛼 > 0 (8)

and

𝐿𝑋(𝐾) =
𝐻(𝐾)

𝛽
if 𝛼 = 0. (9)
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It should be noted that the expression (8) in the statement of the theorem is
rather unusual. As for (9), it can also be regarded as the limiting case of (8) for
𝛼→ 0.

Corollary 1. If 𝐾 = 1, then for the average value of the stopping time 𝜏𝑋 ,

𝐿𝑋(𝐾) = − 1

𝛼
· log

(︁
1− 𝛼

𝛽

)︁
if 𝛼 > 0 (10)

and
𝐿𝑋(𝐾) =

1

𝛽
if 𝛼 = 0. (11)

The proof of the theorem is based on the equality (7) and on the following
lemma, which is also of independent interest.

Lemma 1. For the average value of the local time on R+ for 𝑛 ∈ N,

𝜆𝑋(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
1

𝜂·𝑛
− 𝛾𝑛

𝜂·𝑛
if 𝑛 6 𝐾,

𝛾(𝑛−𝐾)

𝜂·𝑛
− 𝛾𝑛

𝜂·𝑛
if 𝑛 > 𝐾.

(12)

Corollary 2. If 𝛼 = 0, then for the average value of the local time on R+ for
𝑛 ∈ N,

𝜆𝑋(𝑛) =

{︂
1/(𝛽·𝑛) if 𝑛 6 𝐾,
0 if 𝑛 > 𝐾.

(13)

2. The problem of JIT
The term just-in-time arose in connection with the need for a description of

the so-called production systems (see, for example, [6, 9] and references in [4]).
Suppose that a fixed strictly positive finite time moment 𝑇 > 0 is given.

Suppose also that the process of birth and death 𝑍 = (𝑍𝑡)𝑡∈[0,𝑇 ] (or an integer-
valued random walk for the general case) has the initial value 𝑍0 = 𝐾 ∈ N.

Definition 5. The process of birth and death 𝑍 is just-in-time T (abbreviated
as JIT T), if 𝑍𝑇 = 0 P-a.s. and P{𝑍𝑡 > 0} > 0 for any 𝑡 ∈ [0, 𝑇 ) (that is,
P{𝜏𝑍 6 𝑇} = 1 and P{𝜏𝑍 > 𝑡} > 0 for any 𝑡 ∈ [0, 𝑇 )).

The process of birth and death 𝑍 is just-in-time (abbreviated as JIT ) if there
exists a strictly positive finite number 𝑇 > 0 such that the process 𝑍 is JIT T.

As a simple example, consider the linear pure death JIT 𝑇 process 𝑉 =
(𝑉𝑡)𝑡∈[0,𝑇 ] with death rates that are properly time-dependent. Suppose that in a
certain production system it is necessary to perform a set of homogeneous opera-
tions with successively decreasing numbers K0 = {𝐾,𝐾−1, . . . , 1, 0} exactly for a
period of time 𝑇 , where 𝐾 ∈ N and 𝑇 ∈ (0,+∞). Usually, operation number 0 is
considered terminal and unproductive (for example, warehousing or packaging).
For systems of this type, it is of interest problem to estimate the time of the
beginning of the last operation (with the number 0), since the control possibilities
of the system after this moment vanish.
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Let the nonincreasing process 𝑉 = (𝑉𝑡)𝑡∈[0,𝑇 ] with values in K0 “indicates”
the number of the operation that is executed at each moment 𝑡 ∈ [0, 𝑇 ]. We
denote by 𝜉(𝑛) the execution time of each operation with number 𝑛 ∈ K0. Then
𝜉(𝑛) = 𝑙𝑉𝑇 (𝑛), where 𝑙𝑉𝑇 is the local time defined in Definition 1, for the process 𝑉 .
In these notations, the problem mentioned above is formulated in the same way
as in the first section: find 𝐸𝜏𝑉 , where the moment 𝜏𝑉 is defined in Notation 2
and is equal to 𝜉(𝐾) + . . .+ 𝜉(1) = 𝑇 − 𝜉(0).

