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1. Introduction
The first mention of black holes, found till now, refers to 1784 (note: the famous

“Principia . . . ” by Isaac Newton were published in 1687). J. Michell, the priest,
reflecting on eternal, i.e., on the nature of celestial phenomena, understood that if
the escape velocity on the surface of a star equals or greater than the speed of light,
then such a star would be invisible for a distant observer. He called these objects
dark stars and published this scientific result as a note [1]. His communication does
not cause special interest—yes, there can exist the invisible stars—it is curious,
and that’s all! Such an ignorance is quite understandable because at the time the
corpuscular theory of light prevailed, and the speed of light had no fundamental
significance for physics.

The next step was done by P.-S. Laplace [2] when 1799 he published a simple
(as seen nowadays) derivation of the dark stars sizes based, of course, on the
Newton’s gravity. By definition, the kinetic energy of the body starting to move
at the escape velocity is just enough to overcome the gravitational attraction
and reach an infinity. The newtonian gravitational potential outside a spherical
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gravitating source equals

Ugrav(r) = −GM
r
,

where r is the distance from the gravitating center, M is its mass, and G is the
gravitational (Newton’s) constant. The additive constant of integration is chosen
zero at infinity, and the “minus” sign means attraction. For the escape velocity we
have

mV 2

2
= G

Mm

R0
,

where R0 is the star radius. As it should be, this velocity does not depend on the
mass of the “light corpuscle”. Putting v = c (c—speed of light) we get

c2 =
2GM

R0
,

and
R0 =

2GM

c2
= Rg.

Introduced here Rg is called the gravitational radius. And again, this result
considered as pure technical and having no fundamental value—people were not
properly impressed. But we are, because it is exactly the same as that of the
radius of the relativistic black hole! It is well known that by combination of the
fundamental constants, speed of light c, gravitational G and Planck constants ~,
one can obtain the value of any dimensionality, so, we have to wonder at the equal
coefficients only, but here it is a mere coincidence. For us, the derivation proposed
by Laplace is not completely satisfactory. First of all, at the escape velocity the
total (kinetic + potential) energy of the light corpuscles is exactly zero. In the
case when it is negative (i.e., the star radius is less than R0), then though the star
is not visible for the observers at infinity it is still visible to one who sits more
or less nearby. The genuine invisible objects in Newton’s gravitational theory are
the point sources only. Second, at the times of corpuscular theory of light nobody
feels uneasy about the varying light speed—up to zero at the turning point. But
very soon the concept of the wave nature of the light was adopted, and the light
began considered as the ether oscillations, something very different from the rest
of matter, and not obeyed the gravitational law.

The new period, though unnoticed, in the black hole theory begun in 1905 with
appearing of Special Relativity [3]. The main experimentally proved postulate of
this theory is that the speed of light is constant, and its value does not depend
on the choice of the inertial frame. It also follows from the theory that this is the
limiting speed which can not be reached by any massive body. In the last year
of the 19th century M. Planck published a paper where it was proved actually,
that the light is emitted and absorbed only by portions—quanta, and it was
proposed the famous relation for their energy, E = ~ω (~—Planck’s constant,
ω—angular velocity). But only after the works by A. Einstein [4, 5] it become
clear that the light is the set of photons particles with zero rest mass. One more
Einstein’s wonderful idea dated by 1905, is the mass-energy equivalence [6], which
was expressed later in the revolutionary relation E = mc2 [7]. What does it mean
for us? First of all, it follows that the total energy of any body consists not only of
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masses of constituent particles, but also their kinetic energies and potential energy
of mutual interactions, including exchanges by virtual (as we now know) photons
that provide the electromagnetic interactions between molecules and atoms (the
most impressive example is the helium nuclei). Therefore, the light as the photon
flow should be subject to the universal law of gravity, and instead of mass m one
should use its equivalent, E/c2.

