УДК 517.984.5

СОБСТВЕННЫЕ ФУНКЦИИ ОПЕРАТОРОВ РОТОРА, ГРАДИЕНТА ДИВЕРГЕНЦИИ И СТОКСА. ПРИЛОЖЕНИЯ

P. C. Cake

Институт математики с вычислительным центром Уфимского научного центра Российской академии наук, Россия, 450008, Уфа, ул. Чернышевского, 112.

E-mail: romen-saks@yandex.ru

Рассматриваются спектральные задачи для ротора, градиента дивергенции и Стокса. Собственные значения определяются нулями функций Бесселя полуцелого порядка и их производных. Собственные функции задаются явно функциями Бесселя полуцелого порядка и сферическими функциями. Указываются их приложения. Доказывается полнота собственных функций для ротора в пространстве $\mathbf{L}_2(B)$.

Ключевые слова: ротор, градиент дивергенции, оператор Стокса, собственные значения и функции операторов, ряды Фурье.

Работа посвящается Василию Сергеевичу Владимирову.

Структура работы.

- 1. Постановка спектральной задачи для ротора и её приложения.
- 2. Свойства оператора ${\rm rot} + \lambda I$ при $\lambda \neq 0$, сведение спектральной задачи для ротора в шаре к задаче Дирихле для оператора Лапласа.
- 3. Решение спектральной задачи Дирихле.
- 4. Формулы для ненулевых собственных значений $\pm \lambda_{n,m}$ и собственных функций $\mathbf{q}_{n,m,k}^{\pm}(\mathbf{x})$ для ротора в шаре.
- 5. Спектральная задача 3 для градиента дивергенции и задача Неймана для оператора Лапласа.
- 6. Решение спектральной задачи Неймана для оператора Лапласа.
- 7. Формулы для собственных функций $\mathbf{q}_{n,m,k}(\mathbf{x})$ градиента дивергенции и ротора при $\lambda=0$ в шаре.
- 8. Пространство $\mathbf{L}_2(B)$ и собственные функции ротора в шаре.
- 9. Связь между решениями спектральных задач для операторов Стокса и ротора.
- 10. Формулы для собственных функций оператора Стокса в шаре с граничным условием Дирихле.
- 11. Ряды Фурье операторов ротора и Стокса.
- **1.1. Постановка задачи 1.** Пусть B- шар $|\mathbf{x}| < R$ в \mathbb{R}^3 с границей $S, \mathbf{n}-$ внешняя нормаль к $S, \mathbf{n} \cdot \mathbf{u}-$ проекция вектора \mathbf{u} на $\mathbf{n}.$

Задача 1. Найти собственные числа λ и вектор-функции $\mathbf{u}(\mathbf{x})$ ротора в $\mathbf{L}_2(B)$ такие, что

$$rot \mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{x} \in B, \quad \mathbf{n} \cdot \mathbf{u} \big|_{S} = 0, \tag{1}$$

Ромэн Семенович Сакс (д.ф.-м.н., проф.), ведущий научный сотрудник, отд. вычислительной математики.

К области определения $\mathcal{M}_{\mathcal{R}}$ оператора \mathcal{R} задачи 1 отнесём вектор-функции $\mathbf{u}(\mathbf{x})$ класса $\mathcal{C}^2(B) \cap \mathcal{C}(\overline{B})$, которые удовлетворяют граничному условию и условию rot $\mathbf{u} \in \mathbf{L}_2(B)$. Пары (λ, \mathbf{u}) являются решением задачи 1.

1.2. О приложениях и краевых задачах для ротора. Собственные функции задачи 1 имеют приложения в гидродинамике [1], где они называются полями Бельтрами; в небесной механике и в физике плазмы они называются бессиловыми полями (см. [2–6]). По теории J. В. Taylor'а [3], последнее перед распадом устойчивое равновесие в токамаках плазма принимает на бессиловых полях rot $\mathbf{u} = \lambda \mathbf{u}$. Согласно работе S. Chandrasekhar'а [2], магнитное поле \mathbf{H} вне фотосферы звезды таково, что сила Лоренца L, пропорциональная векторному произведению [rot \mathbf{H} , \mathbf{H}], исчезает.

По теореме В. И. Арнольда [7], почти все линии тока течений идеальной жидкости наматываются либо на цилиндры, либо на торы. При этом условие $[\text{rot } \mathbf{v}, \mathbf{v}] = 0$ исключается из рассмотрения. Стационарные течения вязкой несжимаемой жидкости со скоростью $\mathbf{v}(\mathbf{x})$, которая удовлетворяет уравнению (1), очевидно, удовлетворяют этому соотношению. Ссылаясь на вычисления М. Henon'a [8], Арнольд пишет, что такие течения «могут иметь линии тока с весьма сложной топологией, характерной для задач небесной механики».

Автор настоящей статьи изучал краевые задачи для системы

$$rot \mathbf{u} + \lambda \mathbf{u} = \mathbf{f} \tag{2}$$

в ограниченной области G с гладкой границей Γ и доказал [9], что при любых $\lambda \neq 0$ система имеет нетерово разрешимые краевые задачи. В частности, в [10] таковой является задача

$$\mathbf{n} \cdot \mathbf{u}|_{\Gamma} = g. \tag{3}$$

Указанная система (2), а также система

$$\nabla \operatorname{div} \mathbf{u} + \lambda \mathbf{u} = \mathbf{f}$$
 при $\lambda \neq 0$

принадлежат классу систем, (обобщённо) эллиптических по Вайнбергу и Грушину [11]. Автор разрабатывал для них теорию краевых задач.

Автор настоящей работы опубликовал работу [12], когда узнал о приложениях задачи 1 и работе S. Chandrasekhar'a и P. S. Kendall'a [13], предложивших другой подход к решению спектральной задачи 1 в шаре и в цилиндре. Метод S. Chandrasekhar'a и P. S. Kendall'a [13] в шаре не проходит, а в цилиндре он был реализован в работе D. Montgomery, L. Turner, G. Vahala [14], которые использовали собственные функции ротора при изучении турбулентности в плазме.

Самосопряжённые расширения оператора задачи 1 изучали П. Е. Берхин [15], Ү. Giga, Z. Yoshida [16] и R. Picard [17].

В 2003 году О. А. Ладыженская рассматривала задачу «О построении базисов в пространствах соленоидальных векторных полей» [18] и интересовалась возможностью вычисления собственных функций оператора Стокса в областях простейших форм (куб, шар и др.) в явном виде.

Оказалось [19], что в периодическом случае собственные вектор-функции (v_k, p_k) оператора Стокса таковы, что $p_k = \text{const}$, а вектор-функции v_k совпадают с собственными функциями ротора u_k^{\pm} при $k \neq 0$ и u_0^j при k = 0.

На их основе были построены глобальные решения уравнений Навье— Стокса в равномерно вращающемся пространстве [20] и найдены уравнения, которые описывают взаимодействие базисных вихревых потоков [21].

Позднее [22] удалось вычислить собственные функции (v_n, p_n) оператора Стокса в шаре с условием $v_n|_S=0$. В этом случае $p_n=$ const и каждая собственная вектор-функция v_n оператора Стокса есть сумма $u_n^+ + u_n^-$ собственных вектор-функций ротора u_n^\pm с одинаковыми по абсолютной величине, но разными по знаку собственными значениями такими, что $(u_n^+ + u_n^-)|_S=0$.

Так был найден другой подход к решению задачи о построений базисов в пространствах соленоидальных векторных полей, который мы здесь излагаем.

2.1. Свойства оператора $\mathbf{rot} + \lambda I$ при $\lambda \neq \mathbf{0}$. Так как div $\mathbf{rot} \mathbf{u} \equiv 0$ для любой гладкой вектор-функции \mathbf{u} , оператор $\mathbf{rot} + \lambda I$ не является эллиптическим. Однако из уравнения $\mathbf{rot} \mathbf{u} + \lambda \mathbf{u} = 0$ при $\lambda \neq 0$ следует уравнение div $\mathbf{u} = 0$. Значит, $\mathbf{u}(\mathbf{x})$ — решение эллиптической системы

$$rot \mathbf{u} - \lambda \mathbf{u} = 0, \quad \text{div } \mathbf{u} = 0. \tag{4}$$

Такой оператор rot $+\lambda I$ назовём *обобщённо эллиптическим* по Вайнбергу и Грушину [11]. Из соотношения

$$(\operatorname{rot} + \lambda I)(\operatorname{rot} - \lambda I)\mathbf{u} = -\Delta \mathbf{u} + \nabla \operatorname{div} \mathbf{u} - \lambda^2 \mathbf{u}$$

видно, что решение $\mathbf{u} \in \mathcal{C}^2(B)$ уравнения (1) при $\lambda \neq 0$ также является решением эллиптической системы второго порядка:

$$-\Delta \mathbf{u} = \lambda^2 \mathbf{u}, \quad \text{div } \mathbf{u} = 0. \tag{5}$$

Кроме того, любому решению ${\bf u}$ задачи (2),(3) соответствует решение $({\bf u},q)$ эллиптической краевой задачи

$$\operatorname{rot} \mathbf{u} + \lambda \mathbf{u} + \nabla q = \mathbf{f}, \quad \lambda \operatorname{div} \mathbf{u} = \operatorname{div} \mathbf{f}, \quad \mathbf{n} \cdot \mathbf{u}|_{\Gamma} = g, \quad q|_{\Gamma} = 0$$
 (6)

с компонентой q = 0 в G и обратно.

