УДК 539.1

РОЖДЕНИЕ БОЗОНОВ ХИГГСА В РЕДЖЕВСКОМ ПРЕДЕЛЕ КВАНТОВОЙ ХРОМОДИНАМИКИ НА БАК

М.А. Нефедов, В.А. Салеев

Самарский государственный университет, Россия, 443011, Самара, ул. Академика Павлова, 1.

E-mails: nefedovma@gmail.com, saleev@samsu.ru

В теории реджезованных партонов Л. Н. Липатова рассматривается рождение скалярного бозона Хиггса Н Стандартной модели и псевдоскалярного бозона Хиггса А минимальной суперсимметричной Стандартной модели в процессах слияния реджезованных глюонов ($RR \to H, A$) при энергиях Большого адронного коллайдера. Расчеты выполнены в лидирующем приближении по константе сильного взаимодействия α_s с учетом вкладов от t- и b-кварков в петлевые интегралы. Рассчитаны спектры по поперечному импульсу и зависимость полных сечений рождения от масс бозонов. Полученные результаты согласуются с предсказаниями, полученными ранее в коллинеарной партонной модели с учетом следующих поправок по α_s и эффектов суммирования вкладов, усиленных большими логарифмами, во всех порядках теории возмущений.

Ключевые слова: бозон Хиггса, Стандартная модель, минимальная суперсимметричная Стандартная модель, квантовая хромодинамика, теория реджезованных партонов.

Введение. Исследование процессов рождения бозонов Хиггса в Стандартной модели (СМ) и минимальной суперсимметричной Стандартной модели (МССМ) на Большом адронном коллайдере (БАК) рассматривается как центральная задача физики высоких энергий текущего десятилетия. Обнаружение на БАК стандартного скалярного бозона Хиггса будет блестящим подтверждением СМ и очередным триумфом квантовой калибровочной теории поля. Другая важная проблема, которую ожидается решить в экспериментах на БАК, это получение ответа на вопрос о месте суперсимметричных обобщений СМ. Первые указания на существование скалярной частицы с массой около 125 ГэВ были получены в 2012 году Коллаборациями ATLAS [1] и CMS [2]. Превышение сигнала над фоном составляет около 4 стандартных отклонений, что позволяет надеяться на достоверность полученных результатов. В этой связи ещё более актуальным становится моделирование процессов рождения бозонов Хиггса на БАК в теории реджезованных партонов (ТРП), которая позволяет учесть нетривиальные эффекты, связанные с особенностями квантовой хромодинамики (КХД) при высоких и сверхвысоких энергиях.

В СМ основной вклад в сечения рождения хиггсовского бозона с массой порядка $100 \div 500$ ГэВ в протон-протонных взаимодейсвиях при энергии протонов в системе центра масс на БАК $\sqrt{s} = 7 \div 14$ ТэВ дает процесс глюонглюонного слияния $g + g \rightarrow H$, идущий через кварковую петлю. Наибольший вклад в этот процесс дает петля *t*-кварка, т. к. вершина взаимодействия

Максим Александрович Нефедов, аспирант, каф. общей и теоретической физики. Владимир Анатольевич Салеев (д.ф.-м.н., проф.), профессор, каф. математического моделирования в механике.

бозона Хиггса СМ пропорциональна массе кварка в петле:

$$G_H = i\frac{m}{v}, \quad v = \frac{1}{(\sqrt{2}G_F)^{1/2}},$$

где G_F — константа Ферми. Величина $v \simeq 246$ ГэВ характеризует энергетический масштаб спонтанного нарушения электрослабой симметрии. Следующий по величине вклад дает процесс рождения глюонами хиггсовского бозона совместно с парой «кварк-антикварк», в основном с парой *b*-кварков ($b\bar{b}H$), затем идут процессы ассоциативного рождения бозона Хиггса с тяжелыми калибровочными бозонами (WH, ZH) и парой *t*-кварков ($t\bar{t}H$).

