УДК 517.962.24+519.246

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ В ФОРМЕ ДРОБНО-РАЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ НА ОСНОВЕ РАЗНОСТНЫХ УРАВНЕНИЙ

В. Е. Зотеев, М. А. Романюк

Самарский государственный технический университет, 443100, Россия, Самара, ул. Молодогвардейская, 244.

E-mail: zoteev-ve@mail.ru, zausmasha@mail.ru

Рассматривается численный метод определения параметров математических моделей в форме дробно-рациональных функциональных зависимостей. В основе метода лежит итерационная процедура среднеквадратичного оценивания коэффициентов разностных уравнений, описывающих результаты наблюдений. Такой подход к решению задачи идентификации дробно-рациональных функциональных зависимостей позволяет обеспечить высокую адекватность построенной математической модели и, как следствие, добиться высокой точности оценивания её параметров.

Ключевые слова: параметрическая идентификация, разностные уравнения, итерационная процедура, среднеквадратичное приближение, дробно-рациональная функциональная зависимость.

Проблема параметрической идентификации математических моделей, описывающих динамические процессы различной физической природы в форме дробно-рациональных зависимостей, является одной из важнейших проблем в математическом моделировании. Исследование динамических процессов в форме дробно-рациональных функциональных зависимостей, которые являются точным или приближенным решением нелинейных дифференциальных уравнений, широко применяется в практике научно-технического и промышленного эксперимента. Например, в машиностроении для описания затухания амплитуды колебаний диссипативной механической системы обычно используется нелинейная функциональная зависимость вида [1]

$$a(t) = a_0 \left(1 + (n-1) \frac{\delta_0 t}{T} \right)^{1-n},$$

которая может быть аппроксимирована более простой дробно-рациональной функцией [2]:

$$\tilde{a}(t) = a_0 \left(1 + \frac{\delta_0 t}{T} + \left(1 - \frac{n}{2} \right) \left(\frac{\delta_0 t}{T} \right)^2 \right)^{-1},\tag{1}$$

где a_0 — начальная амплитуда колебаний; δ_0 и T — декремент и период колебаний; n — характеристика нелинейности диссипативной силы. В частности, при турбулентном трении (n=2) формула (1) задаёт гиперболическую зависимость [1,2]:

$$a(t) = a_0 \left(1 + \frac{\delta_0 t}{T} \right)^{-1}.$$

Bладимир Eвгеньевич 3omees (д.т.н., доц.), профессор, каф. прикладной математики и информатики. Mapus Aнатольевна Pomanok, ассистент, каф. прикладной математики и информатики.

Другим примером математического описания исследуемого объекта дробно-рациональными зависимостями является гиперболическая зависимость квадрата амплитуды $a(\omega)$ вынужденных колебаний линейной диссипативной системы от частоты возбуждения [3, 4]:

$$a^{2}(\omega) = \frac{P_{0}^{2}\omega_{0}^{4}}{(\omega_{0}^{2} - \omega^{2})^{2} + 4h^{2}\omega^{2}},$$
(2)

где P_0 — амплитуда гармонического возбуждения; ω_0 — собственная (резонансная) частота системы; h — коэффициент демпфирования.

Известны методы оценивания параметров дробно-рациональных зависимостей вида (1) или (2), например, метод определения параметров характеристики сопротивления по огибающей экспериментальной виброграммы [1], метод «затухающих колебаний» [1, 5], метод «кривой резонанса» [1, 5], обладающие рядом существенных недостатков, к которым можно отнести, вопервых, линеаризацию (упрощение) математической модели в той или иной форме, во-вторых, принципиальную невозможность применения статистических методов оценивания при обработке результатов измерений и, в-третьих, использование, как правило, громоздких промежуточных графических построений без какой-либо ориентации на применение современных средств вычислений и обработки информации. Вследствие этого эти методы обладают невысокими точностью и помехозащищенностью.

Одним из эффективных путей решения этой проблемы является применение численного метода, в основе которого лежат линейно-параметрические дискретные модели, описывающие в форме разностных уравнений результаты наблюдений [2]. Параметрическая идентификация нелинейных функциональных зависимостей производится на основе среднеквадратичного оценивания коэффициентов обобщённой регрессионной модели, которые известным образом связаны с параметрами дробно-рациональных функций.

В основе параметрической идентификации с использованием численного метода лежит вычисление таких оценок параметров математической модели, которые минимизируют величину её отклонения от результатов наблюдений по евклидовой норме в N-мерном арифметическом пространстве:

$$||y - \hat{y}||^2 = \sum_{k=0}^{N-1} (y_k - \hat{y}_k)^2 \to \min,$$
 (3)

где y_k — результаты наблюдений; \hat{y}_k — результаты вычислений на основе построенной математической модели.

