УДК 519.634

# ПРИМЕНЕНИЕ МОДИФИЦИРОВАННОГО МЕТОДА ГРАНИЧНЫХ ЭЛЕМЕНТОВ ДЛЯ РЕШЕНИЯ ПАРАБОЛИЧЕСКИХ ЗАДАЧ

### В. П. Федотов, О. А. Нефедова

Институт машиноведения УрО РАН, 620219, Екатеринбург, ул. Комсомольская, 34. E-mails: fedotov\_vp@mail.ru; nefedova@imach.uran.ru

Предложен алгоритм для нахождения численно-аналитического решения задач параболического типа (диффузии и теплопроводности). В рамках алгоритма решение задачи осуществляется в три этапа. На первом этапе решается одномерная задача для базового отрезка, которая имеет самостоятельное значение, и в тоже время служит основой для второго этапа. На втором этапе рассматривается двумерная задача, ее решение выполняется с использованием модифицированного метода граничных элементов. На третьем этапе применяется приём пошагового интегрирования во времени.

**Ключевые слова:** линейные параболические уравнения, модифицированный метод граничных элементов, численно-аналитическое интегрирование.

Введение. Разработан численно-аналитический алгоритм решения задач параболического типа, в основе которого лежит модифицированный метод граничных элементов (МГЭ). В алгоритме также предложена оригинальная аппроксимация неизвестных граничных функций, когда при решении двумерной задачи в качестве аппроксимирующих функций используются решения одномерной задачи, выраженные через узловые граничные значения и функции влияния. В целях сокращения времени вычислений одномерная задача решается для удобного базового отрезка. Такая аппроксимация, включающая в себя два вложенных друг в друга алгоритма, позволяет получить для двумерной области аналитическое решение, наиболее близкое к действительному.

1. Постановка задачи и её слабая формулировка. В работе рассматриваются однородные нестационарные дифференциальные уравнения параболического типа для задач диффузии и теплопроводности при заданных начальных и граничных условиях:

$$\Delta p(x,t) - \frac{1}{\lambda} \frac{\partial p(x,t)}{\partial t} = 0, \quad x \in \Omega;$$

$$p(x,t_0) = p_0^*(x), \quad x \in \Omega;$$

$$p(x_0,t) = p^*(x_0,t), \quad x_0 \in S_1;$$

$$u(x_0,t) = u^*(x_0,t), \quad x_0 \in S_2.$$
(1)

Здесь  $\Delta = \partial^2/\partial x_1^2 + \partial^2/\partial x_2^2$ — оператор Лапласа; p(x,t)— температура или концентрация примеси в точке  $x(x_1, x_2)$  в момент времени  $t \ge t_0$ ;  $t_0$ — начальный момент времени;  $\lambda$ — не зависящий от координат и времени физический

Владимир Петрович Федотов (д.т.н., проф.), главный научный сотрудник, лаб. прикладной механики. Ольга Анатольевна Нефедова, младший научный сотрудник, лаб. прикладной механики.

параметр;  $\Omega$  — исследуемая область;  $S = S_1 \cup S_2$  — гладкая граница области  $\Omega$ ;  $p_0^*(x)$ ,  $p^*(x_0,t)$  и  $u^*(x_0,t)$  — известные функции;  $u(x,t) = -\partial p(x,t)/\partial n(x)$  — тепловой или диффузионный поток через границу с внешней нормалью n(x). Потребуем выполнения (1) в целом по области  $\Omega$  с весом G и учтём изменение температуры (концентрации примеси) во времени:

$$\int_{t_0}^{t_K} \int_{\Omega} \left[ \Delta p(x,t) - \frac{1}{\lambda} \frac{\partial p(x,t)}{\partial t} \right] G(\xi, x, t_K, t) d\Omega(x) dt = 0,$$
(2)