В связи с экспериментальными условиями, предполагающими, что на начальном этапе поиска бозона Хиггса на БАК статистика будет недостаточной для измерения дифференциальных распределений, имеющиеся расчеты в коллинеарной партонной модели (КПМ) в основном ориентированы на определение полного сечения рождения бозона Хиггса в СМ, которое в настоящее время известно как в следующем за лидирующим приближении по α_s (СЛП) с учётом конечной массы топ кварка [5], так и в следующем за СЛП КПМ в пределе $m_t \to \infty$ [6]. Для расчета распределений по поперечному импульсу (*p_T*) используется широкий класс генераторов Монте-Карло [7] в сочетании с процедурой суммирования больших логарифмических поправок в КПМ [7–9]. Сочетание этих методов позволяет получать стабильные предсказания для *p*_T-распределений, которых достаточно для целей феноменологии СМ. Однако в феноменологии МССМ мы вынуждены иметь дело с большим числом свободных параметров и делать предсказания при их варьировании в широкой области. Это приводит к существенным неопределенностям при использовании упомянутых выше подходов.

В МССМ спонтанное нарушение электрослабой симметрии обеспечивается введением двух дублетов хиггсовских полей, что приводит к возникновению двух скалярных (H и h), одного псевдоскалярного (A) и двух заряженных (H^{\pm}) бозонов Хиггса. Генерация масс верхних и нижних фермионов в SU(2)-дублете обеспечивается разными дублетами хиггсовских полей с различными вакуумными средними для этих дублетов v_t и v_b . В результате естественным параметром модели является отношение этих вакуумных средних:

$$\operatorname{tg}(\beta) = \frac{v_b}{v_t}.$$

Вершины взаимодействия псевдоскалярного бозона Хиггса МССМ с фермионами имеют вид

$$G_b^{(A)} = \frac{m_b}{v} \operatorname{tg}(\beta) \gamma_5, \quad G_t^{(A)} = \frac{m_t}{v} \operatorname{ctg}(\beta) \gamma_5.$$

Экспериментальные данные [4] дают следующие ограничения на свободные параметры MCCM: $10 < tg(\beta) < 30$ и $M_A > 100$ ГэВ; при таких значениях параметров вклады петель *t*- и *b*-кварков в амплитуду рождения бозона Хиггса *A* будут иметь одинаковый порядок величины. С другой стороны, неколлинеарные поправки к петле *b*-кварка могут быть значительны, т. к. поперечные импульсы реджезованных глюонов имеют величину порядка массы *b*-кварка, но много меньше массы *t*-кварка. В КПМ последнее обстоятельство приводит к необходимости непростого учета старших поправок теории возмущений, в то время как в ТРП основная часть этих поправок учитывается уже в лидирующем приближении.

1. Амплитуды рождения скалярного и псевдоскалярного бозонов Хиггса в ТРП. При высоких энергиях основной вклад в инклюзивные сечения рождения частиц дают процессы в мультиреджевской кинематике. В этих условиях начальные *t*-канальные партоны реджезуются, что является фундаментальным свойством всех калибровочных теорий поля. В работах Л. Н. Липатова сформулирована ТРП как обобщение КХД [11]. Лагранжиан ТРП содержит поля реджезованных глюонов и кварков, а их взаимодействие с Янг—Миллсовскими глюонами и кварками ПМ осуществляется при помощи индуцированных вершин [12]. В рассматриваемом процессе важна вершина перехода реджезованного глюона в Янг—Миллсовский $R \to g$:

$$\underset{\text{WWWQD}}{a;\pm q} \overset{b;\nu}{=} \Gamma_{ab}^{\pm\nu}(q) = i\delta_{ab}q^2(n^{\pm})^{\nu},$$

где $n^{+\mu} = 2P_1^{\mu}/\sqrt{S}, n^{-\mu} = 2P_2^{\mu}/\sqrt{S}, (n^+)^2 = (n^-)^2 = 0, (n^+n^-) = 2, 2(P_1P_2) = S, P_{1,2} - 4$ -импульсы сталкивающхся протонов.

Диаграммы ТРП в лидирующем приближении для процесса $RR \to H$ приведены на рис. 1.