Численный метод определения параметров дробно-рациональных зависимостей на основе разностных уравнений включает следующие основные этапы:

- формирование выборки результатов наблюдений y_k (k=0,1,2,...,N-1) с периодом дискретизации τ , где N объём выборки;
- построение разностных уравнений, рекуррентно описывающих дискретные значения дробно-рациональной функции;
- построение разностных уравнений, описывающих результаты наблюдений и формирование на их основе обобщенной регрессионной модели;

- среднеквадратичное оценивание коэффициентов разностного уравнения;
- вычисление оценок параметров математической модели в форме дробно-рациональной зависимости;
- оценка погрешности результатов вычислений.

Рассмотрим применение численного метода на основе разностных уравнений в задаче параметрической идентификации математических моделей, описываемых дробно-рациональными функциями вида

$$\hat{y}(t) = \frac{c_0}{1 + c_1 t},\tag{4}$$

$$\hat{y}(t) = \frac{c_0}{1 + c_1 t + c_2 t^2},\tag{5}$$

$$\hat{y}(t) = \frac{c_0 + c_1 t}{1 + c_2 t + c_3 t^2}.$$
(6)

Полагая в равенствах (4)–(6) $t=t_k=\tau k$, где τ — период дискретизации, $k=0,1,2,3,\ldots$, получаем уравнения, описывающие последовательности дискретных значений дробно-рациональных зависимостей:

$$\hat{y}_k = \frac{c_0}{1 + c_1 \tau k}, \quad \hat{y}_k = \frac{c_0}{1 + c_1 \tau k + c_2 \tau^2 k^2}, \quad \hat{y}_k = \frac{c_0 + c_1 \tau k}{1 + c_2 \tau k + c_3 \tau^2 k^2}.$$

Рассмотрим построение разностного уравнения, рекуррентно описывающего последовательность дискретных значений дробно-рациональной зависимости (4).

Очевидно, что имеет место равенство

$$\hat{y}_k = \lambda_1 + \lambda_2 k \hat{y}_k,$$

где $\lambda_1 = c_0$ и $\lambda_2 = -c_1 \tau$. В то же время справедливо соотношение

$$\hat{y}_{k-1} = \lambda_1 + \lambda_2(k-1)\hat{y}_{k-1}.$$

Отсюда для значений $k=1,2,3,\ldots$ получаем разностное уравнение вида

$$\hat{y}_k - \hat{y}_{k-1} = \lambda_2 [k\hat{y}_k - (k-1)\hat{y}_{k-1}],$$

которое можно дополнить равенством $\hat{y}_0 = c_0 = \lambda_1$. Аналогично формируются разностные уравнения, рекуррентно описывающие последовательности дискретных значений дробно-рациональных зависимостей (5) и (6):

$$\begin{cases} \hat{y}_0 = \lambda_1, \\ \hat{y}_k - \hat{y}_{k-1} = \lambda_2 [k\hat{y}_k - (k-1)\hat{y}_{k-1}] + \lambda_3 [k^2\hat{y}_k - (k-1)^2\hat{y}_{k-1}], \\ k = 1, 2, 3, \dots, \end{cases}$$

где $\lambda_1 = c_0, \, \lambda_2 = -c_1 \tau, \, \lambda_3 = -c_2 \tau^2;$

$$\begin{cases} \hat{y}_0 = \lambda_1, \\ \hat{y}_k - \hat{y}_{k-1} = \lambda_2 + \lambda_3 [k\hat{y}_k - (k-1)\hat{y}_{k-1}] + \lambda_4 [k^2\hat{y}_k - (k-1)^2\hat{y}_{k-1}], \\ k = 1, 2, 3, \dots, \end{cases}$$

где
$$\lambda_1 = c_0$$
, $\lambda_2 = c_1 \tau$, $\lambda_3 = -c_2 \tau$, $\lambda_4 = -c_3 \tau^2$.