Согласно теории эллиптических краевых задач, в применении к задаче (6) в ограниченной области G с гладкой границей Γ имеет место [16, 23, 26, 27] следующая оценка нормы $\|\mathbf{u}\|_{s+1}$ вектор-функции \mathbf{u} в пространстве Соболева $\mathbf{H}^{s+1}(G)$:

$$C_s \|\mathbf{u}\|_{s+1} \leq \|\operatorname{rot} \mathbf{u}\|_s + \|\operatorname{div} \mathbf{u}\|_s + |\mathbf{n} \cdot \mathbf{u}|_{s+1/2} + \|\mathbf{u}\|_s,$$

где C_s — положительная постоянная, $\mathbf{n}\cdot\mathbf{u}$ — след на Γ нормальной компоненты \mathbf{u} , а $|\mathbf{n}\cdot\mathbf{u}|_{s+1/2}$ — его норма в $H^{s+1/2}(\Gamma),\ s\geqslant 0.$

Отсюда при $\lambda \neq 0$ имеют место следующие утверждения:

- а) число линейно независимых решений задачи 1 конечно;
- b) любое (обобщённое) решение задачи бесконечно дифференцируемо вплоть до границы, если граница области бесконечно дифференцируема.
- **2.2.** Сведение спектральной задачи 1 в шаре к задаче Дирихле для оператора Лапласа. Оказалось, что скалярное произведение $\mathbf{x} \cdot \mathbf{u}$ любой собственной

функции ротора $\mathbf{u}(\mathbf{x})$ в шаре с ненулевым собственным значением λ является собственной функцией скалярного оператора Лапласа с условием Дирихле. Мы приходим к следующей спектральной задаче.

Задача 2. Найти собственные значения μ и собственные функции v(x) оператора Лапласа $-\Delta$ такие, что

$$-\Delta v = \mu v$$
 ϵB , $v|_S = 0$, $v(0) = 0$.

К области определения $\mathcal{M}_{\mathcal{L}}$, оператора \mathcal{L} задачи 2 относят [24] функции $v(\mathbf{x})$ класса $\mathcal{C}^2(B) \cap \mathcal{C}(\overline{B})$, которые удовлетворяют граничному условию и условиям v(0) = 0 и $\Delta v \in L_2(B)$.

ЛЕММА 1. Если $(\lambda, \mathbf{u}(\mathbf{x}))$ есть решение задачи 1, то $(\lambda^2, \mathbf{x} \cdot \mathbf{u})$ — решение задачи 2.

Действительно, $-\Delta v = -\mathbf{x} \cdot \Delta \mathbf{u} - 2 \operatorname{div} \mathbf{u} = \lambda^2 v, v|_S = Ru_r|_{r=R} = 0, v(0) = ru_r|_{r=0} = 0$, так как вектор \mathbf{u} ограничен в окрестности нуля.

3. Решение спектральной задачи 2. Рассмотрим функции

$$\psi_n(z) \equiv \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z) = \sqrt{\frac{\pi}{2}} \sum_{p=0}^{\infty} \frac{(-1)^p}{p! \Gamma(n+1+p+\frac{1}{2})} \left(\frac{z}{2}\right)^{n+2p}, \quad n \geqslant 0.$$
 (7)

Л. Эйлер показал, что

$$\psi_n(z) = (-z)^n \left(\frac{d}{zdz}\right)^n \left(\frac{\sin z}{z}\right). \tag{8}$$

Следовательно, $\psi_n(-z)=(-1)^n\psi_n(z)$, и нули функции $\psi_n(z)$ лежат на действительной оси и симметричны относительно точки z=0. Пусть $\rho_{n,m}$ — её положительные нули,

$$\psi_n(\pm \rho_{n,m}) = 0, \quad n \geqslant 0, m \geqslant 1, \tag{9}$$

а $Y_n^k(\theta,\varphi)$ — вещественные сферические функции:

$$Y_n^k(\theta,\varphi) = \left\{ egin{array}{ll} \mathcal{P}_n^k(\cos\theta)\cos(k\varphi), & ext{если} & k \in [0,n]; \\ \mathcal{P}_n^{|k|}(\cos\theta)\sin(|k|\varphi), & ext{если} & k \in [-n,-1], \end{array}
ight.$$

где $\mathcal{P}_n^k(\cos\theta)$ — присоединённые функции Лежандра; $r,\;\theta,\;\varphi$ — сферические координаты $(0< r\leqslant R,\;0\leqslant\theta\leqslant\pi,\;0\leqslant\varphi\leqslant2\pi).$

Согласно монографии В. С. Владимирова [24], собственные значения $\mu_{n,m}$ оператора $-\Delta$ в шаре B с граничным условием Дирихле равны $\lambda_{n,m}^2$, где $\lambda_{n,m} = (\rho_{n,m})/R$, а числа $\rho_{n,m}$ —нули функций $\psi_n(z)$.

Собственные функции v_{κ} имеют вид

$$v_{\kappa}(r,\theta,\varphi) = c_{\kappa}\psi_n(\lambda_{n,m}r)Y_n^k(\theta,\varphi), \quad n \geqslant 0, \quad |k| \leqslant n, \quad m \geqslant 1,$$

где $\kappa = (n, m, k)$ — мультииндекс, постоянные c_{κ} произвольны.

Причём функции $v_{\kappa}(r,\theta,\varphi)$ удовлетворяют условию задачи 2, $v_{\kappa}|_{r=0}=0$, если и только если $c_{\kappa}=0$, когда $\kappa=(0,m,0)$.

По определению сферических функций произведение $r^nY_n^k(\theta,\varphi)$ является однородным гармоническим полиномом от x_j степени n. Из формул (7), (8) видно, что функции $v_{\kappa}(x) \in \mathcal{C}^{\infty}(\overline{B})$, так как являются произведениями однородных гармонических полиномов на функции, которые разлагаются в ряды по степеням $r^2 = x_1^2 + x_2^2 + x_3^2$.

Функции v_{κ} при различных κ ортогональны в $L_2(B)$ ввиду ортогональности и полноты функций Бесселя в $L_2[(0,R);r]$ и сферических функций в $L_2(S_1)$.

4.1. Построение решений $(\pm \lambda_{\kappa}, u_{\kappa}^{\pm})$ задачи 1. Имеет место следующее утверждение.

ЛЕММА 2. Любому решению $(\mu_{\kappa}, v_{\kappa}(\mathbf{x}))$ задачи 2 соответствуют два и только два решения $(\sqrt{\mu_{\kappa}}, \mathbf{u}_{\kappa}^+)$ и $(-\sqrt{\mu_{\kappa}}, \mathbf{u}_{\kappa}^-)$ задачи 1 такие, что $\mathbf{x} \cdot \mathbf{u}_{\kappa}^+ = \mathbf{x} \cdot \mathbf{u}_{\kappa}^- = v_{\kappa}$.

В основе доказательства леммы 2 лежит представление системы из четырёх уравнений

$$rot \mathbf{u} - \lambda \mathbf{u} = 0, \quad div \mathbf{u} = 0$$

в сферических координатах как системы из двух комплексных уравнений

$$(\partial_r - i\lambda) rw = r^{-1}Hv, \quad Kw = \lambda v - ir^{-1}\partial_r(rv)$$
(10)

относительно $w = u_{\varphi} + iu_{\theta}$ и $v = ru_r$, где

$$Hv = (\sin^{-1}\theta \partial_{\varphi} + i\partial_{\theta}) v, \quad Kw = \sin^{-1}\theta (\partial_{\theta}\sin\theta + i\partial_{\varphi})w.$$

Для заданных $v=v_{\kappa}$ и $\lambda=\lambda_{\kappa}\equiv\lambda_{n,m}$ (или $\lambda=-\lambda_{\kappa}$) решается система (10) и находится w_{κ}^+ (или w_{κ}^-) в пространстве Соболева $W_2^1(B)$. Причём уравнение $-\Delta v_{\kappa}=\lambda_{\kappa}^2 v_{\kappa}$ есть условие совместности каждой из этих двух переопределённых систем. После чего полагается $u_{\kappa,r}^+=u_{\kappa,r}^-=(v_{\kappa})/r$.

Замечание. Если v=0 в (10), то решения $w_0^\pm=(c_\kappa^\pm(\theta,\varphi)e^{i\lambda_\kappa^\pm r})/r$ с функциями $c_\kappa^\pm(\theta,\varphi)$, удовлетворяющими уравнению $Kc_\kappa^\pm(\theta,\varphi)=0$. Они принадлежат пространству $W_2^1(B)$ тогда и только тогда, когда $c_\kappa^\pm(\theta,\varphi)\equiv 0$.