где  $t_K$  — момент наблюдения;  $\xi(\xi_1, \xi_2)$  — произвольная точка области. В соответствии с методом граничных элементов [1] в качестве весовой функции  $G(\xi, x, t_K, t)$  выберем фундаментальное решение исходного уравнения. Фундаментальное решение  $G(\xi, x, t_K, t)$  описывает реакцию в точке x в момент времени  $t_K$  на действие единичного точечного источника вида дельта-функции Дирака  $\delta(\xi, x, t_K, t)$ , помещенного в точку  $\xi$  неограниченной области в момент времени t, и определяется из уравнения

$$\Delta G(\xi, x, t_K, t) - \frac{1}{\lambda} \frac{\partial G(\xi, x, t_K, t)}{\partial t} = \delta(\xi, x, t_K, t).$$
(3)

Решение уравнения (3) известно:

$$G^*(\xi, x, t_K, t) = \frac{1}{4\pi\lambda\tau} \exp\left(-\frac{r^2}{4\lambda\tau}\right).$$

Здесь  $\tau = t_K - t; r^2 = z_i z_i; z_i = x_i - \xi_i, i = 1, 2.$ 

Направленный поток F\*, обусловленный G\*, задаётся выражением

$$F^*(\xi, x, t_K, t) = -\frac{\partial G^*}{\partial n} = -\frac{\partial G^*}{\partial x_i} n_i = \frac{G^* z_i n_i}{2\lambda\tau} = \frac{d}{8\pi\lambda^2\tau^2} \exp\left(-\frac{r^2}{4\lambda\tau}\right),$$

где  $n_i(x)$  — компоненты единичного вектора внешней нормали к линейному элементу, проходящему через точку  $x(x_1, x_2)$ ;  $d = (x_1 - \xi_1)n_1 + (x_2 - \xi_2)n_2$ .

В общем случае *m*-мерного пространства зависящее от времени фундаментальное решение имеет вид

$$G^*(\xi, x, t_K, t) = \frac{1}{(4\pi\lambda\tau)^{m/2}} \exp\left(-\frac{r^2}{4\lambda\tau}\right) H(\tau),$$

где  $H(\tau) - функция Хевисайда.$ 

Проинтегрируем выражение (2) по частям дважды по x, а затем выполним интегрирование по t. Полученное выражение для температуры (концентрации примеси)  $p(\xi, t_K)$  в произвольный момент времени  $t_K$  в произвольной внутренней точке  $\xi$  области  $\Omega$  имеет вид

$$p(\xi, t_K) = -\lambda \int_{t_0}^{t_K} \int_S u(x, t) G^*(\xi, x, t_K, t) dS(x) dt + \lambda \int_{t_0}^{t_K} \int_S p(x, t) F^*(\xi, x, t_K, t) dS(x) dt + \int_{\Omega} p_0^*(x) G^*(\xi, x, t_K, t_0) d\Omega(x).$$
(4)

Граничное интегральное уравнение для задачи (1) запишется так:

$$\begin{aligned} \frac{1}{2}p(x_0, t_K) &= -\lambda \int_{t_0}^{t_K} \int_S u(x, t) G^*(x_0, x, t_K, t) dS(x) dt + \\ &+ \lambda \int_{t_0}^{t_K} \int_S p(x, t) F^*(x_0, x, t_K, t) dS(x) dt + \int_{\Omega} p_0^*(x) G^*(x_0, x, t_K, t_0) d\Omega(x). \end{aligned}$$

**2.** Одномерный случай. В качестве области  $\Omega$  рассмотрим базовый отрезок длины L, который лежит на оси абсцисс и один из концов которого совпадает с началом координат. Тогда граница S области  $\Omega$  вырождается до двух точек: 0 и L. Перепишем интегральное уравнение (4) в предположении, что  $p_0^* = \text{const:}$ 

$$p(\xi, t_K) = \lambda \int_{t_0}^{t_K} \left[ -u(x)G^*(\xi, x, t_K, t) + p(x)F^*(\xi, x, t_K, t) \right]_0^L dt + p_0^* \int_0^L G^*(\xi, x, t_K, t_0) dx.$$
 (5)