Представленные выше соотношения лежат в основе построения стохастических разностных уравнений, описывающих результаты наблюдений y_k $(k=0,1,2,\ldots,N-1)$ при исследовании математических моделей процессов в форме дробно-рациональных зависимостей. Результаты эксперимента y_k могут быть представлены в виде

$$y_k = \hat{y}_k + \varepsilon_k, \tag{7}$$

где величина ε_k характеризует отклонение результата измерений y_k от дискретного значения дробно-рациональной функции \hat{y}_k , используемой в качестве математической модели исследуемого процесса. Относительно характера величины ε_k (вообще говоря, случайной) пока никаких суждений делать не будем, что позволит существенно расширить область применения численного метода. С учётом соотношения (7) полученные выше формулы запишем так:

$$\begin{cases} y_0 = \lambda_1 + \varepsilon_0, \\ y_k - y_{k-1} = \lambda_2 [ky_k - (k-1)y_{k-1}] + \eta_{k+1}, \\ \eta_{k+1} = [\lambda_2 (k-1) - 1] \varepsilon_{k-1} + (1 - \lambda_2 k) \varepsilon_k, \end{cases}$$

$$(8)$$

$$k = 1, 2, \dots, N-1;$$

$$\begin{cases} y_0 = \lambda_1 + \varepsilon_0, \\ y_k - y_{k-1} = \lambda_2 [ky_k - (k-1)y_{k-1}] + \lambda_3 [k^2 y_k - (k-1)^2 y_{k-1}] + \eta_{k+1}, \\ \eta_{k+1} = [\lambda_2 (k-1) + \lambda_3 (k-1)^2 - 1] \varepsilon_{k-1} + (1 - \lambda_2 k - \lambda_3 k^2) \varepsilon_k, \\ k = 1, 2, \dots, N-1; \end{cases}$$
(9)

$$\begin{cases} y_0 = \lambda_1 + \varepsilon_0, \\ y_k - y_{k-1} = \lambda_2 + \lambda_3 [ky_k - (k-1)y_{k-1}] + \lambda_4 [k^2 y_k - (k-1)^2 y_{k-1}] + \eta_{k+1}, \\ \eta_{k+1} = [\lambda_3 (k-1) + \lambda_4 (k-1)^2 - 1] \varepsilon_{k-1} + (1 - \lambda_3 k - \lambda_4 k^2) \varepsilon_k, \\ k = 1, 2, \dots, N-1. \end{cases}$$
(10)

Построенные разностные уравнения (8)–(10) в матричной форме принимают вид обобщённой регрессионной модели:

$$\begin{cases} b = F\lambda + \eta; \\ \eta = P_{\lambda}\varepsilon. \end{cases}$$
 (11)

Для дробно-рациональной зависимости (4) переопределённая система линейных алгебраических уравнений $b = F\lambda$ описывается следующими соотношениями: $\lambda = (\lambda_1, \lambda_2)^\top$ — вектор коэффициентов разностного уравнения; $b = (y_0, y_1 - y_0, y_2 - y_1, \dots, y_{N-1} - y_{N-2})^\top - N$ -мерный вектор правой части системы;

$$F = \begin{pmatrix} 1 & 0 & \\ 0 & y_1 & \\ 0 & 2y_2 - y_1 & \\ \vdots & \vdots & \\ 0 & (N-1)y_{N-1} - (N-2)y_{N-2} \end{pmatrix}$$

 $-(N\times 2)$ -матрица регрессоров.

Для дробно-рациональной зависимости (5) имеем

$$\lambda = (\lambda_1, \lambda_2, \lambda_3)^{\top}, \quad b = (y_0, y_1 - y_0, y_2 - y_1, \dots, y_{N-1} - y_{N-2})^{\top},$$

$$F = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & y_1 & y_1 & y_1 \\ 0 & 2y_2 - y_1 & 4y_2 - y_1 \\ \vdots & \vdots & \vdots \\ 0 & (N-1)y_{N-1} - (N-2)y_{N-2} & (N-1)^2 y_{N-1} - (N-2)^2 y_{N-2} \end{pmatrix},$$

а для зависимости (6) —

а для зависимости
$$(6)$$
 —
$$\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)^\top, \quad b = (y_0, y_1 - y_0, y_2 - y_1, \dots, y_{N-1} - y_{N-2})^\top,$$

$$F = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & y_1 & y_1 & y_1 \\ 0 & 1 & 2y_2 - y_1 & 4y_2 - y_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & (N-1)y_{N-1} - (N-2)y_{N-2} & (N-1)^2 y_{N-1} - (N-2)^2 y_{N-2} \end{pmatrix}$$
 Вектор $\eta = (\eta_1, \eta_2, \dots, \eta_N)^\top$, описывающий эквивалентное возмущения