4.2. Формулы для решений задачи 1. Так как $\mu_{\kappa}=\lambda_{\kappa}^2,\,\sqrt{\mu_{\kappa}}=\lambda_{\kappa}=\rho_{n,m}/R.$

ТЕОРЕМА 1. Ненулевые собственные числа $\lambda_{n,m}^{\pm}$ задачи 1 равны $\pm \rho_{n,m}/R$, где $\pm \rho_{n,m}$ — нули функций $\psi_n(z)$ и $m,n \in \mathbb{N}$. Компоненты u_r и $w = u_{\varphi} + iu_{\theta}$ собственных функций $\mathbf{u}_{\kappa}^{\pm}$ имеют вид

$$(u_r)_{\kappa}^{\pm} = c_{\kappa}^{\pm} r^{-1} \psi_n(\lambda_{n,m}^{\pm} r) Y_n^k(\theta, \varphi), \tag{11}$$

$$(u_{\varphi} + iu_{\theta})_{\kappa}^{\pm} = c_{\kappa}^{\pm} r^{-1} \Phi_n(\lambda_{n,m}^{\pm} r) H Y_n^k(\theta, \varphi), \tag{12}$$

где постоянные $c_{\kappa}^{\pm} \in \mathbb{R}, \ \kappa = (n, m, k), \ n, m \geqslant 1, \ |k| \leqslant n,$

$$\Phi_n(\lambda r) = \int_0^r e^{i\lambda(r-t)} \psi_n(\lambda t) t^{-1} dt, \qquad (13)$$

$$HY_n^k = \left(\sin^{-1}\theta \partial_{\varphi} + i\partial_{\theta}\right) Y_n^k. \tag{14}$$

Функции u_r , u_θ , u_φ принадлежат классу C^∞ всюду в \overline{B} , кроме оси x_3 , где $r\sin\theta=0$, и ограничены в \overline{B} . В исходных координатах (x_1, x_2, x_3) компоненты $u_i\in C^\infty(\overline{B})$.

Из формулы (10) с учётом того, что $v|_{r=R}=0$, вытекает

$$\operatorname{Im}\Phi_n(\rho_{n,m}) = 0. \tag{15}$$

Вектор-функции $\mathbf{u}_{\kappa}^{\pm}$ представим в виде суммы трёх вещественных взаимно ортогональных векторов, используя репер \mathbf{i}_r , \mathbf{i}_{θ} , \mathbf{i}_{φ} и разделяя действительные и мнимые части в (12)–(14):

$$\mathbf{u}_{\kappa}^{\pm} = c_{\kappa}^{\pm} r^{-1} \psi_{n}(\pm \rho_{n,m} r/R) Y_{n}^{k}(\theta, \varphi) \mathbf{i}_{r} + c_{\kappa}^{\pm} r^{-1} \operatorname{Re}[\Phi_{n}(\pm \rho_{n,m} r/R)] (\operatorname{Re} H Y_{n}^{k} \mathbf{i}_{\varphi} + \operatorname{Im} H Y_{n}^{k} \mathbf{i}_{\theta}) + c_{\kappa}^{\pm} r^{-1} \operatorname{Im}[\Phi_{n}(\pm \rho_{n,m} r/R)] (-\operatorname{Im} H Y_{n}^{k} \mathbf{i}_{\varphi} + \operatorname{Re} H Y_{n}^{k} \mathbf{i}_{\theta}).$$

Отметим, что в базисе

$$\{Y_n^k(\theta,\varphi)\,\mathbf{i}_r,\operatorname{Re} HY_n^k\mathbf{i}_\varphi+\operatorname{Im} HY_n^k\mathbf{i}_\theta,-\operatorname{Im} HY_n^k\mathbf{i}_\varphi+\operatorname{Re} HY_n^k\mathbf{i}_\theta\}$$

компоненты $\mathbf{u}_{\kappa}^{\pm}$ зависят только от r. Используя эти формулы, можно представить движение базисного вихревого потока жидкости в шаре, скорость которого есть $\mathbf{u}_{\kappa}^{\pm}(x)$, при различных $\kappa=(n,m,k)$. Завихрённость этих потоков rot u_{κ}^{\pm} , равная $\lambda_{n,m}^{\pm}u_{\kappa}^{\pm}$, отлична от нуля в каждой точке шара.

Итак, кратность значения $\lambda_{n,m}^{\pm}$ равна 2n+1. Кратность нулевого собственного значения бесконечна. Следовательно, спектр задачи 1 дискретен и не имеет конечных точек накопления, а собственные вектор-функции $\mathbf{u}_{\kappa}^{\pm}$ задачи выражаются через цилиндрические и сферические функции.

Собственные вектор-функции оператора ротор, отвечающие нулевому собственному значению $\lambda=0$, ищутся среди решений следующей спектральной задачи.

5. Спектральная задача для оператора градиент дивергенции и задача Неймана для оператора Лапласа.

Задача 3. Найти собственные значения μ и собственные вектор-функции $\mathbf{u}(\mathbf{x})$ в $\mathbf{L}_2(G)$ градиента дивергенции такие, что

$$-\nabla \operatorname{div} \mathbf{u} = \mu \mathbf{u} \quad \boldsymbol{\varepsilon} \ G, \quad \mathbf{n} \cdot \mathbf{u}|_{\Gamma} = 0.$$

K области определения $\mathcal{M}_{\mathcal{GD}}$ оператора \mathcal{GD} задачи относят все вектор-функции $\mathbf{u}(\mathbf{x})$ класса $\mathcal{C}^2(G) \cap \mathcal{C}^1(\overline{G})$, которые удовлетворяют граничному условию $\mathbf{n} \cdot \mathbf{u}|_{\Gamma} = 0$ и условию $\nabla \operatorname{div} \mathbf{u} \in \mathbf{L}_2(G)$.

Эта задача связана с задачей Неймана для скалярного оператора Лапласа.

Задача 4. Найти собственные значения ν и собственные функции $g(\mathbf{x})$ оператора Лапласа $-\Delta$ такие, что

$$-\Delta g = \nu g \quad e G, \quad \mathbf{n} \cdot \nabla g|_{\Gamma} = 0. \tag{16}$$

K области определения $\mathcal{M}_{\mathcal{N}}$ оператора \mathcal{N} задачи относят все функции $g(\mathbf{x})$ класса $\mathcal{C}^2(G) \cap \mathcal{C}^1(\overline{G})$, удовлетворяющие граничному условию $\mathbf{n} \cdot \nabla g|_{\Gamma} = 0$ и условию $\Delta g \in L_2(G)$.

Имеют место следующая лемма.

ЛЕММА 3. Любому решению (μ, \mathbf{u}) задачи 3 в области G соответствует решение $(\nu, g) = (\mu, \operatorname{div} \mathbf{u})$ задачи 4. Обратно: любому решению (ν, g) задачи 4 соответствует решение $(\mu, \mathbf{u}) = (\nu, \nabla g)$ задачи 3.

6. Решение задачи 4 в шаре. Согласно В. С. Владимирову [24], собственные значения оператора $-\Delta$ в шаре B с условием Неймана равны $\nu_{n,m}^2$, где $\nu_{n,m}=$ = $\alpha_{n,m}/R,\ n\geqslant 0,\ m\in\mathbb{N},\$ а числа $\alpha_{n,m}>0-$ нули функций $\psi_n'(z),\$ т. е. $\psi_n'(\alpha_{n,m})=0.$

Соответствующие $\nu_{n,m}^2$ собственные функции g_{κ} имеют следующий вид:

$$g_{\kappa}(r,\theta,\varphi) = c_{\kappa}\psi_n(\alpha_{n,m}r/R)Y_n^k(\theta,\varphi), \tag{17}$$

где $\kappa=(n,m,k)$ — мультииндекс, c_{κ} — произвольные действительные постоянные, $Y_{n}^{k}(\theta,\varphi)$ — действительные сферические функции, $n\geqslant 0,\ |k|\leqslant n,$ $m\in\mathbb{N}.$

Функции $g_{\kappa}(x)$ принадлежат классу $C^{\infty}(\overline{B})$ и при различных κ ортогональны в $L_2(B)$. Нормируя их, получим систему функций $\{\widehat{g}_{\kappa}\}$ — ортонормированный в $L_2(B)$ базис.