Для получения аналитического решения уравнения (5) используем алгоритм, предложенный в [2]. Рассмотрим плоскость  $\{x,t\}$  и одномерную однородную область, простирающуюся от x = 0 до x = L, с заданными вдоль неё начальными условиями  $p_0^* = \text{const.}$  Другими границами являются прямые, параллельные оси времени, вдоль которых заданы две постоянные граничные величины. Принимая время t в качестве параметра, две неизвестные граничные величины также предполагаем постоянными во времени. Соотношение (5) запишется в виде

$$p(\xi, t_K) = -\lambda \left[ u_2 \int_{t_0}^{t_K} G^*(\xi, L, t_K, t) dt - u_1 \int_{t_0}^{t_K} G^*(\xi, 0, t_K, t) dt \right] + \lambda \left[ p_2 \int_{t_0}^{t_K} F^*(\xi, L, t_K, t) dt - p_1 \int_{t_0}^{t_K} F^*(\xi, 0, t_K, t) dt \right] + p_0^* \int_0^L G^*(\xi, x, t_K, t_0) dx, \quad (6)$$

где  $u_1 = u(0^+), u_2 = u(L^-), p_1 = p(0^+), p_2 = p(L^-).$ 

Интегралы по времени и пространственной переменной в правой части выражения (6) были вычислены аналитически, затем точка  $\xi$  поочередно устремлялась к точкам 0 и L. В результате была получена система двух уравнений для нахождения двух неизвестных граничных значений.

Функциональная зависимость  $p(\xi, t_K)$  для произвольной точки отрезка [0, L] принимает вид

$$p(\xi, t_K) = -u_2 \left[ \sqrt{\frac{\lambda(t_K - t_0)}{\pi}} \exp\left(\frac{-(L - \xi)^2}{4\lambda(t_K - t_0)}\right) - \left(\frac{L - \xi}{2}\right) \operatorname{erfc}\left(\frac{(L - \xi)}{2\sqrt{\lambda(t_K - t_0)}}\right) \right] + 95$$

$$+ u_1 \left[ \sqrt{\frac{\lambda(t_K - t_0)}{\pi}} \exp\left(\frac{-\xi^2}{4\lambda(t_K - t_0)}\right) - \frac{\xi}{2} \operatorname{erfc}\left(\frac{\xi}{2\sqrt{\lambda(t_K - t_0)}}\right) \right] + \frac{p_2}{2} \operatorname{erfc}\left(\frac{(L - \xi)}{2\sqrt{\lambda(t_K - t_0)}}\right) + \frac{p_1}{2} \operatorname{erfc}\left(\frac{\xi}{2\sqrt{\lambda(t_K - t_0)}}\right) + \frac{1}{2} p_0^* \left[ \operatorname{erf}\left(\frac{(L - \xi)}{2\sqrt{\lambda(t_K - t_0)}}\right) + \operatorname{erf}\left(\frac{\xi}{2\sqrt{\lambda(t_K - t_0)}}\right) \right].$$
(7)

Здесь  $\operatorname{erfc}(y) = 1 - \operatorname{erf}(y), \operatorname{erf}(y) = \left(2/\sqrt{\pi}\right) \int_0^y \exp\left(-z^2\right) dz - \phi$ ункция ошибок.

Для нахождения функциональной зависимости  $u(\xi, t_K)$  используются формула для определения потока  $u(x,t) = -\partial p(x,t)/\partial n(x)$  и свойство симметрии функции  $G^*$  относительно x и  $\xi$ :

$$u(\xi, t_K) = \lambda \int_{t_0}^{t_K} \left[ u(x) \frac{\partial G^*(\xi, x, t_K, t)}{\partial \xi} - p(x) \frac{\partial F^*(\xi, x, t_K, t)}{\partial \xi} \right]_0^L dt - p_0^* \int_0^L \frac{\partial G^*(\xi, x, t_K, t_0)}{\partial \xi} dx, \quad (8)$$