Note also that the process with reversed time V = (V𝑢)𝑢∈[0,𝑇 ] with val-
ues V𝑢 = 𝑉(𝑇−𝑢) is a point counting process provided V𝑇 = 𝐾. If the times
{𝜉(0), 𝜉(1), . . . , 𝜉(𝐾)} were independent and identically exponentially distributed
random variables, then V would be a Poisson process. However, in this case the
condition V𝑇 = 𝐾 would not hold. The trajectories of the Poisson process for
which this condition is fulfilled form a well-known Poisson bridge, see, for exam-
ple, [12, 13] and the literature cited therein. The compensator of the process V
has the form ̃︀V𝑢 =

∫︁ 𝑢

0

𝐾 −V𝑟

𝑇 − 𝑟
· I{𝑟 < 𝑇} 𝑑𝑟.

Then the process 𝑉 can be considered as a Poisson process with reversed time
with an initial value 𝑉0 = 𝐾 and with the condition 𝑉 (𝑇 ) = 0. Its compensator
is equal to ̃︀𝑉𝑡 = 𝐾 −

∫︁ 𝑡

0

𝑉𝑠
𝑇 − 𝑠

· I{𝑠 < 𝑇} 𝑑𝑠.

Note that the condition 𝑉 (𝑇 ) = 0 can also be achieved with other depen-
dencies of the death rate on time. As an example, consider the process, which
is a very simple generalization of the process with the specified compensator̃︀𝑉 = (̃︀𝑉𝑡)𝑡∈[0,𝑇 ].

Suppose that the linear pure death process 𝑍 can be represented as the dif-
ference 𝑍 = 𝑍0 − 𝐵 with 𝑍𝑡 = 𝑍0 − 𝐵𝑡 and 𝑡 ∈ [0, 𝑇 ], where 𝐵 = (𝐵𝑡)𝑡∈[0,𝑇 ] is
the counting process of numbers of negative jumps of 𝑍 :

𝐵𝑡 =
∑︁

0<𝑠6𝑡

I{Δ𝑍𝑠 = −1}

with the compensator

̃︀𝐵𝑡 =

∫︁ 𝑡

0
𝛽 · 𝐾 −𝑁𝑠

𝑇 − 𝑠
· I{𝑠 < 𝑇} 𝑑𝑠, 𝛽 > 0.

Consequently, the supermartingale 𝑍 has the representation

𝑍𝑡 = 𝐾 −
∫︁ 𝑡

0
𝑍𝑠 ·

𝛽

𝑇 − 𝑠
· I{𝑠 < 𝑇} 𝑑𝑠+𝑚𝑍

𝑡 , (14)

For the average value of the stopping time 𝐿𝑍(𝐾) = 𝐸 𝜏𝑍 of the linear pure
death process 𝑍, with the intensity depending on time in accordance with the
representation (14), the following statement holds.
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Theorem 2. Let 𝛽 > 0. Then for the average value of the stopping time 𝜏𝑍 ,

𝐿𝑍(𝐾) =
𝑇

𝛽
·

𝐾∑︁
𝑖=1

(𝑖− 1)!∏︀𝑖
𝑗=1

(︀
𝑗 + 1

𝛽

)︀ . (15)

Remark 1. Note that (15) can be represented in the form, which is to some
extent close to (9) of Theorem 1:

𝐸 𝜏𝑍 =
1

𝛽
·

𝐾∑︁
𝑛=1

1

𝑛
· 𝜒{𝑛},

where

𝜒{𝑛} = 𝑇
⧸︀ 𝑛∏︁
𝑖=1

(︁
1 +

1

𝛽·𝑖

)︁
.

Corollary 3. If 𝛽 = 1, then for the average value of the local time on R+ for
𝐾 ∈ N,

𝐿𝑍(𝐾) = 𝑇 · 𝐾

𝐾 + 1
.