7. Формулы для собственных функций задачи 3 и задачи 1 ($\lambda=0$). Согласно лемме 3, вектор-функции $\mathbf{q}_{\kappa}(x)=\nabla g_{\kappa}(x)$ являются решениями задачи 3 в $\mathbf{L}_2(B)$. Их компоненты (q_r,q_θ,q_φ) имеют вид

$$q_{r,\kappa}(r,\theta,\varphi) = c_{\kappa}(\alpha_{n,m}/R)\psi'_{n}(\alpha_{n,m}r/R)Y_{n}^{k}(\theta,\varphi),$$

$$(q_{\varphi} + iq_{\theta})_{\kappa} = c_{\kappa}(1/r)\psi_{n}(\alpha_{n,m}r/R)HY_{n}^{k}(\theta,\varphi).$$

При $\kappa = (0, m, 0)$ имеем $Y_0^0(\theta, \varphi) = 1,$ Н $Y_0^0 = 0.$ Поэтому

$$q_{r,(0,m,0)}(r) = c_{(0,m,0)}(\alpha_{0,m}/R)\psi'_0(\alpha_{0,m}r/R), \quad (q_{\varphi} + iq_{\theta})_{(0,m,0)} = 0.$$

Вектор-функции \mathbf{q}_{κ} являются также решениями задачи 1 при $\lambda=0$, так как числа $\mu_{n,m}=\nu_{n,m}^2=(\alpha_{n,m}/R)^2>0$ при любых $n\geqslant 0,\,m\in\mathbb{N}.$

Вектор-функции \mathbf{q}_{κ} и $\mathbf{q}_{\kappa'}$ ортогональны при $\kappa' \neq \kappa$. Действительно, согласно формуле Гаусса—Остроградского

$$\int_{B} \nabla g_{\kappa'} \cdot \nabla g_{\kappa} dx = -\int_{B} g_{\kappa'} \Delta g_{\kappa} dx + \int_{S} g_{\kappa'} (n \cdot \nabla) g_{\kappa} dS. \tag{18}$$

Функции $g_{\kappa}(x)$ являются решениями задачи 4, они удовлетворяет уравнению Гельмгольтца (16) при $\nu=\alpha_{n,m}^2/R^2>0$ с краевым условием Неймана. Следовательно, граничный интеграл пропадает, а

$$\int_{B} \mathbf{q}_{\kappa'} \cdot \mathbf{q}_{\kappa} dx = \frac{\alpha_{n,m}^{2}}{R^{2}} \int_{B} g_{\kappa'} g_{\kappa} dx.$$
 (19)

Но функции $g_{\kappa}(x)$ и $g_{\kappa'}(x)$, согласно (17), взаимно ортогональны в $L_2(B)$ при $\kappa' \neq \kappa$. Значит, последний интеграл в (19) равен нулю и вектор-функции

 \mathbf{q}_{κ} и $\mathbf{q}_{\kappa'}$ взаимно ортогональны в $\mathbf{L}_{2}(B)$. Причём $\|\mathbf{q}_{\kappa}(x)\| = \alpha_{n,m}/R$, если $\|g_{\kappa}(x)\| = 1$.

8. Пространство $\mathbf{L}_2(B)$ и собственные функции ротора. Линейное подпространство в $\mathbf{L}_2(B)$, образованное ортонормированной системой векторфункций $\{\mathbf{q}_{\kappa}(x)\}$, обозначим через \mathcal{A} . Фактически,

$$\mathcal{A} = \{ \operatorname{grad} h, h \in H^1(B) \}.$$

Действительно, каждый элемент $\mathbf{q}_{\kappa}(x) = \nabla g_{\kappa}$, где $g_{\kappa} \in H^{1}(B)$. С другой стороны, функция h из $H^{1}(B)$ разлагается в сходящийся ряд

$$h = \sum_{\kappa} (h, \widehat{g}_{\kappa}) \widehat{g}_{\kappa}, \quad (\widehat{g}_{\kappa}, \widehat{g}_{\kappa'}) = \delta_{\kappa, \kappa'}.$$

Обозначим через $\mathbf{q}_{\kappa}^{\pm}(x)$ решения задачи 1, которые, согласно теореме 1, соответствуют собственным значениям $\lambda_{n,m}^{\pm},\ n,\ m\in\mathbb{N},$ и нормированы в $\mathbf{L}_{2}(B))$, т. е. $\|\mathbf{q}_{\kappa}^{\pm}(x)\|=1$. Они принадлежат подпространству

$$\mathbf{V}^{0}(B) = {\mathbf{u} \in \mathbf{L}_{2}(B) : \text{div } \mathbf{u} = 0, \ \mathbf{n} \cdot \mathbf{u}|_{S} = 0, \ \|\mathbf{u}\|_{\mathbf{V}^{0}(B)} = \|\mathbf{u}\|_{\mathbf{L}_{2}(B)}},$$

где $\operatorname{div} \mathbf{u} = 0$, $\mathbf{n} \cdot \mathbf{u}|_S = 0$ понимаются в смысле теории распределений:

$$\mathbf{V}^0(B) = \left\{ \mathbf{u} \in \mathbf{L}_2(B) : \int_B \mathbf{u} \cdot \nabla h dx = 0, \ \forall h \in H^1(B) \right\}.$$

Очевидно, что \mathcal{A} и $\mathbf{V}^0(B)$ — ортогональные подпространства в $\mathbf{L}_2(B)$. Через \mathcal{B}^{\pm} обозначим подпространства в $\mathbf{V}^0(B)$, образованные системами векторфункций $\{\mathbf{q}_{\kappa}^{\pm}(x)\}$. Имеет место следующая лемма.

ЛЕММА 4. Вектор-функции $\mathbf{q}_{\kappa}^{+}(x)$ (и, соответственно, $\mathbf{q}_{\kappa}^{-}(x)$) взаимно ортогональны при различных к. Системы $\{\mathbf{q}_{\kappa}^{\pm}(x)\}$ образуют в подпространствах \mathcal{B}^{\pm} ортонормированные базисы. Кроме того, \mathcal{B}^{+} ортогонально \mathcal{B}^{-} .

Доказательство. Воспользуемся формулой Грина

$$\int_{B} \operatorname{rot} \mathbf{u} \cdot \mathbf{v} d\mathbf{x} - \int_{B} \mathbf{u} \cdot \operatorname{rot} \mathbf{v} d\mathbf{x} = \int_{S} [\mathbf{u}, \mathbf{v}] \cdot \mathbf{n} dS.$$
 (20)

Смешанное произведение $[\mathbf{u}, \mathbf{v}] \cdot \mathbf{n}$ на сфере S совпадает с определителем

$$\begin{vmatrix} 1 & 0 & 0 \\ u_r & u_\theta & u_\varphi \\ v_r & v_\theta & v_\varphi \end{vmatrix}$$

и равно $u_{\theta}v_{\varphi}-u_{\varphi}v_{\theta}$ или $\mathrm{Im}(W\,\overline{V})$ в комплексных обозначениях $W=(u_{\varphi}+iu_{\theta})$ и $\overline{V}=(v_{\varphi}-iv_{\theta}).$

Докажем ортогональность вектор-функций $\mathbf{q}_{\kappa'}^+(x)$ и $\mathbf{q}_{\kappa}^+(x)$, при $\kappa' \neq \kappa$. Они являются решениями задачи 1 и вычисляются по формулам (11), (12), где $\lambda_{n,m}^+ = \rho_{n,m}/R$, c_{κ}^+ — действительные постоянные.

Вначале рассмотрим случай $(n',m') \neq (n,m)$, а значит $\lambda_{n',m'}^+ \neq \lambda_{n,m}^+$. Подставляя эти функции в формулу (20), получим

$$\left(\lambda_{n',m'} - \lambda_{n,m}\right) \int_{B} \mathbf{q}_{\kappa'}^{+} \cdot \mathbf{q}_{\kappa}^{+} dx = \operatorname{Im} \int_{0}^{\pi} \int_{0}^{2\pi} W_{k'}^{+} \overline{W}_{k}^{+} \sin\theta d\theta d\varphi. \tag{21}$$

Ортогональность будет доказана, если последний интеграл I в (21) обращается в нуль. Согласно формулам (12),

$$I = A \operatorname{Im} \int_0^{\pi} \int_0^{2\pi} \mathrm{H} Y_{n'}^{k'}(\theta, \varphi) \overline{\mathrm{H}} Y_n^k(\theta, \varphi) \sin \theta d\theta d\varphi,$$

где $A=c_{\kappa'}^+(\rho_{n',m'})^{-1}c_\kappa^+$ $(\rho_{n,m})^{-1}\Phi_{n'}(\rho_{n',m'})\overline{\Phi}_n(\rho_{n,m})$ — постоянная, а A — действительна ввиду (15).

Оператор Н в этом интеграле перебросим, интегрируя по частям:

$$\operatorname{Im}\left[A\int_{0}^{\pi}\int_{0}^{2\pi}Y_{n'}^{k'}(\theta,\varphi)\left[-\sin^{-1}\theta\partial_{\theta}(\sin\theta\partial_{\theta})-\sin^{-2}\theta\partial_{\varphi}^{2}\right]Y_{n}^{k}(\theta,\varphi)\sin\theta d\theta d\varphi\right]+$$

$$+\operatorname{Im}\left[iA\int_{0}^{\pi}\int_{0}^{2\pi}Y_{n'}^{k'}(\theta,\varphi)\left[\sin^{-1}\theta(\partial_{\varphi}\partial_{\theta}-\partial_{\theta}\partial_{\varphi})\right]Y_{n}^{k}(\theta,\varphi)\sin\theta d\theta d\varphi\right]=I.$$

Последний интеграл равен нулю, так как сферические функции непрерывны вместе с производными любого порядка по φ и θ . В первом интеграле оператор, взятый в квадратные скобки, есть оператор Лапласа—Бельтрами $(-\Delta_{\theta\varphi})$. Согласно свойству сферических функций,

$$-\Delta_{\theta\varphi}Y_n^k(\theta,\varphi) = n(n+1)Y_n^k(\theta,k).$$

Подставляя это выражение под знак интеграла, получим

$$\left(\lambda_{n',m'} - \lambda_{n,m}\right) \int_{B} q_{\kappa'}^{+} \cdot q_{\kappa}^{+} dx = \operatorname{Im}\left[n(n+1)A \int_{0}^{\pi} \int_{0}^{2\pi} Y_{n'}^{k'} Y_{n}^{k} \sin\theta d\theta d\varphi\right]. \quad (22)$$

Так как сферические функции взаимно ортогональны при $(n',k') \neq (n,k)$, этот интеграл равен нулю. Итак, вектор-функции $\mathbf{q}_{\kappa'}^+(x)$ и $\mathbf{q}_{\kappa}^+(x)$ ортогональны при $(n',m') \neq (n,m)$ и $(n',k') \neq (n,k)$.