или, после аналитического интегрирования правой части выражения (8),

$$u(\xi, t_K) = \frac{u_2}{2} \operatorname{erfc}\left(\frac{(L-\xi)}{2\sqrt{\lambda(t_K-t_0)}}\right) + \frac{u_1}{2} \operatorname{erfc}\left(\frac{\xi}{2\sqrt{\lambda(t_K-t_0)}}\right) - \frac{p_2}{2\sqrt{\pi\lambda(t_K-t_0)}} \exp\left(\frac{-(L-\xi)^2}{4\lambda(t_K-t_0)}\right) + \frac{p_1}{2\sqrt{\pi\lambda(t_K-t_0)}} \exp\left(\frac{-\xi^2}{4\lambda(t_K-t_0)}\right) + \frac{p_0^*}{2\sqrt{\pi\lambda(t_K-t_0)}} \left[\exp\left(-\frac{(L-\xi)^2}{4\lambda(t_K-t_0)}\right) - \exp\left(-\frac{\xi^2}{4\lambda(t_K-t_0)}\right)\right].$$
(9)

Таким образом, решение одномерной задачи для базового отрезка, полученное на первом этапе, записывается в аналитическом виде и определяется граничными условиями на концах отрезка.

**3.** Двумерный случай и модифицированный метод граничных элементов. Разобьём границу  $S = S_1 \cup S_2$  двумерной области  $\Omega$  на конечное число отрезков  $[a_{j-1}, a_j], j = 1, 2, \ldots, N + M$ , в предположении, что на одной части границы  $S_1 = \{[a_{j-1}, a_j], j = 1, 2, \ldots, N\}$  задана температура или концентрация примеси, а на другой части  $S_2 = \{[a_{j-1}, a_j], j = N + 1, N + 2, \ldots, N + M\}$  задан тепловой или диффузионный поток. Тогда интегральное уравнение (4) перепишется в виде

$$p(\xi, t_K) = \lambda \int_{t_0}^{t_K} \sum_{j=1}^N \int_{a_{j-1}}^{a_j} \left( -u^{(j)}(x, t)G^*(\xi, x, t_K, t) + p^{(j)*}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \sum_{j=N+1}^{N+M} \int_{a_{j-1}}^{a_j} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \sum_{j=N+1}^{N+M} \int_{a_{j-1}}^{a_j} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)*}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)F^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)G^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)G^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)G^*(\xi, x, t_K, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)}(x, t)G^*(\xi, x, t_K, t) + p^{(j)}(x, t)G^*(\xi, t)G^*(\xi, t) \right) dxdt + \lambda \int_{t_0}^{t_K} \left( -u^{(j)}(x, t)G^*(\xi, t)G^$$

+ 
$$\int_{\Omega} p_0^*(x) G^*(\xi, x, t_K, t_0) d\Omega(x).$$
 (10)

Здесь звездочкой обозначены известные величины и введены следующие обозначения:  $u^{(j)}(x,t) = u(x,t), \ p^{(j)*}(x,t) = p^*(x,t)$  при  $x \in [a_{j-1},a_j] \in S_1;$  $u^{(j)*}(x,t) = u^*(x,t), \ p^{(j)}(x,t) = p(x,t)$  при  $x \in [a_{j-1},a_j] \in S_2.$ 

Интеграл по  $\Omega$ в правой части уравнения (10) преобразуем с помощью второго тождества Грина к граничному интегралу

$$\int_{\Omega} p_0^*(x) G^*(\xi, x, t_K, t_0) d\Omega(x) = \frac{1}{2\pi} \int_S \left\{ \frac{d}{r^2} \exp\left(-\frac{r^2}{4\lambda(t_K - t_0)}\right) p_0^*(x) + \frac{1}{2} E_1\left(\frac{r^2}{4\lambda(t_K - t_0)}\right) u_0^*(x) \right\} dS(x), \quad (11)$$

что возможно для гармонической функции  $p_0^*(x)$ . Здесь

$$E_1(y) = \int_{-\infty}^{y} (\exp(z)/z) dz, \quad u_0^*(x) = -\partial p_0^*(x)/\partial n(x).$$

Для аппроксимации неизвестных граничных условий в уравнении (10) используются функциональные зависимости (7) и (9).