Remark 2. This result coincides with a value that we can easily obtain for a
description in reverse time. Thus, for the stopping time 𝜉(1) of the first jump of the
process in reverse time Z=(Z𝑢)𝑢∈[0,𝑇 ] = (𝑍(𝑇−𝑢))𝑢∈[0,𝑇 ] (i.e., 𝜉(0) = inf{𝑢 : 𝑢 > 0,

z𝑢 = 1}), we have the distribution function 𝐹𝜉(0)(𝑡) = 1− (𝑇−𝑡
𝑇 )𝐾 . Therefore, for

the average value of 𝜉(0), we have

𝐸 𝜉(0) =

∫︁ 𝑇

0
𝑡 𝑑𝐹𝜉(0)(𝑡) =

𝑇

𝐾 + 1
,

and
𝐿𝑍(𝐾) = 𝐸 𝜏𝑍 = 𝑇 −𝐸 𝜉(0) = 𝑇 · 𝐾

𝐾 + 1
.

To prove Theorem 2, we define on a stochastic basis B the sequence of stopping
times d(𝑛) = inf{𝑡 ∈ [0, 𝑇 ] : 𝑍(𝑡) = 𝑛} and the sequence of mean values 𝛿(𝑛) =
𝐸 d(𝑛), 𝑛 ∈ K0, and note that for 𝑛 ∈ K = {𝐾,𝐾 − 1, . . . , 1}, we have d(𝑛− 1)−
d(𝑛) = 𝑙𝑍𝑇 (𝑛) and

𝛿(𝑛− 1)− 𝛿(𝑛) = 𝜆𝑍(𝑛), (16)

where 𝜆𝑍(𝑛) = 𝐸 𝑙𝑍𝑇 (𝑛). We also formulate the lemma, which is somewhat more
general than Theorem 2, and is of independent interest.

Lemma 2. Let 𝛽 > 0. Then 𝛿(𝐾) = 0 and

𝛿(𝑛) =
𝑇

𝛽
· 1

𝑛!

𝐾∑︁
𝑖=𝑛+1

(𝑖− 1)!∏︀𝑖
𝑗=𝑛+1

(︀
𝑗 + 1

𝛽

)︀ for 𝑛 ∈ {𝐾 − 1, . . . , 1, 0}. (17)
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3. The problem of WoV
Consider the multiple analog of the process of birth and death with linear

growth, discussed in the previous section. As is known, birth and death processes
can serve as primary stochastic models for describing changes in the size of a
simple population of individuals, cells, bacteria or viruses. They are also models of
simple queueing systems with possible call replication in queues. In some biological
and computer systems, multiple cycles are observed, each of which consists of
the following consecutive events and stages: the event of infection, the stage of
the disease, the event of recovery, the stage of health. This model assumes that
additional infections do not occur during the stage of the disease (as, for example,
in the case of infections with the same strain of influenza virus). The initial number
of viruses in each case of infection is considered random. In the case of a queueing
system, the cycle includes an event of receiving a call packet into the system, a
service stage with possible call replication, an event of reaching the zeroth queue,
an idle system. It is also assumed that the system is immune to new call packages
until the current service package is fully serviced. This model also corresponds
to production systems with stochastic execution of homogeneous operations. The
initial number of production operations in the plan for each cycle is also considered
random. Such a multistage process can be interpreted as follows.

Consider a cycle with number 𝑛 ∈ N. The system receives 𝜈(𝑛) viruses (or
calls, in the case of a queuing system) at the stopping time 𝜍(𝑛− 1). In this case,
the first cycle starts with zero time: 𝜍(0) = 0. After the expiration of the time
𝜙(𝑛), the number of viruses reaches zero. That is, there are viruses in the system
on the time interval

[︀
𝜍(𝑛− 1), 𝜎(𝑛)

)︀
, where 𝜎(𝑛) = 𝜍(𝑛− 1)+𝜙(𝑛). This interval

is called the vulnerability window (or the window of vulnerability, abbreviated
to WoV ), because the system is infected and therefore vulnerable. For example,
for a living system, susceptibility to other diseases or threats increases, and the
computer system becomes vulnerable, since there is a threat to its information
security. During the time 𝜓(𝑛), that is, on the interval [𝜎(𝑛), 𝜍(𝑛)), the system is
free of viruses. At the stopping time 𝜍(𝑛) = 𝜎(𝑛)+𝜓(𝑛) another infection occurs,
that is, the next cycle begins.