Вектор $\eta = (\eta_1, \eta_2, \dots, \eta_N)^{\top}$, описывающий эквивалентное возмущение в обобщённой регрессионной модели $b = F\lambda + \eta$, есть линейное преобразование вектора остатков $\varepsilon = (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{N-1})^\top$. Элементы матриц $P_\lambda = \{p_{ij}\}$ $(i, j = 1, 2, 3, \dots, N)$ линейного преобразования вектора остатков для дробнорациональных зависимостей (6)–(9) соответственно описываются следующими формулами:

$$p_{ij} = \begin{cases} 1, & i = j = 1; \\ 1 - \lambda_2(i - 1), & 2 \leq i = j; \\ \lambda_2(i - 2) - 1, & i = j + 1; \\ 0, & i < j, i > j + 1; \end{cases}$$

$$p_{ij} = \begin{cases} 1, & i = j = 1; \\ 1 - \lambda_2(i - 1) - \lambda_3(i - 1)^2, & 2 \leq i = j; \\ \lambda_2(i - 2) + \lambda_3(i - 2)^2 - 1, & i = j + 1; \\ 0, & i < j, i > j + 1; \end{cases}$$

$$p_{ij} = \begin{cases} 1, & i = j = 1; \\ 1 - \lambda_3(i - 1) - \lambda_4(i - 1)^2, & 2 \leq i = j; \\ \lambda_3(i - 2) + \lambda_4(i - 2)^2 - 1, & i = j + 1; \\ 0, & i < j, i > j + 1. \end{cases}$$

В рассматриваемом численном методе вычисление коэффициентов разностных уравнений, описывающих результаты наблюдений, сводится к решению регрессионной задачи (11): нахождению среднеквадратичных оценок, минимизирующих функционал (3): $||y - \hat{y}||^2 = ||\varepsilon||^2 \to \min$. При решении регрессионной задачи применяется итерационная процедура уточнения среднеквадратичных оценок коэффициентов разностного уравнения [2], которая включает следующие основные шаги:

- 1) вычисление первоначальной оценки $\hat{\lambda}^{(0)}$ вектора коэффициентов регрессионной модели;
- 2) вычисление элементов матрицы P_{λ} линейного преобразования вектора остатков;
- 3) преобразование обобщенной регрессионной модели к виду

$$P_{\hat{\lambda}^{(i)}}^{-1}b = P_{\hat{\lambda}^{(i)}}^{-1}F\lambda + \hat{\varepsilon}^{(i)},$$

где $\hat{arepsilon}^{(i)} = P_{\hat{\lambda}^{(i)}}^{-1} \eta, \ i = 0, 1, 2, 3, \ldots$ — номер итерации;

4) решение линейной регрессионной задачи

$$\|\hat{\varepsilon}^{(i)}\|^2 = \left\|P_{\hat{\lambda}^{(i)}}^{-1}b - P_{\hat{\lambda}^{(i)}}^{-1}F\hat{\lambda}^{(i+1)}\right\|^2 \to \min,$$

которое приводит к новой уточненной среднеквадратичной оценке вектора регрессионных коэффициентов:

$$\hat{\lambda}^{(i+1)} = (F^{\top} \Omega_{\hat{\lambda}^{(i)}}^{-1} F)^{-1} F^{\top} \Omega_{\hat{\lambda}^{(i)}}^{-1} b,$$

где $\Omega_{\hat{\lambda}^{(i)}} = P_{\hat{\lambda}^{(i)}} P_{\hat{\lambda}^{(i)}}^{\top};$

5) сравнение двух последовательных приближений вектора оценок коэффициентов разностного уравнения:

$$|\hat{\lambda}^{(i+1)} - \hat{\lambda}^{(i)}| \le 0.001.$$

Если данное условие выполняется, то итерационная процедура уточнения среднеквадратичных оценок завершается; в противном случае следует перейти ко второму шагу.

Очевидно, что при сходимости итерационной процедуры $(\lim_{i\to\infty}\hat{\lambda}^{(i)}=\hat{\lambda})$ выполняется равенство $P_{\hat{\lambda}}^{-1}\eta=\varepsilon$, то есть $\lim_{i\to\infty}\hat{\varepsilon}^{(i)}=\varepsilon$, и, следовательно, вектор $\hat{\lambda}$ оценок регрессионных коэффициентов обеспечивает минимум остаточной суммы квадратов:

$$\hat{\lambda} = \arg\min_{\hat{\lambda}^{(i)}} \sum_{k=0}^{N-1} (y_k - \hat{y}_k)^2.$$

Проблема сходимости итерационной процедуры уточнения среднеквадратичных оценок коэффициентов разностного уравнения исследована в [2,7]: сформулированы достаточные условия сходимости; получена формула апостериорной оценки погрешности; сформулированы ограничения на величину случайной помехи, обеспечивающие достаточное условие сходимости; построена формула априорной оценки погрешности, позволяющая оценить число итераций, необходимое для достижения заданной точности.