Необходимо отметить, что для согласования правил Фейнмана в ТРП с правилами Фейнмана в стандартной КХД амплитуды в ТРП домножается на нормировочный множитель

$$\mathcal{N} = \frac{x_1 x_2 S}{4\sqrt{t_1 t_2}} \; ,$$

где $q_{1,2} = x_{1,2}P_{1,2} + q_{1,2T} - 4$ -импульсы реджезованных партонов, $q_T = (0, \mathbf{q}_T, 0), t_{1,2} = \mathbf{q}_{1,2T}^2$. В ТРП амплитуда рождения скалярного бозона Хиггса в слиянии двух реджезованых глюонов (упускаем константу связи и цветовую структуру) имеет вид

$$\mathcal{A}_{S}(t_{1}, t_{2}, M_{T}, M_{H}) = \frac{(-1)}{(2\pi)^{4}} \frac{x_{1}x_{2}P_{1\mu}P_{2\nu}}{\sqrt{t_{1}}\sqrt{t_{2}}} \times \left\{ \int d^{4}q \frac{Tr\left[\gamma^{\mu}(\hat{q}+m)\gamma^{\nu}(\hat{q}-\hat{q}_{2}+m)(\hat{q}+\hat{q}_{1}+m)\right]}{(q^{2}-m^{2})((q-q_{2})^{2}-m^{2})((q+q_{1})^{2}-m^{2})} + (q_{1} \leftrightarrow q_{2}, \mu \leftrightarrow \nu) \right\},$$
(1)

где *m* — масса кварка, а *M_H* — масса бозона Хиггса. Скалярные произведения, через которые выражается амплитуда, записываются в таком виде:

$$(q_1 + q_2)^2 = M_H^2$$
, $2(q_1q_2) = M_H^2 + t_1 + t_2$, $x_1x_2S = M_H^2 + \mathbf{p}_T^2 = M_T^2$

где $\mathbf{p}_T = \mathbf{q}_{1T} + \mathbf{q}_{2T}$. В рамках метода размерной регуляризации и процедуры Пассарино—Вельтмана [13] данная амплитуда может быть сведена к линейной комбинации базисных однопетлевых интегралов B_0 и C_0 с коэффициентами, зависящими от t_1 , t_2 . Выражения для этих коэффициентов являются весьма громоздкими, но они могут быть упрощены, если ввести новые функции:

$$D_{\pm}(t_1, t_2) = M_H^4 \pm 2M_H^2(t_1 + t_2) + (t_1 - t_2)^2.$$

Тогда выражение для амплитуды принимает вид

$$\mathcal{A}_{S} = \frac{(-i)mM_{T}^{2}}{8^{3}\pi^{2}M_{H}^{4}D_{+}^{2}\sqrt{t_{1}t_{2}}} \left\{ A \cdot C_{0}(M_{H}^{2}, -t_{1}, -t_{2}, m^{2}, m^{2}, m^{2}) + 8B \cdot B_{0}(M_{H}^{2}, m^{2}, m^{2}) - 4C(t_{1}, t_{2}) \cdot B_{0}(-t_{1}, m^{2}, m^{2}) - 4C(t_{2}, t_{1}) \cdot B_{0}(-t_{2}, m^{2}, m^{2}) + 32D \right\}, \quad (2)$$

где коэффициенты A, B, C, D имеют следующий вид:

$$\begin{split} A &= M_T^2 \left(D_- - D_+ - 4M_H^4 \right) \times \\ &\times \left(-8M_H^4 \left(3D_- + 5D_+ \right) - 2D_- D_+ + 3D_-^2 + 64m^2 D_+ M_H^2 - D_+^2 + 48M_H^8 \right) + \\ &\quad + 4D_+ M_H^2 \left(-8M_H^4 \left(D_- + 3D_+ \right) + 2D_- D_+ + D_-^2 + \\ &\quad + 64m^2 D_+ M_H^2 - 3D_+^2 + 16M_H^8 \right), \\ B &= M_H^2 \left(M_T^2 \left(24M_H^4 \left(D_- + D_+ \right) + 2D_- D_+ - 3D_-^2 + D_+^2 - 48M_H^8 \right) - \\ &\quad -4D_+ M_H^2 \left(D_- + 3D_+ - 4M_H^8 \right) \right), \\ C(t_1, t_2) &= \left(D_- - D_+ + 4M_H^2 (t_2 - t_1) \right) \left(3M_T^2 \left(D_- - 4M_H^4 \right) \left(M_H^2 - (t_2 - t_1) \right) + \\ &\quad + D_+ \left(M_H^2 \left(5M_T^2 - 4(t_2 - t_1) \right) + 4M_H^4 + 3M_T^2 (t_2 - t_1) \right) \right), \end{split}$$