Thus, the difference between this scheme and the known process of birth and
death with linear growth and immigration (see e.g., [20]) is that immigration is
suspended for a time of non-zero process values. Apparently, it makes sense to call
this process of immigration an episodic immigration. Below we present a formal
mathematical description of this process.

Let 𝑌 = (𝑌𝑡)𝑡>0 be the process of birth and death with linear growth and
episodic immigration, defined on the stochastic basis B. Suppose that 𝑌 can be
represented in the form 𝑌 = 𝐺+𝐴−𝐵, where𝐴 = (𝐴𝑡)𝑡>0 and𝐵 = (𝐵𝑡)𝑡>0 are the
counting processes of the number of positive and negative jumps, Δ𝑌𝑡 = 𝑌𝑡−𝑌𝑡−,
provided that 𝑌 (𝑡−) > 1 for 𝑡 > 0:

𝐴𝑡 =
∑︁

0<𝑠6𝑡

I{Δ𝑌𝑠 = 1, 𝑌𝑠− > 1}, 𝐵𝑡 =
∑︁

0<𝑠6𝑡

I{Δ𝑌𝑠 = −1, 𝑌𝑠− > 1},

respectively. The process of episodic immigration𝐺 = (𝐺𝑡)𝑡>0 is defined as follows.
Let 𝒩 = {𝜈(𝑛)}𝑛=0,1,... be the set of independent identically distributed

square-integrable random variables with values 𝜈(𝑛) ∈ N and the distribution

𝒫 =
{︀
𝑝(𝑘) = P

(︀
𝜈(𝑛) = 𝑘

)︀
, 𝑘 ∈ N

}︀
for all 𝑛 ∈ N0.
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Suppose also that 𝜈(0) is ℱ0-measurable. Consider on B a Poisson process 𝜋 =
(𝜋𝑡)𝑡>0 with a parameter 𝜌 > 0. Suppose that 𝜋 and 𝒩 are independent. Let
𝑔 = (𝑔𝑡)𝑡>0 be the counting process of the number of jumps of the process of
episodic immigration, and 𝐺 = (𝐺𝑡)𝑡>0 is the process of episodic immigration:

𝑔𝑡 =

∫︁ 𝑡

0
I{𝑌𝑠− = 0} 𝑑𝜋𝑠 and 𝐺𝑡 = 𝜈(0) +

𝑔𝑡∑︁
𝑛=1

𝜈(𝑛).

For 𝑡 in WoV, 𝑌 = (𝑌𝑡)𝑡>0 behaves similarly to the process 𝑋 discussed in
the Section 1. Thus, we assume that the compensators of the processes 𝐴 and
𝐵 on the stochastic basis B are the same as in (2), but with the corresponding
replacement of 𝑋 by 𝑌 :

̃︀𝐴𝑡 =

∫︁ 𝑡

0
𝛼 · 𝑌𝑠 𝑑𝑠 and ̃︀𝐵𝑡 =

∫︁ 𝑡

0
𝛽 · 𝑌𝑠 𝑑𝑠.

Definition 6. We define the window of vulnerability (abbreviated as WoV ) on
the interval [0, 𝑡] for any trajectory

(︀
𝑌𝑡(𝜔)

)︀
𝑡>0 of the process 𝑌 as the random set

𝒲 𝑌
𝑡 (𝜔) = {𝑠 ∈ [0, 𝑡] : 𝑌𝑠(𝜔) > 0}, 𝜔 ∈ Ω, 𝑡 > 0.