Let us suppose that we adopted Special Relativity, i.e., the relativistic Min-
kowski space-time, but leaved the Newtonian gravity unchanged. Than, for the
dark stars we would obtain the maximal radius R = Rg, only two times less the
needed (relativistic) value, what is unimportant here. What essential is that since
in this case there are no turning points for the light, the quanta emitted from
the limiting surface can loose completely their initial energy E0 = ~ω0 only at
infinity, ω(∞) = 0. And such a conclusion does not depend on the initial value
of frequency. In other words, if the gravitating body is compressed to the sizes
less than Rg, there should appear some space region around it from where light
cannot escape and, thus, reach the infinity. The world surface of the boundary of
such a region is called the event horizon. It appears that the gravitating bodies
change the causal structure of the space-time around them, which is considered
as “a priori” given in Special Relativity. Consequently, the combining of Special
Relativity and Newtonian gravity is intrinsically controversial. The positive result
of our consideration is that now we have to deal not with the very surfaces of the
gravitating bodies, but with the space-time regions—causal “holes”, that can be
properly called “black holes”.

The contemporary history of “dark stars” began in 1916 with the paper by
Karl Schwarzschild. It is impossible to understand the revolutionary importance of
this discovery (of which he himself was unaware) without short description of the
dramatic history of how General Relativity was created. Albert Einstein started to
work on its formulation soon after he proposed Special Relativity, which combined
the absolute space and absolute time of the Newtonian mechanics into the observer
dependent four-dimensional continuum and established the special role playing
by the speed of light in determining the causal relations between different events.
First of all, he formulated the main physical principles the future relativistic
theory of gravity should obey. These are: the (local) equivalence of gravitation
and acceleration that can be traced back to proportionality of gravitational and
inertial masses discovered by Galileo; determination of sources of gravity as the
matter energy-momentum tensor, that replaces the mass density in the non-
relativistic Poisson equation; understanding the role of the metric tensor as the
relativistic generalization of the Newtonian gravitational potential—the tensorial
character of the theory was dictated by demanding its covariance with respect
to general four-dimensional coordinate transformations. Einstein’s close friend,
Marcel Grossmann, taught him he methods of differential geometry and helped
with formulation of the (then become famous) equations. The great mathematician
David Hilbert obtained the very same equation by making use of the least action
principle that made General Relativity, started as “some heuristical point of view”
(as Einstein often stated), to become a rigorous mathematical theory. All this
was finally elaborated by the end of 1915 and published in 1916. Here, it is
important for us that relativistic theory of gravity turned out to be the theory of
the space-time. Namely, as everyone knows, the space-time in Special Relativity is
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determined by the following line element = the squared “distance” between nearby
points (the summation is supposed over two equal upper and lower indices):

ds2 = dt2 − dx2 − dy2 − dz2 = gµν(x)dxµdxν

and, implicitly, by demanding that the metric tensor gµν is not changed under
parallel transport. In other words, Minkowski space-time is flat, its Riemann
curvature tensor is zero. We already saw (with dark stars) that the Minkowski
geometry and Newtonian gravity are incompatible. Therefore, one should get rid
of the flat space-time. Besides, the results obtained by Einstein and Grossmann
showed that it is the coefficient of the metric tensor that become the natural
generalization of the non-relativistic gravitational potential. A. Einstein was the
genuine physicist, so, he was using the physical “least action principle”, i.e., his aim
was to construct a physical theory that would have a“good” non-relativistic limit
(Poisson equation) by minimal efforts (that actually appeared enormous). That’s
why he was walking along the corridors of the Prussian Academy of Science and,
when encountered the mathematicians, catching a button on their clothes, asked
them: please, give a symmetric second rank tensor that is linear in metric second
derivatives. And Marcel Grossmann showed him the one—it was the so called Ricci
tensor, which is obtained from Riemann curvature tensor by contraction of two
indices, provided the connections defining the parallel transport are the metric
ones (i.e., he parallel transport leaves the metric tensor unchanged). With such a
minimal number of postulates Einstein managed to derive the famous equations of
General Relativity. D. Hilbert, on the contrary, was a genuine mathematician. His
aim became to derive equations of the physical theory from the pure mathematical
least action principle using variational tools. For this he needed a Lagrangian.
Being excited by the early attempts of Einstein and Grossmann in constructing a
relativistic theory of gravity, he has chosen for the Lagrangian the so called scalar
curvature—the contracted Ricci tensor, together with the additional requirement
of the metrical connections. The latter choice was dictated, may be, by his wish to
have the relativistic gravitational potentials, i.e., the metric tensor components,
to be the only dynamical variables of the theory. Eventually, with enormous
efforts, Hilbert obtained the Einstein equations. The more complex Lagrangians,
for example, in the form of non-linear scalar curvature function, lead us (if the
connections is metrical) to the equations of the fourth degree by the metric tensor
derivatives, and, consequently, to the non-stability of solutions. Later it was found,
that varying metrics and connections independent (Palatini method) one can keep
the restriction on the order of the metrics derivatives, but in that case we should
use the more general Weil connections instead of the metrical connections.