$$D = M_H^2 D_+ \left(M_T^2 (D_- - 4M_H^4) + D_+ (4M_H^4 - M_T^2) \right).$$

Амплитуда (2) не имеет ультрафиолетовых расходимостей, сингулярные члены $\Delta_{\overline{MS}}$, входящие в определение функции B_0 , сокращаются. На стадии численных расчетов мы используем представление функции C_0 через комплексные дилогарифмы Li₂(z), полученное в работе [14]. Квадрат модуля амплитуды рождения СМ Хиггса в ЛП ТРП с учетом вклада *b*-кварка и опущенных ранее цветовых множителей и констант связи имеет вид

$$\overline{|\mathcal{A}_{SM}|^2} = \frac{\pi^2}{\sqrt{2}} G_F \alpha_s^2 \left| m_t \mathcal{A}_S(m=m_t) + m_b \mathcal{A}_S(m=m_t) \right|^2.$$

После перехода к пределу $t_{1,2} \to 0$ в (3) и усреднения по углу между поперечными импульсами партонов квадрат модуля амплитуды в ТРП переходит в соответствующий квадрат модуля амплитуды в КПМ [15]:

$$\overline{|\mathcal{A}_S^{CPM}|^2} = \frac{\alpha_s^2 G_F M_H^4 \sqrt{2}}{256\pi^2} \left| \tau \left(1 + (1-\tau)f(\tau) \right) \right|^2,$$

$$f(\tau) = -\frac{M_H^2}{2} C_0 \Big(M_H^2, 0, 0, \frac{M_H^2 \tau}{4}, \frac{M_H^2 \tau}{4}, \frac{M_H^2 \tau}{4} \Big), \quad \tau = \frac{4m^2}{M_H^2}.$$

Рассмотрим рождение псевдоскалярного бозона Хиггса МССМ. Амплитуда записывается аналогично (1):

$$\mathcal{A}_{PS} = \frac{(-1)}{(2\pi)^4} \frac{x_1 x_2 P_{1\mu} P_{2\nu}}{\sqrt{t_1} \sqrt{t_2}} \mathcal{A}_{\mathcal{PS}}^{\mu\nu}(-t_1, -t_2, M_A^2, m),$$

$$\mathcal{A}_{\mathcal{PS}}^{\mu\nu}(-t_1, -t_2, M_A^2, m) = \int d^4q \frac{\operatorname{Tr}\left[\gamma^{\mu}(\hat{q}+m)\gamma^{\nu}(\hat{q}-\hat{q}_2+m)\gamma_5(\hat{q}+\hat{q}_1+m)\right]}{(q^2-m^2)((q-q_2)^2-m^2)((q+q_1)^2-m^2)} + (q_1 \leftrightarrow q_2, \mu \leftrightarrow \nu).$$

Можно показать, что квадрат модуля амплитуды рождения бозона Хиггса A в ЛП ТРП приводится к виду

$$\begin{split} \overline{|\mathcal{A}_A|^2} &= \frac{2\alpha_s^2 M_T^4}{(8\pi v)^2} \sin^2(\phi) \left| m_b^2 C_0(M_A^2, -t_1, -t_2, m_b^2, m_b^2, m_b^2) \operatorname{tg}(\beta) + \right. \\ &\left. + m_t^2 C_0(M_A^2, -t_1, -t_2, m_t^2, m_t^2, m_t^2) \operatorname{ctg}(\beta) \right|^2, \end{split}$$

где ϕ — угол между векторами \mathbf{q}_{1T} и \mathbf{q}_{2T} . В коллинеарном пределе получаем

$$\overline{|\mathcal{A}_A^{CPM}|^2} = \frac{\alpha_s^2 M_A^4}{4(8\pi v)^2} \left| \tau_b f(\tau_b) \operatorname{tg}(\beta) + \tau_t f(\tau_t) \operatorname{ctg}(\beta) \right|^2,$$

где $\tau_{t,b} = 4m_{t,b}^2/M_H^2$, что совпадает с известным выражением в КПМ [16].