Если же $(n',k')=(n,k), m'\neq m$, то интеграл справа в (22) есть действительное число. Числа c_{κ} , $\Phi_n(\rho_{n,m})$ и A также действительны, поэтому $\mathbf{q}_{k,m',n}^+(x)$ и $\mathbf{q}_{k,m,n}^+(x)$ — ортогональны.

В случае (n',m')=(n,m) и $k'\neq k$ формула (22) не годится, так как её левая и правая части обращаются в нуль. Согласно формулам (11), (12), имеем

$$\begin{split} & \int_{B} \mathbf{q}_{k',m,n}^{+} \cdot \mathbf{q}_{k,m,n}^{+} dx = \\ & = c_{k',m,n}^{+} c_{k',m,n}^{+} \lambda_{m,n}^{-2} \bigg[\int_{0}^{R} \psi_{n}^{2}(\lambda_{n,m}r) dr \int_{0}^{\pi} \int_{0}^{2\pi} Y_{n}^{k'}(\theta,\varphi) Y_{n}^{k}(\theta,\varphi) \sin \theta d\theta d\varphi + \\ & \quad + \int_{0}^{R} \Phi_{n}(\lambda_{n,m}r) \overline{\Phi}_{n}(\lambda_{n,m}r) dr \int_{0}^{\pi} \int_{0}^{2\pi} \mathrm{H} Y_{n}^{k'}(\theta,\varphi) \overline{\mathrm{H}} Y_{n}^{k}(\theta,\varphi) \sin \theta d\theta \bigg]. \end{split}$$

Ввиду ортогональности функций $Y_n^{k'}$ и Y_n^k в $\mathbf{L}_2(S_1)$ оба интеграла исчезают и, значит, векторы $\mathbf{q}_{k',m,n}^+$ и $\mathbf{q}_{k,m,n}^+$ —ортогональны.

Ортогональность вектор-функций $\mathbf{q}_{\kappa'}^-(x)$ и $\mathbf{q}_{\kappa}^-(x)$ при $\kappa' \neq \kappa$ доказывается аналогично.

Рассмотрим собственные функции $\mathbf{q}_{\kappa'}^+(x)$ и $\mathbf{q}_{\kappa}^-(x)$, соответствующие значениям $\lambda_{n,m}$ и $-\lambda_{n,m}$ различных знаков, при любых κ' и κ . Повторяя предыдущие вычисления, имеем

$$(\lambda_{n',m'} + \lambda_{n,m}) \int_{B} \mathbf{q}_{\kappa'}^{+} \cdot \mathbf{q}_{\kappa}^{-} dx = \operatorname{Im} \int_{0}^{\pi} \int_{0}^{2\pi} W_{k'}^{+} \overline{W}_{k}^{-} \sin \theta \, d\theta \, d\varphi =$$

$$= \operatorname{Im} \left[n(n+1)B \int_{0}^{\pi} \int_{0}^{2\pi} Y_{n'}^{k'}(\theta, \varphi) Y_{n}^{k}(\theta, \varphi) \sin \theta \, d\theta \, d\varphi \right], \quad (23)$$

где постоянная $B=(-1)^{(n+1)}c^+_{\kappa'}(\rho_{n',m'})^{-1}c^-_{\kappa}(\rho_{n,m})^{-1}\Phi_{n'}(\rho_{n',m'})\Phi_n(\rho_{n,m})$ действительна.

Правая часть (23) исчезает при любых κ' и κ . Следовательно, вектор-функции $\mathbf{q}_{\kappa'}^+(x)$ и $\mathbf{q}_{\kappa}^-(x)$, а значит и пространства \mathcal{B}^+ и \mathcal{B}^- , ортогональны. \square

Итак, из полноты в $L_2(B)$ семейств собственных функций оператора Лапласа с условиями Дирихле и Неймана вытекает, что система вектор-функций $\{\mathbf{q}_{\kappa}(x)\}$ полна в подпространстве \mathcal{A} , системы $\{\mathbf{q}_{\kappa}^+(x)\}$ и $\{\mathbf{q}_{\kappa}^-(x)\}$ в совокупности полны в подпространстве $\mathbf{V}^0(B)$. Подпространства \mathcal{A} и $\mathbf{V}^0(B)$ взаимно ортогональны в $\mathbf{L}_2(B)$. В случае шара их объединение совпадает с $\mathbf{L}_2(B)$ (см. [25]).

Таким образом, мы получили ортогональное разложение Γ . Вейля пространства $\mathbf{L}_2(B)$ по собственным вектор-функциям ротора:

$$\mathbf{L}_2(B) = \mathcal{A} \oplus \mathbf{V}^0(B) = \mathcal{A} \oplus \mathcal{B}^+ \oplus \mathcal{B}^-.$$

ТЕОРЕМА 2. Система собственных вектор-функций $\{\mathbf{q}_{\kappa}(x)\}$, $\{\mathbf{q}_{\kappa}^+(x)\}$ и $\{\mathbf{q}_{\kappa}^-(x)\}$ задачи 1 в совокупности образует в пространстве $\mathbf{L}_2(B)$ ортонормированный базис. Любую вектор-функцию из $\mathbf{L}_2(B)$ можно разложить в ряд Фурье по этому базису.

Разложение Вейля векторного поля \mathbf{f} из $\mathbf{L}_2(B)$ на безвихревое поле \mathbf{a} и соленоидальное \mathbf{b} имеет вид $\mathbf{f}(\mathbf{x}) = \mathbf{a}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$, где

$$\mathbf{a} = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \sum_{k=-n}^{n} (\mathbf{f}, \mathbf{q}_{n,m,k}) \, \mathbf{q}_{n,m,k}(\mathbf{x}), \tag{24}$$

$$\mathbf{b} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=-n}^{\infty} [(\mathbf{f}, \mathbf{q}_{n,m,k}^{+}) \, \mathbf{q}_{n,m,k}^{+}(\mathbf{x}) + (\mathbf{f}, \mathbf{q}_{n,m,k}^{-}) \, \mathbf{q}_{n,m,k}^{-}(\mathbf{x})].$$
(25)

Суммирование рядов (24), (25) идет по n, m, для которых $0 < \alpha_{n,m} < N$ и $0 < \rho_{n,m} < N,$ а затем $N \to \infty$.

Отметим, что эти ряды сходятся регулярно вместе с производными любого порядка, если $\mathbf{f}(\mathbf{x}) \in \mathcal{C}_0^\infty(B)$.

Имеет место равенство Парсеваля—Стеклова $\|\mathbf{f}\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2$, которое запишем так:

$$\|\mathbf{f}\|^2 = \sum_{N=1}^{\infty} \sum_{(n,m) \in \mathbb{P}_N} \sum_{k \in [-n,n]} [(\mathbf{f}, \mathbf{q}_{n,m,k})^2 + (\mathbf{f}, \mathbf{q}_{n,m,k}^+)^2 + (\mathbf{f}, \mathbf{q}_{n,m,k}^-)^2],$$

где решетка $\mathbb{P}_N=\{(n,m): 0<\rho_{n,m}< N, 0<\alpha_{n,m}< N\}$, векторы $\mathbf{q}_{0,m,0}^\pm=0$. 9. Связь между решениями спектральных задач операторов Стокса и ро-

9. Связь между решениями спектральных задач операторов Стокса и ротора. Перейдем к изучению спектральной задачи для оператора Стокса в ограниченной области G с параметром вязкости $\nu > 0$.

Задача 5. Найти собственные вектор-функции $(\mathbf{v}(\mathbf{x}), p(\mathbf{x}))$ и собственные значения μ оператора Стокса такие, что

$$-\nu \Delta \mathbf{v} + \nabla p = \mu \mathbf{v}, \quad div \ \mathbf{v} = 0 \quad e \ G,$$

$$\mathbf{v}|_{\Gamma} = 0.$$
 (26)

Отметим, что собственной функцией этого оператора обычно считается только вектор-функция $\mathbf{v}(\mathbf{x})$, так как ∇p определяется через v и μ . В монографии О. А. Ладыженской [1] доказано, что в ограниченной области G с гладкой границей Γ эта задача имеет дискретный спектр $\{\mu_k\}$, где $k=1,2,\ldots$; причём каждое $\mu_k>0$ и имеет конечную кратность. Мы уточним этот результат.

Имеются полезные соотношения между решениями задач 1 и 5.

Теорема 3. Справедливы следующие утверждения.