Einstein reported on the new gravitational field equations at the Prussian
Academy meeting on 25 of November, 1915, and then published in the Communi-
cations of this Academy. And already in two months later, in that very Communi-
cations (Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaf-
ten, Berlin, 1916) there appeared the paper by K. Schwarzschild [8], where the
first exact solution to these equations was derived. Now this solution is worldwide
known. By this time Schwarzschild was the famous scientist, professor and acade-
mician, the Director of the Observatory in Goettingen, in the town where Hilbert
and Minkowski were working. After the beginning of the World War I in 1914,
he joined the German Army as a volunteer, took part in the battles in the West,
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then in the East, where he was taken lethally ill and put in the hospital. After
that he, disabled, returned to Germany and died soon in 1916. Being in the
hospital, K. Schwarzschild wrote three scientific papers, two of them were devoted
to deriving the special solutions to the Einstein Equations (they are known at
present as external and internal Schwarzschild solutions), while the third one was
dealing with the Bohr–Sommerfeld quantization method. It is the first solution,
as it becomes quite clear later, that turned out to be the pioneer mathematical
model of a black hole. In general, derivation of the exact solutions to the Einstein
equations is not a trivial task because of its nonlinearity and general covariance.
The nonlinearity is an unavoidable “badness” of this theory because its the main
underlying principle “any kind of energy gravitates” concerns the gravitational
energy as well. This latter energy does enter the energy-momentum tensor in the
right hand sides of the equations, but “encoded” in their left hand sides, which is
purely geometrical. Therefore, the problem appears how to separate the physical
effects from the coordinate ones, as well as their correct interpretation. The
Schwarzschild metrics is the solution of the spherically symmetric vacuum Einstein
equation, i.e., where energy-momentum tensor is zero. Evidently, it provides a
relativistic generalization of the Newton’s universal gravitational law outside of
the spherical source, and, as a limiting case, the gravitational field of the point
mass.

2. General Preliminaries
In this Section we review shortly the main notions and relations of differential

geometry needed in what follows.
Construction of the space-time geometry starts with defining the squared

interval between nearby points xµ and xµ + dxµ:

ds2 = gµν(x)dxµdxν .

It is assumed a summation on equal upper and lower indices (Einstein’s rule).
When ds2 > 0, the interval is called time-like, when ds2 < 0—it is space-like.
For null intervals ds2 = 0. The same names are used for vectors contracted with
themselves, AµAµ = gµνA

µAν . The non-degenerate symmetric second rank tensor
gµν(x) is called the metric tensor. By suitable choice of coordinates it can always
be reduced to the diagonal form diag(+1,−1,−1,−1) at any given point (in other
words, we will use the signature (+−−−)). When changing the coordinate system,
x′µ = x′µ(x), the metric tensor transforms in the following way,

g′µν(x′) =
∂xλ

∂x′µ
∂xσ

∂x′ν
gλσ(x),

as it ought to be. At the same time an arbitrary contra-variant vector (bearing
an upper index) Aµ (in particular, the displacement vector dxµ) transforms as

A′µ(x′) =
∂x′µ

∂xλ
Aλ(x),

and the covariant vector (with lower index) Bµ—as

B′µ(x′) =
∂xλ

∂x′µ
Bλ(x).
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It is quite clear that the conventional differential of a vector is not, in general, a
vector, because

dA′µ(x′) =
∂x′µ

∂xλ
dAλ(x) +

∂2x′µ

∂xλ∂xσ
Aλ(x)dxσ.