Начальное приближение $\hat{\lambda}^{(0)}$ вектора коэффициентов регрессионной модели может быть получено из условия минимизация функционала невязки [2]

$$\|\eta\|^2 = \|b - F\hat{\lambda}\|^2 \to \min.$$

В этом случае первоначальная оценка вычисляется по формуле

$$\hat{\lambda}^{(0)} = (F^{\top}F)^{-1}F^{\top}b.$$

Однако при большом разбросе экспериментальных данных итерационная процедура, использующая эту оценку, не всегда обеспечивает минимум остаточной суммы квадратов. Другой подход к выбору начального приближения $\hat{\lambda}^{(0)}$ заключается в решении интерполяционной задачи: вычислению коэффициентов разностного уравнения из условия совпадения значений дробно-рациональной функции с результатами наблюдений в нескольких специальным образом выбранных точках эксперимента. Например, рассмотрим выбор начального приближения $\hat{\lambda}^{(0)}$ в задаче параметрической идентификации дробно-рациональной зависимости (5), для которой система разностных уравнений (9) содержит три коэффициента λ_1 , λ_2 и λ_3 .

Потребуем, чтобы значения дискретной функции

$$\hat{y}_k = \frac{c_0}{1 + c_1 \tau k + c_2 \tau^2 k^2} = \frac{\lambda_1}{1 - \lambda_2 k - \lambda_3 k^2}$$

при $\lambda_1=\hat{\lambda}_1^{(0)},\ \lambda_2=\hat{\lambda}_2^{(0)}$ и $\lambda_3=\hat{\lambda}_3^{(0)}$ совпадали с результатами наблюдений y_k в трёх различных точках, соответствующих $k=0,\ k=m=[N/2]$ и k=N-1, где [x]— целая часть числа x: $\hat{y}_0=y_0,\ \hat{y}_m=y_m$ и $\hat{y}_{N-1}=y_{N-1}$. В результате получаем $\hat{y}_0=y_0=\hat{\lambda}_1^{(0)},\ \hat{y}_m=y_m=\hat{\lambda}_0^{(0)}+my_m\hat{\lambda}_2^{(0)}+m^2y_m\hat{\lambda}_3^{(0)}$ и $\hat{y}_{N-1}=y_{N-1}=\hat{\lambda}_0^{(0)}+(N-1)y_{N-1}\hat{\lambda}_2^{(0)}+(N-1)^2y_{N-1}\hat{\lambda}_3^{(0)}$. Отсюда начальное приближение $\hat{\lambda}_0=(\hat{\lambda}_1^{(0)},\hat{\lambda}_2^{(0)},\hat{\lambda}_3^{(0)})^{\mathsf{T}}$ вычисляется по формулам

$$\hat{\lambda}_{1}^{(0)} = y_{0}, \quad \hat{\lambda}_{2}^{(0)} = \frac{(1 - \frac{y_{0}}{y_{N-1}})m^{2} - (1 - \frac{y_{0}}{y_{m}})(N - 1)^{2}}{m(N - 1)(m - N + 1)},$$

$$\hat{\lambda}_{3}^{(0)} = \frac{(1 - \frac{y_{0}}{y_{m}})(N - 1) - (1 - \frac{y_{0}}{y_{N-1}})m}{m(N - 1)(m - N + 1)}.$$

Аналогично формируется вектор первоначальных оценок коэффициентов разностного уравнения для дробно-рациональных функций (4) и (6).

Проведённые численно-аналитические исследования показали высокую эффективность выбора первоначальных оценок вектора коэффициентов разностного уравнения на основе вычисления параметров интерполирующей функции.

При вычислении оценок параметров математической модели в форме дробно-рациональной зависимости можно воспользоваться формулами $\hat{c}_0 = \hat{\lambda}_1$, $\hat{c}_1 = -\hat{\lambda}_2/\tau$ для зависимости (4), формулами $\hat{c}_0 = \hat{\lambda}_1$, $\hat{c}_1 = -\hat{\lambda}_2/\tau$, $\hat{c}_2 = -\hat{\lambda}_3/\tau^2$ для зависимости (5) или формулами $\hat{c}_0 = \hat{\lambda}_1$, $\hat{c}_1 = \hat{\lambda}_2/\tau$, $\hat{c}_2 = -\hat{\lambda}_3/\tau$, $\hat{c}_3 = -\hat{\lambda}_4/\tau^2$ для зависимости (6).