а) Пусть \mathbf{u}^+ , \mathbf{u}^- удовлетворяют в области G уравнениям rot $\mathbf{u}^\pm = \pm \lambda \mathbf{u}^\pm$, $\lambda > 0$, а $p(\mathbf{x})$ — гармоническая в G функция. Тогда пара (\mathbf{v}, p) , где

$$\mathbf{v} = \mathbf{u}^+ + \mathbf{u}^- + \nu^{-1} \lambda^{-2} \nabla p, \tag{27}$$

есть решение уравнений Стокса (26) с $\mu = \nu \lambda^2$.

b) Если функции \mathbf{u}^+ , \mathbf{u}^- и $p(\mathbf{x})$ удовлетворяют также краевым условиям

$$\mathbf{n} \cdot \mathbf{u}^{\pm}|_{\Gamma} = 0, \quad (\mathbf{u}^{+} + \mathbf{u}^{-})|_{\Gamma} = 0, \tag{28}$$

$$(\mathbf{n} \cdot \nabla)p|_{\Gamma} = 0, \tag{29}$$

 $mo(\mathbf{v},p), \ r\partial e$

$$\mathbf{v} = \mathbf{u}^+ + \mathbf{u}^-, \quad p = \text{const},$$

есть решение задачи 5 с $\mu = \nu \lambda^2$.

 \mathcal{A} о казательство утверждения а) проводится непосредственной проверкой при условии, что функции \mathbf{u}^+ и \mathbf{u}^- являются решениями уравнений (4), (5). Действительно,

$$-\nu \Delta \mathbf{v} + \nabla p = \nu \lambda^2 (\mathbf{u}^+ + \mathbf{u}^-) + \nabla p = \nu \lambda^2 \mathbf{v}.$$

Далее, однородная задача Неймана (29) для гармонической функции $p(\mathbf{x})$ в ограниченной области G с гладкой границей Γ имеет решение $p=\mathrm{const},$ так как из формулы Гаусса—Остроградского вытекает, что

$$\int_{\mathbf{G}} |\nabla p|^2 dx = 0.$$

Следовательно, разложение (27) принимает вид $\mathbf{v} = \mathbf{u}^+ + \mathbf{u}^-$, а краевое условие $\mathbf{v}|_{\Gamma} = 0$ вытекает из соотношения $(\mathbf{u}^+ + \mathbf{u}^-)|_{\Gamma} = 0$. \square

С другой стороны, имеет место

Теорема 4. Справедливы следующие утверждения.

а) Пусть вектор-функция $(\mathbf{v}(\mathbf{x}), p(\mathbf{x}))$ есть решение уравнений Стокса (26) с $\mu > 0$, $\mathbf{v}(\mathbf{x}) \neq 0$, $p(\mathbf{x})$ — гармоническая в G функция, и пусть $\lambda = \sqrt{\mu \nu^{-1}}$. Тогда вектор-функция \mathbf{v} представляется в виде суммы

$$\mathbf{v} = \mathbf{w} + \mu^{-1} \nabla p,$$

где **w** удовлетворяет уравнениям

$$(\operatorname{rot} + \lambda I)(\operatorname{rot} - \lambda I)\mathbf{w} = 0, \quad \operatorname{div} \mathbf{w} = 0.$$
 (30)

b) Если $p(\mathbf{x})$ удовлетворяет краевому условию (29), то $\mathbf{v} = \mathbf{w}$. В случае G = B существуют вектор-функции $\mathbf{u}^{\pm} -$ решения уравнений $\cot \mathbf{u}^{\pm} = \pm \lambda \mathbf{u}^{\pm}$ с краевыми условиями (28) такие, что вектор-функция \mathbf{v} представляется в виде суммы $\mathbf{v} = \mathbf{u}^{+} + \mathbf{u}^{-}$.

 \mathcal{A} о к а з а т е л ь с т в о. Вектор-функции $\mathbf{v}(\mathbf{x})$ и $\nabla p(\mathbf{x})$ удовлетворяют уравнениям (26). Первые три из них запишем так:

$$(\operatorname{rot} + \lambda I)(\operatorname{rot} - \lambda I)\mathbf{v} = -\nu^{-1}\nabla p. \tag{31}$$

Фиксируя p, рассмотрим соотношение (31) как дифференциальное уравнение относительно вектора \mathbf{v} . Так как гот $\nabla p \equiv 0$ и $\mu = \nu \lambda^2$, выражение $\mu^{-1}\nabla p$ —его частное решение, а выражение $\mathbf{w} = \mathbf{v} - \mu^{-1}\nabla p$ —решение однородного уравнения, то есть первого уравнения в (30). Второе уравнение div $\mathbf{w} = 0$ следует из уравнения div $\mathbf{v} = 0$.

Если p удовлетворяет условию Неймана $\mathbf{n} \cdot \nabla p|_S = 0$, то $\nabla p = 0$ и $\mathbf{w} = \mathbf{v}$ есть элемент пространства \mathcal{B} , так как div $\mathbf{v} = 0$, $\mathbf{v}|_{\Gamma} = 0$ и $\mathbf{n} \cdot \mathbf{v}|_{\Gamma} = 0$.

Пусть G = B, представим $\mathbf{v} \in \mathcal{B}$ в виде ряда

$$\mathbf{v} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=-n}^{n} [(\mathbf{v}, \mathbf{q}_{n,m,k}^+) \, \mathbf{q}_{n,m,k}^+(\mathbf{x}) + (\mathbf{v}, \mathbf{q}_{n,m,k}^-) \, \mathbf{q}_{n,m,k}^-(\mathbf{x})]$$

и подставим ряд в уравнение (31) при $\nabla p = 0$. Получим равенство

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (\lambda_{n,m}^2 - \lambda^2) \sum_{k=-n}^{n} [(\mathbf{v}, \mathbf{q}_{n,m,k}^+) \mathbf{q}_{n,m,k}^+(\mathbf{x}) + (\mathbf{v}, \mathbf{q}_{n,m,k}^-) \mathbf{q}_{n,m,k}^-(\mathbf{x})] = 0.$$

Если $\lambda_{n,m}^2 - \lambda^2 \neq 0$ для любых $n, m \in \mathbb{N}$, то $(\mathbf{v}, \mathbf{q}_{n,m,k}^{\pm}) = 0$ для любых $n, m \in \mathbb{N}$, $k \in [-n, n]$, ввиду ортогональности между базисными векторами $\mathbf{q}_{n,m,k}^{\pm}$. Из полноты системы $\{\mathbf{q}_{n,m,k}^{\pm}\}$ в \mathcal{B} вытекает, что $\mathbf{v}(\mathbf{x}) = 0$. Но это невозможно по условию. Следовательно, существует пара $n', m' \in \mathbb{N}$ такая, что $\lambda^2 = \lambda_{n',m'}^2$. Полагая

$$\mathbf{u}^{\pm}(\mathbf{x}) = \sum_{k=-n'}^{n'} (\mathbf{v}, \mathbf{q}_{n',m',k}^{\pm}) \, \mathbf{q}_{n',m',k}^{\pm}(\mathbf{x}),$$

получим разложение $\mathbf{v} = \mathbf{u}^+ + \mathbf{u}^-$. \square

Замечание. В случае $\mathbf{n}\cdot \nabla p|_S \neq 0$, очевидно, решения нет.

Таким образом, решение задачи 5 в шаре возможно тогда и только тогда, когда $\nabla p=0$, и сводится к отысканию решений $(\pm\lambda,\mathbf{u}^\pm)$ задачи 1 при $\lambda\neq 0$ таких, что $(\mathbf{u}^++\mathbf{u}^-)|_S=0$.

10. Формулы для собственных функций оператора Стокса в шаре. В формулах (12) положим $c_{\kappa}^{\pm} = c_{\kappa} \Phi_n(\lambda_{n,m}^{\mp} R)$:

$$(u_{\varphi} + iu_{\theta})_{\kappa}^{+} = c_{\kappa} \Phi_{n}(\lambda_{n,m}^{-}R)(\lambda_{n,m}^{+}r)^{-1} \Phi_{n}(\lambda_{n,m}^{+}r) \mathrm{H} Y_{n}^{k}(\theta, \varphi),$$

$$(u_{\varphi} + iu_{\theta})_{\kappa}^{-} = c_{\kappa} \Phi_{n}(\lambda_{n,m}^{+}R)(\lambda_{n,m}^{-}r)^{-1} \Phi_{n}(\lambda_{n,m}^{-}r) \mathrm{H} Y_{n}^{k}(\theta, \varphi).$$

Отсюда видим, что при r=R сумма $w_{\kappa}^++w_{\kappa}^-$ равна нулю для любых углов θ и φ и любой комплексной постоянной c_{κ} .