We also define the function ℒ 𝑌
𝑡 = 𝐸 𝜇{𝒲 𝑌

𝑡 } for its Lebesgue measure 𝜇{·}.
Note that

𝜇{𝒲 𝑌
𝑡 (𝜔)} =

∫︁ 𝑡

0
I{𝑌𝑠 > 1} 𝑑𝑠 =

∞∑︁
𝑛=1

𝑙𝑌𝑡 (𝑛).

Assumption 3. Suppose that 𝜌 > 0 and
∑︀∞

𝑘=1 𝐿
𝑋(𝑘)·𝑝(𝑘) <∞.

From this assumption it follows that 𝐸 𝜓(1) <∞ and 𝐸 𝜙(1) <∞ and for all
𝑛 ∈ N

𝐸 𝜓(𝑛) = 1/𝜌 and 𝐸 𝜙(𝑛) =
∞∑︁
𝑘=1

𝐿𝑋(𝑘)·𝑝(𝑘). (18)

Theorem 3. For the WoV of 𝑌, under Assumptions 2 and 3,

lim
𝑡→+∞

𝜇{𝒲 𝑌
𝑡 (𝜔)}
𝑡

= lim
𝑡→+∞

ℒ 𝑌
𝑡

𝑡
P-a.s.

and

lim
𝑡→+∞

ℒ 𝑌
𝑡

𝑡
=

∞∑︀
𝑘=1

𝐿𝑋(𝑘)·𝑝(𝑘)

1/𝜌+
∞∑︀
𝑘=1

𝐿𝑋(𝑘)·𝑝(𝑘)
,

where 𝐿𝑋(𝑘) is given in Theorem 1.
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4. Proof of the results
4.1. Proof of Lemma 1

From (1) it follows that for any 𝑋0 = 𝐾 ∈ N, for all 𝑖 ∈ N and 𝑡 ∈ R+ it holds

I{𝑋𝑡 > 𝑖} = I{𝑋0 > 𝑖}+
∫︁ 𝑡

0
I{𝑋𝑠− = 𝑖− 1} 𝑑𝐴𝑠 −

∫︁ 𝑡

0
I{𝑋𝑠− = 𝑖} 𝑑𝐵𝑠. (19)

Since each integrable semimartingale (19) is the difference of submartingales,
then ̃︀I{𝑋𝑡 > 𝑖} = I{𝐾 > 𝑖}+

∫︁ 𝑡

0
I{𝑋𝑠− = 𝑖− 1} 𝑑 ̃︀𝐴𝑠 −

∫︁ 𝑡

0
I{𝑋𝑠− = 𝑖} 𝑑 ̃︀𝐵𝑠.

Therefore, for the compensators of the processes in (19), we obtain from (2) that

̃︀I{𝑋𝑡 > 𝑖} =

⎧⎨⎩ − 𝑖·𝛽·𝑙𝑋𝑡 (𝑖) + 1 if 𝑖 = 1,
(𝑖− 1)·𝛼·𝑙𝑋𝑡 (𝑖− 1)− 𝑖·𝛽·𝑙𝑋𝑡 (𝑖) + 1 if 1 < 𝑖 6 𝐾,
(𝑖− 1)·𝛼·𝑙𝑋𝑡 (𝑖− 1)− 𝑖·𝛽·𝑙𝑋𝑡 (𝑖) if 𝑖 > 𝐾.

(20)

From (4), (5) and (20) we receive the following equalities:⎧⎨⎩ if 𝑖 = 1, − 𝑖·𝛽·𝜆𝑋(𝑖) + 1 = 0,
if 1 < 𝑖 6 𝐾, (𝑖− 1)·𝛼·𝜆𝑋(𝑖− 1)− 𝑖·𝛽·𝜆𝑋(𝑖) + 1 = 0,
if 𝑖 > 𝐾, (𝑖− 1)·𝛼·𝜆𝑋(𝑖− 1)− 𝑖·𝛽·𝜆𝑋(𝑖) = 0.