2. Сечения рождения бозона Хиггса СМ на БАК. Дифференциальное по поперечному импульсу (p_T) и быстроте (y) сечение рождения бозона Хиггса в слиянии реджезованных глюонов согласно теореме факторизации в ТРП записывается в виде [17]:

$$\frac{d^2\sigma}{dydp_T} = \frac{p_T}{M_T^4} \int_0^\infty dt_1 \int_0^{2\pi} d\phi_1 \Phi_g^p(x_1, t_1, \mu_F) \Phi_g^p(x_2, t_2, \mu_F) \overline{|\mathcal{A}_{\mathcal{SM}}|^2} ,$$

где

$$x_{1,2} = \frac{M_T}{\sqrt{S}} e^{\pm y}, \quad M_T = \sqrt{M_H^2 + p_T^2}, \quad t_2 = p_T^2 + t_1 - 2p_T \sqrt{t_1} \cos(\phi_1);$$

 ϕ_1 — угол между \mathbf{q}_{1T} и \mathbf{p}_T , а $\Phi(x, t, \mu_f^2)$ — глюонная неинтегрированная партонная функция распределения (НПФР). В наших расчетах мы будем использовать глюонную НПФР, полученную в работах Кимбера, Мартина и Рыскина [19], которая соответствует коллинеарной ПФР MRST2002 [18]. В ТРП мы учитываем лидирующие логарифмические поправки вида $\ln(\mu/\Lambda_{QCD})$ и $\ln(1/x)$, в то же время из расчётов в СЛП КПМ известно, что нелогарифмические поправки также дают большой вклад в сечение. Эти вклады обусловлены петлевыми глюонными поправками к вершине рождения Хиггса и могут быть эффективно учтены при помощи умножения сечения на *K*-фактор:

$$K = \exp\left[\frac{\pi}{2}C_A \alpha_s(\mu_R)\right] ,$$

где $C_A = N_c = 3$. Данный *K*-фактор получается из аналитического продолжения формфактора Судакова во времениподобную область переданных импульсов (см., например, [20] и имеющиеся там ссылки).

При вычислении сечений мы используем следующий выбор масштабов перенормировки и факторизации: $\mu_R = \mu_F = \xi M_T$, где для центральной кривой на графиках соответствует прямая $\xi = 1$, а коридор теоретической неопределённости вносимой выбором масштаба, строится путём варьирования $1/2 < \xi < 2$.

На рис. 2 приведено сравнение наших предсказаний (сплошная гистограмма и сплошная заливка) для p_T -спектра бозонов Хиггса при $\sqrt{s} = 7$ ТэВ и $M_H = 120$ ГэВ с учетом вклада *b*-кварка с результатами СЛП КПМ методом Монте—Карло, взятыми из работы [7]. Полоса неопределенности с вертикальной штриховкой соответствует результату генератора Монте—Карло Руthia с программным кодом POWHEG [10]. Полоса неопределенности с горизонтальной штриховкой показывает результат расчета в СЛП КПМ в программе HqT [9].

Рис. 2. показывает, что расчет в ЛП ТРП удовлетворительно воспроизводит результаты СЛП КПМ, особенно если принять во внимание степень неопределенности последних. Результат ЛП ТРП менее устойчив по отношению к варьированию масштабов перенормировки и факторизации, что, впрочем, характерно для расчетов в лидирующем приближении.

Предсказания ЛП ТРП и СЛП КПМ для зависимости полного сечения рождения бозона Хигтса СМ от его массы в наиболее интересной для эксперимента области 120 < M_H < 130 ГэВ отличаются не более чем на 25%, что является хорошим аргументом в пользу применения расчетов в ЛП ТРП для оценки различных дифференциальных сечений. В частности мы можем сделать предсказание для p_T -спектра бозона Хиггса с массой 126 ГэВ при $\sqrt{s} = 14$ ТэВ, который может быть измерен после модернизации БАК до этой энергии (рис. 3).

3. Сечения рождения псевдоскалярного бозона Хиггса МССМ. На рис. 4 приведено сравнение наших предсказаний для полного сечения рождения бозона Хиггса МССМ A в ЛП ТРП при $tg(\beta) = 3$ (кривая 1) и $tg(\beta) = 30$

(кривая 3) с соответствующими результатами, полученными в СЛП КПМ [16] (кривые 2 и 4). Видно, что при $tg(\beta) = 3 \Pi \Pi$ ТРП хорошо воспроизводит результат СЛП КПМ практически для всех значений массы бозона, в то время как для $tg(\beta) = 30$ при больших значениях массы наш подход предсказывает несколько меньшее сечение, чем СЛП КПМ. Однако кривая КПМ лежит в пределах полосы теоретической неопределенности наших расчетов, что позволяет надеяться на разумное согласие предсказаний и для спектров по поперечному импульсу с результатами КПМ.