Модифицированный метод граничных элементов [3] позволяет заменить произвольное граничное разбиение  $[a_{j-1}, a_j]$  на базовый отрезок [0, L]. Выполним преобразование координат для разбиения  $[a_{j-1}, a_j]$ , при котором длина отрезка не изменяется, точка  $a_{j-1}$  отображается в начало координат, а точка  $a_j$  отображается в точку L(L, 0). Такое преобразование является комбинацией параллельного переноса и поворота отрезка на угол  $\varphi$  (угол наклона отрезка к оси абсцисс). Тогда произвольная точка на плоскости  $x(x_1, x_2)$  отображается в точку  $\overline{x}(\overline{x_1}, \overline{x_2})$ , связанную с ней соотношением

$$x = B\overline{x} + C, \quad \overline{x} = B^{-1}(x - C),$$

где B— матрица поворота; C— вектор координат той точки граничного отрезка, которая при преобразовании отображается в начало координат. При таком преобразовании исследуемая система объектов жестко перемещается как единое целое. Поскольку величина p—скалярное поле в задаче (1), то справедливы равенства

$$\int_{a_{j-1}}^{a_j} u(x,t)G^*(\xi, x, t_K, t)dx = \int_0^L \overline{u}(x,t)G^*(\overline{\xi}, x, t_K, t)dx,$$

$$\int_{a_{j-1}}^{a_j} p(x,t)F^*(\xi, x, t_K, t)dx = \int_0^L \overline{p}(x,t)F^*(\overline{\xi}, x, t_K, t)dx.$$
(12)

Здесь  $\overline{\xi} = B^{-1}(\xi - C).$ 

Запишем вид функции влияния и ее нормальной производной для базового отрезка [0, L], на котором  $\overline{x}_2 = 0$ ,  $n_1(x) = 0$ ,  $n_2(x) = -1$ :

$$G^*(\overline{\xi}, x, t_K, t) = \frac{1}{4\pi\lambda\tau} \exp\left(-\frac{(x-\overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda\tau}\right),$$
  

$$F^*(\overline{\xi}, x, t_K, t) = \frac{\overline{\xi}_2}{8\pi\lambda^2\tau^2} \exp\left(-\frac{(x-\overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda\tau}\right).$$
(13)

Подставим выражения (7), (9), (13) в уравнение (10) и учтём равенства (11) и (12). В результате получим

$$p(\xi, t_K) = \int_{t_0}^{t_K} \sum_{j=1}^{N} \left[ -c_1 \left( u_{j-1} I_1^{(\overline{\xi})} + u_j I_2^{(\overline{\xi})} \right) - c_2 \left( p_{j-1}^* I_3^{(\overline{\xi})} - p_j^* I_4^{(\overline{\xi})} \right) + + 2c_3 p_{j-1}^* I_5^{(\overline{\xi})} \right] dt + \int_{t_0}^{t_K} \sum_{j=N+1}^{N+M} \left[ c_3 \left( p_{j-1} I_1^{(\overline{\xi})} + p_j I_2^{(\overline{\xi})} \right) + c_3 \left( u_{j-1}^* \left( c_4 I_3^{(\overline{\xi})} - I_6^{(\overline{\xi})} \right) - - u_j^* \left( c_4 I_4^{(\overline{\xi})} - I_7^{(\overline{\xi})} \right) \right) - 2c_1 u_{j-1}^* I_5^{(\overline{\xi})} \right] dt + + \int_{t_0}^{t_K} \left[ \sum_{j=1}^{N} c_2 p_{0j-1}^* \left( I_3^{(\overline{\xi})} - I_4^{(\overline{\xi})} \right) + \sum_{j=N+1}^{N+M} c_3 p_{0j-1}^* \left( I_1^{(\overline{\xi})} + I_2^{(\overline{\xi})} + 2I_5^{(\overline{\xi})} \right) \right] dt + + \frac{1}{2\pi} \sum_{j=1}^{N+M} \left( p_{0j-1}^* I_8^{(\overline{\xi})} + \frac{1}{2} u_{0j-1}^* I_9^{(\overline{\xi})} \right).$$
(14)