Функции $\psi_n(\lambda_{n,m}^{\pm}r), \, Y_n^k(\theta,\varphi)$ и числа $\lambda_{n,m}^{\pm}=\pm\rho_{n,m}/R$ вещественные. Согласно (9) $\psi_n(\lambda_{n,m}^-r)=(-1)^n\,\psi_n(\lambda_{n,m}^\pm r).$ Значит

$$\Phi_n(\lambda_{n,m}^- r) = \int_0^r e^{-i\lambda_{n,m}(r-t)} \psi_n(-\lambda_{n,m} t) t^{-1} dt = (-1)^n \overline{\Phi_n(\lambda_{n,m} r)}.$$

В п. 4 доказано, что $\Phi_n(\rho_{n,m})$ — действительное число. Поэтому радиальная составляющая вектора $\mathbf{v}_{\kappa} = \mathbf{u}_{\kappa}^+ + \mathbf{u}_{\kappa}^-$ исчезает:

$$c_{\kappa}(\lambda_{n,m}r)^{-1}[\Phi_{n}(\lambda_{n,m}^{-}R)\psi_{n}(\lambda_{n,m}^{+}r) - \Phi_{n}(\lambda_{n,m}^{+}R)\psi_{n}(\lambda_{n,m}^{-}r)]Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{r} =$$

$$= c_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}[\overline{\Phi}_{n}(\rho_{n,m}) - \Phi_{n}(\rho_{n,m})]\psi_{n}(\lambda_{n,m}r)Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{r} = 0, \quad (32)$$

а его касательная проекция равна

$$\operatorname{Re}\{c_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}\Phi_{n}(\rho_{n,m})[\Phi_{n}(\lambda_{n,m}r)-\overline{\Phi}_{n}(\lambda_{n,m}r)]\operatorname{H}Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{\varphi}\}+\\ +\operatorname{Im}\{c_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}\Phi_{n}(\rho_{n,m})[\Phi_{n}(\lambda_{n,m}r)-\overline{\Phi}_{n}(\lambda_{n,m}]\operatorname{H}Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{\theta}\}.$$
(33)

Выражение в квадратных скобках является мнимой величиной. Выбирая постоянную $c_{\kappa} = i \, b_{\kappa}$ также мнимой, $b_{\kappa} \in \mathbb{R}$, получаем вектор-функцию $\mathbf{v}_{\kappa} = \mathbf{u}_{\kappa}^{+} + \mathbf{u}_{\kappa}^{-}$, которая представляется в виде суммы двух взаимно ортогональных векторов:

$$\mathbf{v}_{\kappa} = b_{\kappa} \Phi_{n}(\rho_{n,m}) (\lambda_{n,m} r)^{-1} \operatorname{Im}[\Phi_{n}(\lambda_{n,m} r)] \times \\ \times (\operatorname{Re} \operatorname{HY}_{n}^{k}(\theta, \varphi) \mathbf{i}_{\varphi} + \operatorname{Im} \operatorname{HY}_{n}^{k}(\theta, \varphi) \mathbf{i}_{\theta}) = \\ = b_{\kappa} \Phi_{n}(\rho_{n,m}) (\lambda_{n,m} r)^{-1} \operatorname{Im}[\Phi_{n}(\lambda_{n,m} r)] \times \\ \times (\sin^{-1}\theta \partial_{\varphi} Y_{n}^{k}(\theta, \varphi) \mathbf{i}_{\varphi} + \partial_{\theta} Y_{n}^{k}(\theta, \varphi) \mathbf{i}_{\theta}). \quad (34)$$

Таким образом, $\mathbf{v}_{\kappa} = \mathbf{u}_{\kappa}^+ + \mathbf{u}_{\kappa}^-$ является вещественной собственной вектор-функцией оператора Стокса, отвечающей собственному значению $\nu \lambda_{n,m}^2$. Нормируя вектор-функции $\mathbf{u}_{\kappa}^{\pm}$ в $\mathbf{L}_2(B)$, получим собственные вектор-функции оператора Стокса в виде $\mathbf{v}_{\kappa} = \mathbf{q}_{\kappa}^+ + \mathbf{q}_{\kappa}^-$. Итак, доказана следующая теорема.

ТЕОРЕМА 5. Собственные значения $\mu_{n,m}$ задачи 5 равны $\nu \lambda_{n,m}^2$, где $\lambda_{n,m} = \rho_{n,m}/R$, R - paduyc шара, а числа $\rho_{n,m} - нули$ функций $\psi_n(z)$, m, $n \in \mathbb{N}$.

Соответствующие собственные вектор-функции \mathbf{v}_{κ} оператора Стокса являются суммой $\mathbf{q}_{\kappa}^{+} + \mathbf{q}_{\kappa}^{-}$ собственных вектор-функций ротора. В сферических координатах они представляются в виде суммы (34) двух векторов.

Вектор-функции \mathbf{v}_{κ} принадлежат пространству

$$\mathbf{V}^{1}(B) = {\mathbf{u} \in \mathbf{H}^{1}(B) : \text{div } \mathbf{u} = 0, \ \mathbf{u}|_{S} = 0, \ \|\mathbf{u}\|_{\mathbf{V}^{1}(B)} = \|\nabla \mathbf{u}\|_{\mathbf{L}_{2}(B)}}$$

и образуют в нём ортогональный базис [1].

11. Ряды Фурье операторов ротора и Стокса. Рассмотрим вектор-функции $\mathbf{v}_{\kappa}^{-} = \mathbf{q}_{\kappa}^{+} - \mathbf{q}_{\kappa}^{-}$, ортогональные $\mathbf{v}_{\kappa}^{+} \equiv \mathbf{v}_{\kappa} = \mathbf{q}_{\kappa}^{+} + \mathbf{q}_{\kappa}^{-}$ в $\mathbf{L}_{2}(B)$. Согласно формулам (32), (33), их радиальная и касательная составляющие следующие:

$$a_{\kappa}(\lambda_{n,m}r)^{-1}[\Phi_{n}(\lambda_{n,m}^{-}R)\psi_{n}(\lambda_{n,m}^{+}r) + \Phi_{n}(\lambda_{n,m}^{+}R)\psi_{n}(\lambda_{n,m}^{-}r)]Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{r} =$$

$$= 2a_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}\Phi_{n}(\rho_{n,m})\psi_{n}(\lambda_{n,m}r)Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{r},$$

$$\operatorname{Re}\{a_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}\Phi_{n}(\rho_{n,m})[\Phi_{n}(\lambda_{n,m}r)+\overline{\Phi}_{n}(\lambda_{n,m}r)]\operatorname{H}Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{\varphi}\}+\\ +\operatorname{Im}\{a_{\kappa}(-1)^{n}(\lambda_{n,m}r)^{-1}\Phi_{n}(\rho_{n,m})[\Phi_{n}(\lambda_{n,m}r)+\overline{\Phi}_{n}(\lambda_{n,m}]\operatorname{H}Y_{n}^{k}(\theta,\varphi)\mathbf{i}_{\theta}\}.$$

Они не принадлежат пространству $\mathbf{V}^1(B) \subset \mathbf{V}^0(B)$, но принадлежат пространству

$$\mathbf{V}^{0}(B) = {\mathbf{u} \in \mathbf{L}_{2}(B) : \text{div } \mathbf{u} = 0, \ \mathbf{n} \cdot \mathbf{u}|_{S} = 0, \ \|\mathbf{u}\|_{\mathbf{V}^{0}(B)} = \|\mathbf{u}\|_{\mathbf{L}_{2}(B)}}$$

и образуют в нём (вместе с $\{\mathbf{v}_{\kappa}^+\}$) ортогональный базис (мы предполагаем, что системы $\{\mathbf{q}_{\kappa}^+\}, \{\mathbf{q}_{\kappa}^-\}$ ортонормированы). В этом базисе разложение (25) вектор-функции $\mathbf{f}(\mathbf{x})$ из $\mathbf{V}^0(B)$ имеет вид

$$\mathbf{f} = 1/2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=-n}^{n} [(\mathbf{f}, \mathbf{v}_{n,m,k}^{+}) \mathbf{v}_{n,m,k}^{+}(\mathbf{x}) + (\mathbf{f}, \mathbf{v}_{n,m,k}^{-}) \mathbf{v}_{n,m,k}^{-}(\mathbf{x})].$$
(35)

Для вектор-функций $\mathbf{g}(\mathbf{x})$ из подпространства $\mathbf{V}^1(B)$ в $\mathbf{V}^0(B)$ разложение по собственным функциям $\mathbf{v}_{\kappa} = \mathbf{q}_{\kappa}^+ + \mathbf{q}_{\kappa}^-$ оператора Стокса имеет вид

$$\mathbf{g} = 1/2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=-n}^{n} [(\mathbf{g}, \mathbf{v}_{n,m,k}) \, \mathbf{v}_{n,m,k}(\mathbf{x})]. \tag{36}$$

Напомним, что суммирование рядов (35) и (36) идёт по n, m, для которых $0 < \rho_{n,m} < N$, а затем $N \to \infty$.

Автор выражает признательность и благодарность И. В. Воловичу и организаторам конференции «Математическая физика и её приложения — 2012» за приглашение к участию.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. О. А. Ладыженская, Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970. 288 с. [О. A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid. Moscow: Nauka, 1970. 288 pp.]
- S. Chandrasekhar, "On force-free magnetic fields" // Proc. Nat. Ac. Sci. USA, 1956. Vol. 42, no. 1. Pp. 1–5.
- 3. J. B. Taylor, "Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields" // Phys. Rev. Lett., 1974. Vol. 33, no. 19. Pp. 1139–1141.
- 4. *В. В. Козлов*, Общая теория вихрей. Ижевск: Удмурдский университет, 1998. 240 с. [*V. V. Kozlov*, General vortex theory. Izhevsk: Udmurtskiy Universitet, 1998. 240 pp.]