(21)

For 𝛼 = 0, the statement of Lemma 1 (and also Corollary 2) follows directly
from (21). If 𝛼 > 0, then multiplying (21) by (𝛼/𝛽)(𝑛−𝑖) and summing over 𝑖 from
1 to 𝑛, we obtain for 𝑛 ∈ N:{︂

if 𝑛 6 𝐾,
∑︀𝑛

𝑖=1(𝛼/𝛽)
(𝑛−𝑖) − 𝑛 · 𝛽 · 𝜆𝑋(𝑛) = 0,

if 𝑛 > 𝐾,
∑︀𝐾

𝑖=1(𝛼/𝛽)
(𝑛−𝑖) − 𝑛 · 𝛽 · 𝜆𝑋(𝑛) = 0.

(22)

The statement (12) of Lemma 1 follows from (22) with Notations 4. 2

4.2. Proof of Corollary 2
If 𝛼 = 0, then 𝛾 = 0. Hence, 𝜂 = 𝛽 and (13) coincides with (12). 2

4.3. Proof of Theorem 1
From (7) and Lemma 1 we receive

𝐿𝑋(𝐾) =

𝐾∑︁
𝑛=1

(︁ 1

𝜂·𝑛
− 𝛾𝑛

𝜂·𝑛

)︁
+

∞∑︁
𝑛=𝐾+1

(︁𝛾(𝑛−𝐾)

𝜂·𝑛
− 𝛾𝑛

𝜂·𝑛

)︁
=

1

𝜂
·

𝐾∑︁
𝑛=1

1

𝑛
− 1

𝜂
·

∞∑︁
𝑛=1

𝛾𝑛

𝑛
+

1

𝜂
·

∞∑︁
𝑛=𝐾+1

𝛾(𝑛−𝐾)

𝑛
. (23)

If 𝛼 = 0, then 𝛾 = 0 and 𝜂 = 𝛽. Therefore, from (23) we receive (9). If 𝛼 > 0,
then 𝛾 > 0, and from (23) it follows that

𝐿𝑋(𝐾) =
1

𝜂
·
{︂ 𝐾∑︁

𝑛=1

1

𝑛
+

∞∑︁
𝑛=1

(︁
−𝛾

𝑛

𝑛

)︁
+

1

𝛾𝐾
·

∞∑︁
𝑛=𝐾+1

𝛾𝑛

𝑛

}︂
. (24)

The first term in braces in (24) is 𝐻(𝐾), the second is log(1− 𝛾), and the third
−𝑅𝐾(𝛾). Thus, (8) is proved. 2
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4.4. Proof of Corollary 1
If 𝐾 = 1, then 𝐻(𝐾) = 1. Therefore (11) obviously follows from (9). If 𝛼 > 0,

then (10) follows from (8), since 1
𝛽−𝛼 ·(1 − 𝛽

𝛼) = − 1
𝛼 , and for 𝐾 = 1 we have

(𝛽/𝛼)𝐾 ·𝑅𝐾(𝛼/𝛽) = 1 + (𝛽/𝛼)· log
(︀
1− (𝛼/𝛽)

)︀
. 2

4.5. Proof of Corollary 3

If 𝛽 = 1, then 𝐿𝑍(𝐾) = 𝐸 𝜏𝑍 = 𝑇 ·
∑︀𝐾

𝑛=1
(𝑛−1)!
(𝑛+1)! = 𝑇 · 𝐾

𝐾+1 . 2

4.6. Proof of Lemma 2
The equality 𝛿(𝐾) = 0 follows from 𝑍0 = 𝐾. From (14) we obtain the relation

for the conditional distribution function 𝐹𝑛(𝑥) = P{𝑙𝑍𝑇 (𝑛) 6 𝑥|ℱd(𝑛)}, which is a
simple generalization of the well-known Dellacherie theorem, [21]:

𝑑𝐹𝑛(𝑥)

1− 𝐹𝑛(𝑥−)
= 𝑛 · 𝛽

𝑇 − d(𝑛)− 𝑥
· I{𝑥 < 𝑇 − d(𝑛)} 𝑑𝑥.