Здесь  $u_j, u_j^*, p_j, p_j^*$ — узловые значения соответствующих функций; звёздочкой, как и прежде, обозначены заданные величины;

$$\begin{split} c_1 &= \frac{1}{8\pi (t_K - t)}, \ c_2 = \frac{c_1}{\sqrt{\pi\lambda (t - t_0)}}, \ c_3 = \frac{\overline{\xi}_2}{16\pi\lambda (t_K - t)^2} \ c_4 = 2\sqrt{\frac{\lambda (t - t_0)}{\pi}};\\ I_1^{(\overline{\xi})} &= \int_0^L \operatorname{erfc} \left(\frac{x}{2\sqrt{\lambda (t - t_0)}}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_2^{(\overline{\xi})} &= \int_0^L \operatorname{erfc} \left(\frac{L - x}{2\sqrt{\lambda (t - t_0)}}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_3^{(\overline{\xi})} &= \int_0^L \exp\left(-\frac{x^2}{4\lambda (t - t_0)}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_4^{(\overline{\xi})} &= \int_0^L \exp\left(-\frac{(L - x)^2}{4\lambda (t - t_0)}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_5^{(\overline{\xi})} &= \int_0^L \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_6^{(\overline{\xi})} &= \int_0^L \operatorname{verfc}\left(\frac{x}{2\sqrt{\lambda (t - t_0)}}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_7^{(\overline{\xi})} &= \int_0^L (L - x) \operatorname{erfc}\left(\frac{L - x}{2\sqrt{\lambda (t - t_0)}}\right) \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t)}\right) dx,\\ I_8^{(\overline{\xi})} &= \int_0^L \frac{\overline{\xi}_2}{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2} \exp\left(-\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t_0)}\right) dx,\\ I_9^{(\overline{\xi})} &= \int_0^L E_1\left(\frac{(x - \overline{\xi}_1)^2 + \overline{\xi}_2^2}{4\lambda (t_K - t_0)}\right) dx. \end{split}$$

Соответствующее уравнению (14) граничное интегральное уравнение для произвольной граничной точки  $x_0(x_{01}, x_{02})$  имеет такой вид:

$$\frac{1}{2}p(x_{0},t_{K}) = \int_{t_{0}}^{t_{K}} \sum_{j=1}^{N} \left[ -c_{1}\left(u_{j-1}J_{1}^{(\overline{x}_{0})} + u_{j}J_{2}^{(\overline{x}_{0})}\right) - c_{2}\left(p_{j-1}^{*}J_{3}^{(\overline{x}_{0})} - p_{j}^{*}J_{4}^{(\overline{x}_{0})}\right) + \\
+ 2c_{3}p_{j-1}^{*}J_{5}^{(\overline{x}_{0})}\right] dt + \int_{t_{0}}^{t_{K}} \sum_{j=N+1}^{N+M} \left[ c_{3}\left(p_{j-1}J_{1}^{(\overline{x}_{0})} + p_{j}J_{2}^{(\overline{x}_{0})}\right) + \\
+ c_{3}\left[u_{j-1}^{*}\left(c_{4}J_{3}^{(\overline{x}_{0})} - J_{6}^{(\overline{x}_{0})}\right) - u_{j}^{*}\left(c_{4}J_{4}^{(\overline{x}_{0})} - J_{7}^{(\overline{x}_{0})}\right)\right] - 2c_{1}u_{j-1}^{*}J_{5}^{(\overline{x}_{0})}\right] dt + \\
+ \int_{t_{0}}^{t_{K}} \left[ \sum_{i=1}^{N} c_{2}p_{0j-1}^{*}\left(J_{3}^{(\overline{x}_{0})} - J_{4}^{(\overline{x}_{0})}\right) + \sum_{j=N+1}^{N+M} c_{3}p_{0j-1}^{*}\left(J_{1}^{(\overline{x}_{0})} + J_{2}^{(\overline{x}_{0})} + 2J_{5}^{(\overline{x}_{0})}\right) \right] dt + \\
+ \frac{1}{2\pi} \sum_{j=1}^{N+M} \left( p_{0j-1}^{*}J_{8}^{(\overline{x}_{0})} + \frac{1}{2}u_{0j-1}^{*}J_{9}^{(\overline{x}_{0})} \right), \quad (15)$$