- 5. В. В. Пухначев, "Симметрии в уравнениях Навье—Стокса" // Успехи механики, 2006. Т. 4, № 1. С. 6–76. [V. V. Pukhnachev, "Symmetries in Navier—Stokes equations" // Uspehi Mehaniki, 2006. Vol. 4, no. 1. Pp. 6–76].
- 6. А. С. Махалов, В. П. Николаенко, "Глобальная разрешимость трехмерных уравнений Навье—Стокса с равномерно большой начальной завихренностью" // УМН, 2003. Т. 58, № 2(350). С. 79–110; англ. пер.: А. S. Makhalov, V. P. Nikolaenko, "Global solubility of the three-dimensional Navier-Stokes equations with uniformly large initial vorticity" // Russian Math. Surveys, 2003. Vol. 58, no. 2. Pp. 287–318.
- 7. V. Arnold, "Sur la topologie des écoulements stationnaires des fluides parfaits" // C. R. Acad. Sci. Paris, 1965. Vol. 261. Pp. 17–20.
- 8. M. Hénon, "Sur la topologie des lignes de courant dans un cas particulier" // C. R. Acad. Sci. Paris, 1966. Vol. 262. Pp. 312–314.
- 9. Р. С. Сакс, "О краевых задачах для системы rot $u + \lambda u = h$ " // Докл. Акад. наук СССР, 1971. Т. 199, № 5. С. 1022–1025; англ. пер.: R. S. Saks, "The boundary value problems for the system rot $u + \lambda u = h$ " // Soviet Math. Dokl., 1971. Vol. 12, no. 5. Pp. 1240–1244.
- 10. Р. С. Сакс, "О краевых задачах для системы rot $u + \lambda u = h$ " // Диффер. уравн., 1972. T. 8, № 1. C. 126–133. [R. S. Saks, "The boundary value problems for the system rot $u + \lambda u = h$ " // Differ. Uravn., 1972. Vol. 8, no. 1. Pp. 126–133].
- 11. Б. Р. Вайнберг, В. В. Грушин, "О равномерно неэллиптических задачах. I" // Матем. сб., 1967. Т. 72(114), № 4. С. 602–636; англ. пер.: В. R. Vainberg, V. V. Grushin, "Uniformly nonelliptic problems. I" // Math. USSR-Sb., 1967. Vol. 1, no. 4. Pp. 543–568.
- 12. Р. С. Сакс, "Спектр оператора вихря в шаре при условии непротекания и собственные значения колебаний упругого шара, закрепленного на границе" / В сб.: Труды конф. «Комплексный анализ, дифференциальные уравнения и смежные вопросы», IV. Прикладная математика. Уфа, 2000. С. 61–68. [R. S. Saks, "Spectrum of the curl operator in a ball under sliding conditions and eigenvalues for oscillations of an elastic ball fixed on the boundary" / In: Trudy Conf. Complex Analysis, Differential Equations, and Related Topics, IV. Ufa, 2000. Pp. 61–68].
- S. Chandrasekhar, P. S. Kendall, "On force-free magnetic fields" // Astrophys. J., 1957.
 Vol. 126. Pp. 457–460.
- 14. D. Montgomery, L. Turner, G. Vahala, "Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry" // Phys. Fluids, 1978. Vol. 21, no. 5. Pp. 757–764.
- 15. П. Е. Берхин, "Самосопряженная краевая задача для системы $*du + \lambda u = f"$ // Докл. Акад. наук СССР, 1975. Т. 222, № 1. С. 15–17; англ. пер.: Р. Е. Berhin, "A selfadjoint boundary-value problem for the system $*du + \lambda u = f"$ // Sov. Math., Dokl., 1975. Vol. 16, no. 1. Pp. 557–559.
- Z. Yoshida, Y. Giga, "Remark on spectra of operator rot" // Math. Z., 1990. Vol. 204, no. 2.
 Pp. 235–245.
- 17. R. Picard, "On a selfadjoint realization of curl and some of its applications" // Riceche di Matematica, 1998. Vol. XLVII. Pp. 153–180.
- 18. О. А. Ладыженская, "О построении базисов в пространствах соленоидальных векторных полей" / В сб.: Краебые задачи математической физики и смежные вопросы теории функций. 34 / Зап. научн. сем. ПОМИ, Т. 306. СПб.: ПОМИ, 2003. С. 92–106; англ. пер.: О. А. Ladyzhenskaya, "Construction of Bases in Spaces of Solenoidal Vector Fields" // J. Math. Sci. (N. Y.), 2005. Vol. 130, no. 4. Pp. 4827–4835.
- 19. *Р. С. Сакс*, "Решение спектральной задачи для оператора ротор и оператора Стокса с периодическими краевыми условиями" / В сб.: *Краевые задачи математической физики и смеженые вопросы теории функций.* 36 / Зап. научн. сем. ПОМИ, Т. 318. СПб.: ПОМИ, 2004. С. 246–276; англ. пер.: *R. S. Saks*, "Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions" // *J. Math. Sci. (N. Y.)*, 2006. Vol. 136, no. 2. Pp. 3794–3811.
- Р. С. Сакс, "Глобальные решения уравнений Навье–Стокса в равномерно вращающемся пространстве" // ТМФ, 2010. Т. 162, № 2. С. 196–215; англ. пер.: R. S. Saks, "Global

- solutions of the Navier–Stokes equations in a uniformly rotating space" // Theoret. and Math. Phys., 2010. Vol. 162, no. 2. Pp. 163–178.
- 21. *Р. С. Сакс*, "Задача Коши для уравнений Навье–Стокса, метод Фурье" // Уфимск. матем. эксури., 2011. Т. 3, № 1. С. 53–79; англ. пер.: *R. S. Saks*, "Cauchy problem for the Navier–Stokes equations, Fourier method" // Ufa Mathematical Journal, 2011. Vol. 3, no. 1. Pp. 51–77.
- P. C. Сакс, "Спектральные задачи для операторов ротора и Стокса" // ДАН, 2007.
 Т. 416, № 4. С. 446–450; англ. пер.: R. S. Saks, "Spectral problems for the curl and Stokes operators" // Dokl. Math., 2007. Vol. 76, no. 2. Pp. 724–728.
- 23. *Р. Темам*, Уравнения Навье–Стокса. Теория и численный анализ. М.: Мир, 1981. 408 с. [*R. Temam*, Navier–Stokes equations. Theory and numerical analysis. Moscow: Mir, 1981. 408 pp.]
- 24. В. С. Владимиров, Уравнения математической физики. М.: Наука, 1988. 512 с. [V. S. Vladimirov, The equations of mathematical physics. Moscow: Nauka, 1988. 512 pp.]
- H. Weyl, "The method of orthogonal projection in potential theory" // Duke Math., 1940.
 Vol. 7. Pp. 411–444.
- 26. *P. C. Carc*, "О свойствах обобщенно эллиптических псевдодифференциальных операторов на замкнутых многообразиях" / В сб.: *Краевые задачи математической физики и смежные вопросы теории функций.* 28 / Зап. научн. сем. ПОМИ, Т. 243. СПб.: ПОМИ, 1997. С. 215–269; англ. пер.: *R. S. Saks*, "On properties of the generalized elliptic pseudodifferential operators on closed manifolds" // *J. Math. Sci. (New York)*, 2000. Vol. 99, no. 1. Pp. 936–968.
- 27. В. А. Солонников, "Переопределенные эллиптические краевые задачи" / В сб.: Краевые задачи математической физики и смежные вопросы теории функций. 5 / Зап. научн. сем. ЛОМИ, Т.21. Л.: Изд-во «Наука», Ленинград. отд., 1971. С. 112–158. [V. A. Solonnikov, "Overdetermined elliptic boundary value problems" / In: Boundary-value problems of mathematical physics and related problems of function theory. Part 5 / Zap. Nauchn. Sem. LOMI, 21. Leningrad: "Nauka", Leningrad. Otdel., 1971. Pp. 112–158].

Поступила в редакцию 14/XI/2012; в окончательном варианте — 17/III/2013.

MSC: 35P05; 35Q30

THE EIGENFUNCTIONS OF CURL, GRADIENT OF DIVERGENCE AND STOKES OPERATORS. APPLICATIONS

R. S. Saks

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences 112, Chernyshevskiy st., Ufa, Russia, 450077.

E-mail: romen-saks@yandex.ru

We consider the spectral problems for curl, gradient of divergence and Stokes operators. The eigenvalues are defined by zeroes of half-integer order Bessel functions and derivatives thereof. The eigenfunctions are given in an explicit form by half-integer order Bessel functions and spherical harmonics. Their applications are described. The completeness of eigenfunctions of curl operator in $\mathbf{L}_2(B)$ is proved.

Key words: curl, gradient of divergence, Stokes operator, eigenvalues and eigenfunctions of operators, Fourier series.

Original article submitted 14/XI/2012; revision submitted 17/III/2013.

 $Romen\ S.\ Saks\ (Dr.\ Sci.\ (Phys.\ \&\ Math.)),\ Leading\ Researcher,\ Dept.\ of\ Computational\ Mathematics.$