From this relation it follows that

𝐹𝑛(𝑥) = 1−
(︁𝑇 − d(𝑛)− 𝑥

𝑇 − d(𝑛)

)︁𝑛𝛽

· I{𝑥 < 𝑇 − d(𝑛)}.

Therefore, 𝐸{𝑙𝑍𝑇 (𝑛)|ℱd(𝑛)} =

∫︁ 𝑇

0
𝑥 𝑑𝐹𝑛(𝑥) =

𝑇 − d(𝑛)

𝑛𝛽 + 1
, and

𝜆𝑍(𝑛) = 𝐸{𝐸(𝑙𝑍𝑇 (𝑛)|ℱd(𝑛))} =
𝑇 − 𝛿(𝑛)

𝑛𝛽 + 1
. (25)

Thus, from (16) and (25) we have the equality 𝛿(𝑛−1) = 𝑇
𝑛𝛽+1 +𝛿(𝑛) ·

𝑛𝛽
𝑛𝛽+1 , from

which it easily follows that{︁𝛽
𝑇
𝛿(𝑛− 1)

}︁
=

𝑛

𝑛+ 1/𝛽
·
(︁ 1

𝑛
+
{︁𝛽
𝑇
𝛿(𝑛)

}︁)︁
for all 𝑛 ∈ K. (26)

Then we denote 𝑥(𝑛) =
{︀ 𝛽
𝑇 𝛿(𝑛)

}︀
·𝑞(𝑛), where the auxiliary function 𝑞(𝑛) satisfies

the recurrence relation

𝑞(𝑛)

𝑞(𝑛− 1)
=

𝑛

𝑛+ 1/𝛽
with 𝑞(𝐾) = 1. (27)

In this notation,

𝛿(𝑛) =
𝑇

𝛽
· 𝑥(𝑛)
𝑞(𝑛)

for all 𝑛 ∈ K0. (28)

Thus, from (26) and (27) we obtain the recurrence relation

𝑥(𝑛− 1) = 𝑞(𝑛)/𝑛+ 𝑥(𝑛) for all 𝑛 ∈ K, with 𝑥(𝐾) = 0.

Hence,

𝑥(𝑛) =
𝐾∑︁

𝑖=𝑛+1

𝑞(𝑖)/𝑖 and 𝑞(𝑛) =
𝑛!

𝐾!

𝐾∏︁
𝑗=𝑛+1

(𝑗 + 1/𝛽) for all 𝑛 < 𝐾 (29)
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with 𝑥(𝐾) = 0, 𝑞(𝐾) = 1. Therefore, (17) follows from (28) and (29). 2

4.7. Proof of Theorem 2
Since 𝐸 𝜏𝑍 = 𝛿(0), (15) follows from (17) for 𝑛 = 0. 2

4.8. Proof of Theorem 3
We define the auxiliary constant

𝑟 = 𝐸 𝜓(𝑛) +𝐸 𝜙(𝑛) = 1/𝜌+

∞∑︁
𝑘=1

𝐿𝑋(𝑘)·𝑝(𝑘) (30)

and the auxiliary function 𝜃(𝑡) = ⌊𝑡/𝑟⌋ ·𝑟, where ⌊·⌋ is the floor function. We note
that lim𝑡→∞ 𝜃(𝑡)/𝑡 = 1 and for 𝑡 > 𝑟

𝜇{𝒲 𝑌
𝑡 (𝜔)}
𝑡

=
𝜇{𝒲 𝑌

𝑡 (𝜔)} − 𝜇{𝒲 𝑌
𝜃(𝑡)(𝜔)}

𝜃(𝑡)
· 𝜃(𝑡)
𝑡

+
𝜇{𝒲 𝑌

𝜃(𝑡)(𝜔)}
𝜃(𝑡)