где  $\overline{x}_0 = B^{-1}(x_0 - C)$ . Интегралы  $J_n^{(\overline{x}_0)} = J_n(\overline{x}_0, x, t_K, t)$  в уравнении (15) соответствуют интегралам  $I_n^{(\overline{\xi})} = I_n(\overline{\xi}, x, t_K, t)$  из уравнения (14) с заменой точки  $\overline{\xi}(\overline{\xi}_1, \overline{\xi}_2)$  на точку  $\overline{x}_0(\overline{x}_{01}, \overline{x}_{02})$ .

Уравнение (15) интегрируется по пространственной переменной. Для получения результата интегрирования в аналитическом виде специальная функция ошибок  $\operatorname{erf}(y)$  была приближена кубическим сплайном.

**4. Интегрирование по времени.** Рассмотрим заключительный, третий этап. Разобьём интервал интегрирования  $[t_0, t_K]$  на K шагов  $[t_{k-1}, t_k]$ , считая граничные условия постоянными на каждом временном шаге, и будем выполнять интегрирование по времени.

Использование модифицированного МГЭ позволяет ограничиться в конце каждого временного шага подсчётом значений функций лишь в граничных узлах, для того чтобы использовать их при подсчёте значений функции температуры (концентрации примеси) внутри и на границе области  $\Omega$  на следующем шаге по времени.

Осуществляя в левой части граничного интегрального уравнения (15) перебор по всем граничным узлам, получаем систему линейных уравнений, решение которой определяет температуру (концентрацию примеси) и тепловой (диффузионный) поток в узловых точках границы на каждом временном шаге:

$$\sum_{k=1}^{K} Q_{kK}^* P_k + \sum_{k=1}^{K} R_{kK}^* U_k + S_0^* P_0^* = 0.$$
(16)

Здесь  $Q_{kK}^*$ ,  $R_{kK}^*$  — матрицы коэффициентов  $\int_{t_{k-1}}^{t_k} q^*(\overline{x}_0, t_K, t) dt$ ,  $\int_{t_{k-1}}^{t_k} r^*(\overline{x}_0, t_K, t) dt$  при k = 1, 2, ..., K. Подынтегральные функции  $q^*(\overline{x}_0, t_K, t)$ 

и  $r^{*}(\overline{x}_{0}, t_{K}, t)$  — аналитические выражения от различных комбинаций произ-

ведений функции ошибок erf( $\overline{x}_0, t_K, t$ ) и функции exp( $\overline{x}_0, t_K, t$ ). Коэффициенты матриц  $P_k$  и  $U_k$  — узловые значения температуры (концентрации примеси) и теплового (диффузионного) потока соответственно для каждого момента времени  $t_k$ . Коэффициенты матрицы  $S_0^*$  обусловлены интегрированием  $J_8^{(\overline{x}_0)}$ , когда  $x_0 \in [a_{j-1}, a_j] \in S_2$ ;  $P_0^*$  — вектор коэффициентов  $p_{0j-1}^*$ .

Система уравнений (16) решается численно для момента времени  $t = t_K$  при уже найденных на предыдущем шаге значениях  $P_k$  и  $U_k$  при k = 1, 2, ..., K-1. После решения системы уравнений (16) и определения всех граничных величин в каждый момент времени рассчитывается температура (концентрация примеси) в произвольной внутренней точке  $\xi$  области  $\Omega$ .