Для оценки погрешности результатов вычислений можно воспользоваться методикой, описанной в [2]. В основе этой методики лежит предположение, что разброс результатов наблюдений y_k относительно математической модели в каждой точке эксперимента описывается независимой случайной

величиной, имеющей нормальное распределение с нулевым математическим ожиданием. Обычно в практике эксперимента это требование выполняется. В этом случае за оценку предельной абсолютной погрешности вычисления параметра \hat{c}_i можно принять (с доверительной вероятностью $1-\alpha$) величину $\Delta c_i = t_\alpha s[\hat{c}_i]$, где значение $t_\alpha = t(\alpha, \nu)$ берётся из таблицы распределения Стьюдента при числе степеней свободы $\nu = N-n$ и уровне значимости α ; $s[\hat{c}_i]$ — оценка среднеквадратического отклонения параметра \hat{c}_i . Так как оценка любого из параметров \hat{c}_i дробно-рациональных функций (4)–(6) пропорциональна оценке $\hat{\lambda}_j$ какого-либо коэффициента разностного уравнения, имеет место равенство

$$\hat{c}_i = |k| s[\hat{\lambda}_j],$$

где k — коэффициент пропорциональности; $s[\hat{\lambda}_j]$ — оценка среднеквадратического отклонения соответствующего коэффициента разностного уравнения.

Для вычисления оценки дисперсии коэффициента $\hat{\lambda}_j$ разностного уравнения можно воспользоваться формулой

$$s^2[\hat{\lambda}_j] = g_{jj} s_{\text{oct}}^2,$$

в которой g_{jj} — диагональный элемент матрицы $G = (F^{\top}\Omega_{\hat{\lambda}}F)^{-1},$ где

$$\Omega_{\hat{\lambda}} = P_{\hat{\lambda}} P_{\hat{\lambda}}^{\top}, \quad s_{\text{oct}}^2 = \frac{1}{N-n} \sum_{k=0}^{N-1} (y_k - \hat{y}_k)^2,$$

n — число параметров в модели [2].

На основе компьютерного моделирования проведены численно-аналитические исследования эффективности описанного численного метода определения параметров математических моделей в форме дробно-рациональных зависимостей. Целью исследований являлся анализ зависимостей погрешности δc_i вычисления каждого из параметров дробно-рациональной функции (4)–(6) от величины случайной помехи ε в результатах наблюдений, а также степени адекватности s построенной математической модели истинной функциональной зависимости.

Для этого формировалась выборка из N=50 значений \tilde{y}_k дробно-рациональной зависимости с периодом дискретизации τ и параметрами c_i , значения которых представлены в табл. 1. К смоделированным таким образом дискретным значе-

Значения параметров дробно-рациональных зависимостей, используемые при компьютерном моделировании

Зависи-	Период диск-	Параметры зависимости					
мость	ретизации, τ	\tilde{c}_0	\tilde{c}_1	\tilde{c}_2	\tilde{c}_3		
(4) (5)	$0,4 \\ 0,1 \\ 0,1$	1,0 1,0	0,5 $1,0$	1,0	_ _ 1.0		
(6)	0,1	1,0	-0,5	0,1	1,0		

ниям \tilde{y}_k добавлялась случайная помеха ε_k , величина которой ε изменялась от 0 до 10%:

$$\varepsilon = \left(\sum_{k=0}^{N-1} \varepsilon_k^2 \middle/ \sum_{k=0}^{N-1} \tilde{y}_k^2 \right)^{1/2} \cdot 100 \,\%.$$

С целью статистической обработки результатов исследований в каждой точке численного эксперимента (при одной и той же величине ε случайной помехи)

вычисление оценки параметров дробно-рациональной зависимости повторялось M=100 раз. Для оценки погрешности вычисления параметра \hat{c}_i использовалась величина

$$\delta c_i = \sqrt{M[(\hat{c}_i - \tilde{c}_i)^2]} \cdot |\tilde{c}_i|^{-1} \cdot 100 \%,$$

где второй центральный момент относительно истинного значения параметра c_i вычислялся по формуле

$$M[(\hat{c}_i - \tilde{c}_i)^2] = \frac{1}{M} \sum_{j=1}^{M} (\hat{c}_{ij} - \tilde{c}_i)^2.$$

Для анализа адекватности построенной математической модели истинной дробно-рациональной зависимости использовалась величина

$$s = \left(\sum_{k=0}^{N-1} (\tilde{y}_k - \hat{y}_k)^2 / \sum_{k=0}^{N-1} \tilde{y}_k^2\right)^{1/2} \cdot 100\%.$$

Результаты вычислений погрешности оценок параметров δc_i и адекватности построенной модели s представлены в табл. 2.