It follows from this that the standard, for Euclidean space and Minkowski space-
time, definition of the parallel transport for vectors, namely, dAµ = 0 is not
covariant and, thus, not good anymore. Instead, the so called covariant differential
is introduced,

DAµ = dAµ + ΓµνλA
νdxλ,

where the connection Γµνλ is used to compensate the second derivatives that
appeared in the course of differentiation and, at the same time, to restore the
vectorial (in general, tensorial) character of such an action. The covariant derivative
for vectors, Aµ.,ν , is defined in a natural way:

DAµ = Aµ.,νdxν → Aµ.,ν = Aµ,ν + ΓµνλA
λ
ν

(the usual partial derivative is denoted by comma, while the covariant derivative—
by semicolon). It can be easily checked that the covariant derivative introduced
above satisfies all the conditions required for the abstract differentiation as an
operator acting on the abstract mathematical objects: it is linear and obeys
Leibnitz rule for the products of two vectors. By definition, the covariant derivative
for scalars ϕ coincides with the conventional partial derivative,

ϕ.,µ = ϕ,µ

(this is quite natural since scalars have no indices), and from it follows the
differentiation rule for the covariant vectors:

Bµ.,ν = Bµ,nu − ΓλµνBλ.

The parallel transport of a vector Aµ along some direction dxλ is defined by
putting zero its covariant differential along this direction:

DAµ = Aµ.,λdxλ = 0.

The time-like four-velocity vector is defined by the relation

uµ =
dxµ

ds
=
dxµ

dτ

(ds > 0, τ is called the proper time), it is evident that uµuν = 1. This vector
is tangent to the trajectory xµ(τ). If a tangent vector undergoes the parallel
transport along the trajectory, such a curve is called geodesics. Thus, the geodesic
equation has the form

Duµ = uµ.,ν
dxν

dτ
dτ = uµ.,νuνdτ = 0.
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It should be noted here that, in differential geometry, the metrics, i.e., the metric
tensor gµν , and connections Γµνλ, are introduced separately and independently of
each other. But, among all the connections, there exists one special—it is, first
symmetric in lower indices and, second, the covariant derivative, defined by this
very connection, of the metric tensor is zero,

gµν.,λ(x) = 0.

It is called the metric connection, and their components—Christoffel’s symbols.
This metric connection is uniquely determined by the metric tensor:

Γλµν =
1

2
gλσ (gσµ,ν + gσν,µ − gµν,σ) .

In this case it is possible simultaneously to make the metric tensor diagonal and
Christoffel symbols equal zero at any given point. The same can be done along
the given curve. Since the connections are not tensor, such a property is not
intrinsic for the space-time, but just the characteristic of the specific coordinate
system. Moreover, it is impossible to do in the region surrounding the point. It
appears that, transporting some vector along a small closed contour, at the end the
resulting vector will be, in general, different from the initial one. The difference,
of course, should be proportional to the area of the surface, bound by the contour,
and some fourth rank tensor:

Rσµνλ =
∂Γσµλ
∂xν

−
∂Γσµν
∂xλ

+ ΓσρνΓρµλ − ΓσρλΓρµν ,

called the Riemann curvature tensor. The space-time is called flat if such a
tensor equals zero, otherwise the space-time is curved. (Note, that in the scientific
literature there is yet another definition of the curvature tensor that differs from
ours by sign only. Here we follow L. D. Landau and E. M. Lifshits [9].) By
contracting one upper and one lower indices in the curvature tensor one obtains
the Ricci tensor,

Rµν =
∂Γλµν
∂xλ

−
Γλµλ
∂xν

+ ΓλµνΓσλσ − ΓλµσΓσνλ

(again, we follow L. D. Landau and E. M. Lifshits in choosing the indices for
contraction). The last of possible contractions reduces the Ricci tensor to the
scalar curvature, R = gµνRµν = Rµµ. In General Relativity the metric connection
is postulated. In this case Ricci tensor is automatically symmetric.