Результаты расчетов дифференциального эффективного сечения рож-

дения псевдоскалярного бозона Хиггса МССМ в процессе слияния реджезованных глюонов в ЛП ТРП для $\sqrt{s} = 14$ ТэВ при значениях $M_A = 126$, 200, 500, 1000 ГэВ приведены на рис. 5 (*a*, *б*, *в*, *г*, соответственно). Сплошная кривая соответствует значению $tg(\beta) = 3$, а штриховая кривая $-tg(\beta) = 30$. Из рисунков видно, что спектры при большом и малом значениях $tg(\beta)$ имеют разный наклон. В случае измерения данных спектров на эксперименте этот факт можно использовать для более точного определения значения этого параметра.

Также можно заключить, что при увеличении M_A сечение, соответствующее $tg(\beta) = 30$, становится меньше, чем сечение для $tg(\beta) = 3$. Это связано с влиянием интерференции t и b-кварковых вкладов, которая становится деструктивной при $M_A \gg m_{t,b}$ в силу свойств функции C_0 .

Заключение. Эксперименты на БАК в тэвной области энергий показывают, что доминирующую роль в процессах рождения частиц в центральной области по быстроте играют подпроцессы в мультиреджевской кинематике, для описания которых необходимо использовать ТРП вместо КПМ. Результаты этой работы, а также наших расчетов спектров чармониев [21], *b*-кварковых струй [22], адронных струй и прямых фотонов [23] подтверждают это наблюдение.

Работа выполнена при поддержке РФФИ (проекты №№ 11–02–00769-а, 12–02–31701-мол-а).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- ATLAS Collaboration, G. Aad, et. al., "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC" // Phys. Lett. B., 2012. Vol. 716, no. 1. Pp. 1–29, arXiv: 1207.7214 [hep-ex].
- CMS Collaboration, S. Chatrchyan, et. al., "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC" // Phys. Lett. B., 2012. Vol. 716, no. 1. Pp. 30– 61, arXiv: 1207.7235 [hep-ex].
- J. Baglio, A. Djouadi, R. M. Godbole, "The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties?" // Phys. Lett. B, 2012. Vol. 716, no. 1. Pp. 203–207, arXiv: 1207.1451 [hep-ph].
- ATLAS Collaboration, G. Aad, et. al., "Search for neutral MSSM Higgs bosons decaying to τ⁺τ⁻ pairs in proton-proton collisions at √s = 7 TeV with the ATLAS detector" // Phys. Lett. B, 2011. Vol. 705, no. 3. Pp. 174–192, arXiv: 1107.5003 [hep-ex].
- M. Spira, A. Djouadi, D. Graudenz, P. M. Zerwas, "Higgs boson production at the LHC" // Nucl. Phys. B., 1995. Vol. 453, no. 1–2. Pp. 17–82, arXiv: hep-ph/9504378.
- C. Anastasiou, K. Melnikov, "Higgs boson production at hadron colliders in NNLO QCD" // Nucl. Phys. B., 2002. no. 1–2. Pp. 220–256, arXiv: hep-ph/0207004.
- LHC Higgs Cross Section Working Group, S. Dittmaier, et. al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions: to be submitted to CERN Report, 2012. 275 pp., arXiv: hep-ph/1201.3084.
- Yu. L. Dokshitzer, D. I. Dyakonov, S. I. Troyan, "Hard processes in quantum chromodynamics" // Phys. Rep., 1980. Vol. 58, no. 5. Pp. 269–395.
- G. Bozzi, S. Catani, D. de Florian, M. Grazzini, "The q_T spectrum of the Higgs boson at the LHC in QCD perturbation theory" // Phys. Lett. B, 2003. Vol. 564, no. 1–2. Pp. 65–72, arXiv: hep-ph/0302104.
- S. Frixione, P. Nason, C. Oleari, "Matching NLO QCD computations with parton shower simulations: the POWHEG method" // JHEP, 2007. Vol. 2007, no. 11, 070.
- L. N. Lipatov, "Gauge invariant effective action for high energy processes in QCD" // Nucl. Phys. B., 1995. Vol. 452, no. 1–2. Pp. 369–397, arXiv: hep-ph/9502308.
- E. N. Antonov, L. N. Lipatov, E. A. Kuraev, I. O. Cherednikov, "Feynman rules for effective Regge action" // Nucl. Phys. B., 2005. Vol. 721, no. 1–3. Pp. 111–135, arXiv: hep-ph/0411185.
- G. Passarino, M. Veltman, "One-loop corrections for e⁺e⁻ annihilation into μ⁺μ⁻ in the Weinberg model" // Nucl. Phys. B., 1979. Vol. 160, no. 1. Pp. 151–207.
- 14. О. Л. Веретин, О. В. Теряев, Аксиальная аномалия при произвольных виртуальностях: Препринт ОИЯИ № Р2-94-483. Дубна: ОИЯИ, 1994. 12 с. [О. L. Veretin, O. V. Teryaev, Axial anomaly at the arbitrary external momenta: JINR Preprint P2-94-483. Dubna: JINR, 1994. 12 pp.]