Полученные результаты численно-аналитических исследований позволяют сделать вывод о высокой эффективности численного метода параметрической идентификации дробно-рациональных зависимостей на основе разностных уравнений. Представленные в табл. 2 результаты показывают, что построенные математические модели даже при высоком уровне помехи в результатах наблюдений адекватно описывают исходные дробно-рациональные

Таблица 2 Погрешности вычисления параметров δc_i дробно-рациональных функций и величины s в зависимости от величины случайной помехи ε в результатах наблюдений

Зависимость (4)											
$\varepsilon,\%$	0	1	2	3	4	5	6	7	8	9	10
$\delta c_0,\%$	0,0	0,2	0,5	0,9	1,1	1,6	1,9	2,3	3,1	3,8	4,1
$\delta c_1,\%$	0,0	0,4	0,9	1,7	2,2	3,3	3,8	4,9	6,8	8,3	9,2
s,%	0,0	0,1	0,3	0,5	0,6	0,9	1,1	1,4	2,0	2,4	2,7
Зависимость (5)											
$\varepsilon,\%$	0	1	2	3	4	5	6	7	8	9	10
$\delta c_0,\%$	0,0	0,3	0,5	0,9	1,1	1,5	1,6	2,0	2,7	3,1	3,3
$\delta c_1,\%$	0,0	1,8	2,9	5,0	6,6	7,7	10,0	12,2	13,2	15,7	15,0
$\delta c_2,\%$	0,0	1,0	1,9	3,4	5,0	6,6	9,4	12,0	14,4	18,4	21,0
s,%	0,0	0,2	0,4	0,7	0,9	1,3	1,6	2,0	2,7	3,3	3,7
Зависимость (6)											
$\varepsilon,\%$	0	1	2	3	4	5	6	7	8	9	10
$\delta c_0,\%$	0,0	0,2	0,4	0,7	1,3	0,9	1,5	2,3	2,1	2,5	1,9
$\delta c_1,\%$	0,0	0,2	0,6	0,8	1,2	1,4	1,5	2,6	3,2	3,7	$3,\!8$
$\delta c_2,\%$	0,0	18,7	31,6	53,5	73,0	75,2	106,2	77,8	121,6	197,9	176,2
$\delta c_3,\%$	0,0	1,5	3,3	4,7	7,9	9,2	13,4	15,1	22,5	28,4	30,1
s,%	0,0	0,2	0,5	0,8	1,2	1,5	2,0	2,7	3,6	4,2	4,6

зависимости. Однако для дробно-рациональной зависимости (6) погрешность вычисления параметра \hat{c}_2 при больших ε достаточно велика. Это можно объяснить некоторой неустойчивостью самой (обратной) задачи: при существенных различиях в параметрах $(176,2\,\%)$ сама зависимость практически не изменяется $(4,6\,\%)$.

Проведён сравнительный анализ известного метода определения параметров характеристики сопротивления по огибающей экспериментальной виброграммы [1] и численного метода на основе разностных уравнений. Так как огибающая амплитуд колебаний нелинейной диссипативной механической системы описывается дробно-рациональной зависимостью (1) [1, 2], в численном методе использовалась система разностных уравнений (9). В качестве результатов наблюдений были взяты данные эксперимента, приведенные в [1]. Результаты N=10 измерений a_k амплитуды колебаний с шагом τ , равным периоду колебаний T=0.15 с, представлены во второй строке табл. 3.

Таблица 3

Окспериментальные и расчетные значения амилитуд колсоания											
k	0	1	2	3	4	5	6	7	8	9	s,%
a_k	10,00	6,84	5,05	3,92	3,14	2,58	2,17	1,85	1,60	1,40	_
$\hat{a}_k^{(1)} \\ \hat{a}_k^{(2)}$	10,00	6,92	5,12	3,97	3,18	2,61	2,19	1,87	1,62	1,42	$0,\!89,\%$
$\hat{a}_{k}^{(2)}$	10,00	6,84	5,05	3,92	3,14	2,59	2,17	1,85	1,60	1,40	$0,\!06,\%$

В третьей строке табл. 3 приведены значения $\hat{a}_k^{(1)}$ огибающей амплитуд колебаний, вычисленные известным методом определения параметров характеристики сопротивления по огибающей экспериментальной виброграммы [1], а в последней строке — значения $\hat{a}_k^{(2)}$ огибающей амплитуд колебаний, вычисленные численным методом на основе разностных уравнений. В последнем столбце табл. 3 приведены значения величины s для моделей, построенных по экспериментальным данным:

$$s = \left(\sum_{k=0}^{9} (a_k - \hat{a}_k^{(i)})^2 / \sum_{k=0}^{9} a_k^2\right)^{1/2} \cdot 100\%.$$

Очевидно, что применение численного метода позволяет более чем на порядок повысить адекватность математической модели по сравнению с известным методом.