The following combination

Gµν = Rµν −
1

2
gµνR

is called the Einstein tensor, and his famous equations have the form:

Rµν −
1

2
gµνR =

8πG

c4
Tµν ,

where Tµν is the Energy-momentum tensor of the matter fields. The coefficient
in the right hand side is determined in such a way that outside the source in

144



Before getting around to do black hole physics. . .

the weak gravity limit the non-relativistic Poisson equation would restored. The
choice of the specific combination of the geometric tensors was dictated by Bianchi
identities, which after contraction take the form

Gνµ.,ν = Rνµ.,ν −
1

2
R,µ = 0.

From this the continuity equation for the energy-momentum tensor follows auto-
matically:

T νµ.,ν = 0, (1)

and this is analogous to the situation in electrodynamics where the continuity
equation for the electric current follows directly from Maxwell equations. The
continuity equation (1) can be also obtained independently as a consequence of
the general covariance, i.e., the invariance of the matter action functional under
arbitrary (but sufficiently smooth) coordinate transformations.

3. Spherical Gravity
3.1. Invariants and Global Structure. The spherically symmetric metrics in

any non-singular point can be written in the form (reminder: we are using the
signature (+ − −−))

ds2 = γikdx
idxk −R2(x)dσ2 = Adt2 + 2Hdtdq −Bdq2 −R2dσ2, (2)

where dσ2 = dϑ2 + sin2 ϑdϕ is the line element of the 2-dim unit sphere, R is
the radius of the sphere with the area 4πR2, and the metric coefficients A,
H, B and the radius R are functions of some temporal coordinate t and some
spatial coordinate q. For a given manifold the radius R(t, q) is and invariant, and
coefficients A,H и B of a 2-dim manifold are determined up to the arbitrary
coordinate transformations

t̃ = t̃(t, q), q̃ = q̃(t, q),

that leave unchanged the explicit spherically symmetry of the metrics (2). Such
a freedom (gauge freedom) can be used for fixing the coordinate system in the
most suitable way need to solve a specific problem. For example, one can always
put the line element to the diagonal form (H = 0) and still have one more degree
of freedom. There is another very important choice—the so-called double-null
coordinates (u, v), when A = B = 0. Then the line element (2) takes the form

ds2 = 2H(u, v)dudv −R2(u, v)dσ2 = 0,

and, the only left, metric coefficient is determined up to the substitution ũ = ũ(u),
ṽ = ṽ(v). We therefore see that the metrics of the spherically symmetric space-
time is locally defined actually (up to gauge transformations) by only two functions
of two variables. It is natural to choose the invariant radius R, as one of them.
It is quite desirable that the second function appeared to be also invariant. From
the pure geometrical reasons one can suppose that for such an invariant there
can serve the (Lorentzian) square of the normal vector to the surfaces of constant
radii, R = const, namely, the vector R,i (i = 0, 1):

dR = (∂iRdx
i) = R,idxi = 0.
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Its square equals
∆ = R,iR,kγik,

where γik is inverse to the two-dimensional metric tensor γik. When using double-
null coordinates, then

∆ =
2

H
R,uR,v,

and it is clear now that the knowledge of two invariant functions R and ∆ really
determines the metrics (2) up to gauge transformations.

The function ∆(t, q) brings a nontrivial information about a space-time struc-
ture. Indeed, in the flat Minkowski space-time ∆ ≡ 1, all the surfaces R = const
are time-like and therefore, R can be chosen as spatial coordinate q = R on the
whole manifold. But in the curved space-time ∆ is no more constant and can in
general be both positive and negative. The region with ∆ < 0 is called the R-
region, and the radius can be chosen as a radial coordinate q. In the region with
∆ > 0 the surfaces R = const are space-like (the normal vector is time-like), and
the radius R can be chosen as a time coordinate t. Such regions are called the
T -regions. The R- and T -regions were introduced by I. D. Novikov [10]. But this
is not the whole story. It is easy to show that we can not get Ṙ = 0 (“dot” means
a time derivative) in a T -region. Hence it must be either Ṙ > 0 (such a region of
inevitable expansion is called T+-region) or Ṙ < 0 (inevitable construction, a T−-
region). The same holds for R-regions. They are divided in two classes, those with
R′ > 0 (“prime” stands for a spatial derivative) which are called R+-regions, and
R−-regions with R′ < 0. These, R- and T -regions are separated by the surfaces
∆ = 0 which are called the apparent horizons. The apparent horizons can be null,
time-like or space-like. We see, therefore, that the curved spherically symmetric
space-time can have a rather complex structure and consist of a set of R±- and
T±-regions separated by apparent horizons ∆ = 0.