- A. Djouadi, "The anatomy of electroweak symmetry breaking: Tome I: The Higgs boson in the Standard Model" // Phys. Rept., 2008. Vol. 457, no. 1–4. Pp. 1–216, arXiv: hep-ph/0503172.
- A. Djouadi, "The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model" // Phys. Rept., 2008. Vol. 459, no. 1–6. Pp. 1–241, arXiv: hep-ph/0503173.
- 17. B. L. Ioffe, V. S. Fadin, L. N. Lipatov, Quantum Chromodynamics, Perturbative and Nonperturbative Aspects. Cambridge, UK: Cambridge University Press, 2010. 596 pp.
- A. D. Martin, R. G. Roberts, W. J. Stirling, R. S. Thorne, "NNLO global parton analysis" // Phys. Lett. B, 2002. Vol. 531, no. 3–4. Pp. 216–224, arXiv:hep-ph/0201127.
- M. A. Kimber, A. D. Martin, M. G. Ryskin, "Unintegrated parton distributions" // Phys. Rev. D, 2001. Vol. 63, no. 11, 114027. 10 pp., arXiv: hep-ph/0101348.
- G. Watt, A. D. Martin, M. G. Ryskin, "Unintegrated parton distributions and electroweak boson production at hadron colliders" // Phys. Rev. D, 2004. Vol. 70, no. 1, 014012. 9 pp., arXiv: hep-ph/0309096.
- V. A. Saleev, M. A. Nefedov, A. V. Shipilova, "Prompt J/ψ production in the Regge limit of QCD: From the Tevatron to the LHC" // Phys. Rev. D, 2012. Vol. 85, no. 7, 074013. 9 pp., arXiv: 1201.3464 [hep-ph].
- V. A. Saleev, A. V. Shipilova, "Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons" // Phys. Rev. D, 2012. Vol. 86, no. 3, 034032. 9 pp., arXiv: 1201.4640 [hep-ph].
- B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko, "Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC" // Phys. Rev. D, 2011. Vol. 84, no. 7, 074017. 8 pp.

Поступила в редакцию 15/XI/2012; в окончательном варианте $=27/\mathrm{III}/2013.$

MSC: 81V05, 81T60

HIGGS BOSON PRODUCTION AT THE LHC IN THE FRAMEWORK OF REGGE LIMIT OF QUANTUM CHROMODYNAMICS

M. A. Nefedov, V. A. Saleev

Samara State University, 1, Academician Pavlov st., Samara, 443011, Russia. E-mails: nefedovma@gmail.com, saleev@samsu.ru

In the framework of the L. N. Lipatov Reggeized Partons Theory we consider production of scalar Higgs boson H of the Standard Model and pseudoscalar Higgs boson A of the Minimal Supersymmetric Standard Model in the Reggeized gluon fusion at the energy range of the Large Hadron Collider. Working in the leading order approximation in the strong coupling constant α_s we take into account contributions from t- and b-quark in the loop integrals. We have calculated transverse momentum boson spectra and total cross sections as a function of boson mass. The obtained results agree with predictions which have been obtained earlier in the collinear Parton Model with the next to leading order in α_s corrections and all-order resummation of large logarithmical corrections.

Key words: Higgs boson, Standard Model, Minimal Supersymmetric Standard Model, Quantum Chromodynamics, Theory of Reggeized Partons.

Original article submitted 15/XI/2012; revision submitted 27/III/2013.

Maxim A. Nefedov, Postgraduate Student, Dept. of General and Theoretical Physics. Vladimir A. Saleev (Dr. Sci. (Phys. & Math.)), Professor, Dept. of Mathematical Modeling in Mechanics.