Аналогичный вывод можно сделать и при сравнительном анализе известного метода «кривой резонанса» [1] и численного метода на основе разностных уравнений, использующего математическую модель амплитудно-частотной характеристики диссипативной механической системы в форме (2). В [4] представлены результаты такого анализа, подтверждающие высокую эффективность рассматриваемого численного метода.

Таким образом, разработан эффективный численный метод определения параметров математических моделей в форме дробно-рациональных функций, в основе которого лежит среднеквадратичное оценивание коэффициентов разностного уравнения, описывающего результаты наблюдений. Этот метод может быть применен в задачах параметрической идентификации объектов, систем или процессов различной физической природы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Вибрации в технике: Справочник в 6-ти т. Т. 1. М.: Машиностроение, 1978. 352 с.; Т. 2. М.: Машиностроение, 1979. 351 с. [Vibrations in Engineering: Handbook in 6 Vols. Vol. 1. Moscow: Mashinostroenie, 1978. 352 pp.]; Vol. 2. Moscow: Mashinostroenie, 1979. 351 pp.]
- 2. Зотеев В. Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений / ред. В. П. Радченко. М.: Машиностроение-1, 2009. 344 с. [Zoteev V. E. Parametric identification of dissipative mechanical systems based on difference equations / ed. . V. P. Radchenko. Moscow: Mashinostroenie-1, 2009. 344 pp.]
- 3. Паповко А. Г. Основы прикладной теории колебаний и удара. Л.: Машиностроение, 1976. 320 с. [Panovko A. G. Fundamentals of applied theory of vibrations and shock. Leningrad: Mashinostroenie, 1976. 320 pp.]
- 4. Попова Д. Н., Зотеев В. Е. Разработка и исследование линейно параметрической дискретной модели амплитудно-частотной характеристики механической системы с линейно-вязким трением // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2007. № 2(15). С. 179—182. [Popova D. N., Zoteev V. E. Development and research of the parametric linear discrete model for amplitude-frequency response of a mechanical system with linear-viscous friction // Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007. no. 2(15). Pp. 179—182].
- 5. Писаренко Г. С., Матвеев В. А., Яковлев А. П. Методы определения характеристик колебаний упругих систем. Киев: Наукова думка, 1976. 88 с. [Pisarenko G. S., Matveev V. V., Yakovlev A. P. Methods of determining the vibration-damping characteristics of elastic systems. Kiev: Naukova Dumka, 1976. 88 pp.]
- 6. Зотеев В. Е. Исследование сходимости итерационной процедуры вычисления коэффициентов разностного уравнения / В сб.: Труды шестой Всероссийской научной конференции с международным участием (1—4 июня 2009 г.). Часть 4: Информационные технологии в математическом моделировании / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2009. С. 47—54. [Zoteev V. E. Convergence analysis of the iterative procedure for coefficients difference equation calculating / In: Proceedings of the Sixth All-Russian Scientific Conference with international participation (1—4 June 2009). Part 4 / Matem. Mod. Kraev. Zadachi. Samara: SamGTU, 2009. Pp. 47—54].
- 7. Зотеев В. Е. О сходимости итерационной процедуры среднеквадратичного оценивания коэффициентов линейно параметрической дискретной модели // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2009. № 1(18). С. 133—141. [Zoteev V. E. On convergence of iteration procedure for mean-square estimation of coefficients of a linear parametric discrete model // Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009. no. 1(18). Pp. 133—141].

Поступила в редакцию 02/V/2012; в окончательном варианте — 26/VIII/2012.

MSC: 65C20; 65P40, 34C15, 37M05

PARAMETRICAL IDENTIFICATION OF THE MATHEMATICAL MODEL IN THE FORM OF FRACTION-RATIONAL DEPENDENCIES ON THE BASIS OF DIFFERENCE EQUATIONS

V. E. Zoteev, M. A. Romanyuk

Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russia.

E-mail: zoteev-ve@mail.ru, zausmasha@mail.ru

The numerical method of parametrical identification of the mathematical model in the form of fraction-rational functional dependencies is considered. The method is based on iteration procedure for mean-square estimation of coefficients of linear parametric discrete models in the form of stochastic difference equations. Such an approach to solving the problem of identification of the fraction-rational functional dependencies can ensure a high adequacy of the models, and as a consequence, achieve high accuracy of estimating of the models parameters.

Key words: parametrical identification, difference equations, iterative process, mean-square approximation, fraction-rational functional dependence.

Original article submitted 02/V/2012; revision submitted 26/VIII/2012.

Vladimir E. Zoteev (Dr. Sci. (Techn.)), Professor, Dept. of Applied Mathematics & Computer Science. Mariya A. Romanyuk, Assistant, Dept. of Applied Mathematics & Computer Science.