5. Пример. В качестве примера применения предложенного алгоритма была рассмотрена задача о распределении температуры в квадратной области размером  $3 \times 3$  м с начальной температурой  $p_0^*(x) = 0$  °C и коэффициентом теплопроводности  $\lambda =$ = 0,204 BT/(м·°C), для которой задано граничное условие  $p^*(x_0,t) = 20$  °C. На рисунке приведены значения температуры, полученные с помощью предложенного метода (сплошная линия), с

помощью пакета FreeFem++-cs (штриховая линия) и для аналитического решения [4] (штрих-пунктирная линия). Все данные приведены для точки, расположенной в центре пластины.

Отклонение результатов численных расчётов от аналитического решения вблизи начального момента времени обусловлено тем, что принятый в качестве аналитического решения ряд Фурье даёт на этом интервале времени заведомо неточное приближение, что объясняется видом ряда Фурье, а также разрывом между начальными и граничными условиями. Однако в данной постановке задачи поведение решения на начальном интервале времени является несущественным, поскольку основной интерес представляет развитый процесс теплопроводности. Начиная с некоторого момента времени все три решения задачи стремятся к асимптотическому значению.

Заключение. Разработанный метод расчета позволяет находить численноаналитическое решение для линейных задач параболического типа: диффузии, теплопроводности и т. д.

Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы (госконтракт № 02.740.11.0202) и Программы Президиума РАН № 14 «Интеллектуальные информационные технологии, математическое моделирование, системный анализ и автоматизация».

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987. 526 с. [Brebbiya K., Telles Zh., Vroubel L. Boundary element techniques. Moscow: Mir, 1987. 526 pp.]

- Бенерджи П., Баттерфилд В. Методы граничных элементов в прикладных науках. М.: Мир, 1984. 494 с. [Benerdzhi P. K., Batterfild R. The boundary elements methods in applied sciences. Moscow: Mir, 1984. 494 pp.]
- Федотов В. П., Спевак Л. Ф. Модифицированный метод граничных элементов в задачах механики, теплопроводности и диффузии. Екатеринбург: УрО РАН, 2009. 161 с. [Fedotov V. P., Spevak L. F. A modified boundary element method in problems of mechanics, heat transfer, and diffusion. Ekaterinburg: UrO RAN, 2009. 161 pp.]
- 4. Лыков А. В. Теория теплопроводности. М.: Высш. шк., 1967. 600 с. [Lykov A. V. Theory of Heat Conduction. Moscow: Vyssh. shk., 1967. 600 pp.]

Поступила в редакцию 04/XI/2010; в окончательном варианте — 27/IX/2011.

MSC: 65M38

## APPLICATION OF THE MODIFIED BOUNDARY ELEMENT METHOD FOR THE SOLUTION OF PARABOLIC PROBLEMS

#### V. P. Fedotov, O. A. Nefedova

Institute of Teoretical Engineering, Ural Branch of RAS, 34, Komsomolskaya st., Yekaterinburg, 620083, Russia. E-mails: fedotov\_vp@mail.ru; nefedova@imach.uran.ru

An algorithm for finding numerically-analytical solution of parabolic problems (diffusion and heat conduction) is proposed. The problem is solved by the proposed algorithm in three steps. At the first step the one-dimensional problem is solved for a base interval of integration. This problem is of independent significance as well as the basis for the second step. At the second step the two-dimensional parabolic problem is considered. Its solution is performed using the modified boundary elements method. At the third step, the method of step-by-step integration over time is used.

**Key words:** linear parabolic equation, modified boundary element method, numericalanalytical integration.

Original article submitted 04/XI/2010; revision submitted 27/IX/2011.

Vladimir P. Fedotov (Dr. Sci. (Techn.)), Chief Research Scientist, Lab. of Applied Mechanics. Olga A. Nefedova, Associate Researcher, Lab. of Applied Mechanics.