· 𝜃(𝑡)
𝑡
. (31)

For the first summand in (31) we have(︀
𝜇{𝒲 𝑌

𝑡 (𝜔)} − 𝜇{𝒲 𝑌
𝜃(𝑡)(𝜔)}

)︀
/𝜃(𝑡) ∈

[︀
0, 𝜙(𝜃(𝑡) + 1)/𝜃(𝑡)

)︀
,

and lim𝑡→∞ 𝜙(𝜃(𝑡) + 1)/𝜃(𝑡) = 0 P-a.s. For the second summand we receive from
the strong law of large numbers,

lim
𝑡→∞

𝜇{𝒲 𝑌
𝜃(𝑡)(𝜔)}
𝜃(𝑡)

=
1

𝑟
· lim
𝑡→∞

1

⌊𝑡/𝑟⌋
·
⌊𝑡/𝑟⌋∑︁
𝑖=1

𝜙(𝑖) =
𝐸 𝜙(1)

𝑟
P-a.s.,

and therefore the proof of the proposition follows from (18) and (30). 2

5. Discussion
This article is devoted to the development of modeling methods for discrete

stochastic systems based on semimartingale descriptions in terms of local time
processes. For this it was necessary to formulate (and prove) a number of theoret-
ical results for fairly simple systems. The proposed method is interesting not only
because it allows obvious generalizations, but also by the possibilities of simple
computer simulation. This is due primarily to the fact that all the descriptions and
methods under consideration are trajectory. We also note that the definitions of
JIT and WoV given in the paper are quite general and provide for generalizations
of the results considered in the article.
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Стохастические модели систем точно-в-срок
и окон уязвимости в терминах процессов
размножения и гибели

А. А. Бутов, А. А. Коваленко
Ульяновский государственный университет,
факультет математики и информационных технологий,
Россия, 432017, Ульяновск, ул. Льва Толстого, 42.

Аннотация

В работе предлагается метод построения моделей на основе анализа
процессов размножения и гибели с линейным ростом в семимартингаль-
ных терминах. На основе этого метода рассматриваются стохастические
модели простых систем точно-в-срок (анализируемые в теории продук-
тивных систем) и окна уязвимости (широко обсуждаемые в теории рис-
ка). Основные результаты, полученные в работе, представлены в терми-
нах средних значений времени, за которое процессы достигают нулевых
значений. При этом рассматриваются и используются при исследовании
моделей оценки для локальных времен процессов.

Здесь анализируются простые марковские процессы с линейным ро-
стом интенсивностей (скорость которого, быть может, зависит от време-
ни). При этом полученные и используемые оценки представляют теоре-
тический интерес. Так, например, среднее значение момента, в который
процесс достигает нулевого значения, зависит от таких функций пара-
метров модели, как гармоническое число и остаточный член логариф-
мической функции в разложении Тейлора.

В качестве основного результата предлагается метод математическо-
го моделирования систем точно-в-срок и окон уязвимости. Используе-
мый здесь семимартингальный метод описания следует рассматривать
как первый шаг такого моделирования, поскольку, являясь траектор-
ным, он допускает диффузионные (в том числе немарковские) обобще-
ния при построении стохастических моделей окон уязвимости и систем
точно-в-срок. В настоящей работе получены утверждения для средних
значений локального времени и моментов достижения процессами раз-
множения и гибели заданного значения. Это позволило единообразно
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представить оценки для моделей системы точно-в-срок и для окон уяз-
вимости (результат для которых представлен в форме предельной тео-
ремы). Основные результаты сформулированы в виде теорем и лемм.
Доказательства используют семимартингальные методы.

Ключевые слова: моделирование, процесс размножения и гибели, мо-
мент остановки, компенсатор, интенсивность, считающий процесс, мар-
тингал, траектория, локальное время, точно-в-срок, окно уязвимости.
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