3.2. Vectorial Equation It appeared that Einstein equations in the case of
spherical symmetry can be rewritten in terms of the invariants introduced above,
R(t, q) и ∆(t, q). For this, let us write the metrics in the form

ds2 = γABdx
AdxB −R2(x)(dϑ2 + sin2 ϑdϕ2),

where γAB is a 2-dim metric tensor, and A,B = 0, 1. The nonzero components of
a Ricci tensor equal

RBA = R̃BA − 2γBC
R|AC

R
, R2

2 = R3
3 = − 1

R2

(
γCDRR|CD + ∆ + 1

)
.

Here R̃BA is a Ricci tensor for a 2-dim manifold with a metric tensor γAB and its
inverse γCD, the vertical line denotes a covariant derivative with respect to the
metric connection (remember that γAB|C = 0), and comma means, as usual, a
partial derivative. The Einstein tensor reads now:

GBA = −2γBC
R|AC

R
+ δBA

(
2γCD

R|CD

R
+

∆ + 1

R2

)
,

G2
2 = G3

3 = γCD
R|CD

R
− 1

2
R̃,
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where R̃—2-dim scalar curvature, and we took into account that 2-dim Einstein
tensor is identically zero. Constructing the following combination

δBAG
C
C −GBA = 2γBC

R|AC

R
+

∆ + 1

R2
δBA

and noting that
∆,A = 2γDCR,DR|AC ,

we get, finally, the vectorial equation(
R (∆ + 1)

)
,A = 8πGR2

(
TCC R,A − TBAR,B

)
. (3)

The third equation for A 6= B is, essentially, scalar:

γACR|CB = −4πGRTAB .

It can also be obtained as the integrability condition for the vectorial equation
with making use of the Bianchi identities (or the continuity equation) and the
remaining (22) (scalar) of Einstein equations. The continuity equation takes now
the form

TBA|B + 2
R,B
R

TBA = 2
R,A
R

T 2
2 .

These equations were first derived in [11], then generalized to the spheres of
arbitrary dimension [12] and to the arbitrary homogeneous and isotropic spaces [13].

Carter–Penrose Conformal Diagrams. The causal structure of a geodesically
complete spherically symmetric space-time is seen best using Carter–Penrose
conformal diagrams, where each point represents a sphere, and infinities are
brought to finite distances. Since any two-dimensional space-time is conformally
flat (at least locally), the full diagram is, actually, a set of those for 2-dim
Minkowski space-time. In order to understand, how the latter can be constructed,
let us first transform the conventional 2-dim Minkowski metrics

ds2 = dt2 − dx2

to the double-null coordinates u = t− x (retarded time) and v = t+ x (advanced
time), then

ds2 = dudv.

Let us take as a rule that on our diagrams the temporal coordinate increases
from down to up, the spatial coordinate—from left to right, and the null curves
(u = const, v = const) are represented by the straight lines with the slope ±45◦.
After one more transformation,

u′ = arctanu, v′ = arctan v, −π/2 6 u′ 6 π/2, −π/2 6 v′ 6 π/2

we get

ds2 = Ω2ds′2, Ω = cos−1 u′ cos−1 v′, ds′2 = du′dv′ = dt′2 − dx′2.
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Formally, the metrics ds′2 is the same as the initial one, but now the coordinates
(u′, v′) and (t′, x′) run finite intervals. The Carter–Penrose diagram for the complete
2-dim Minkowski space-time, (−∞ < t < ∞,−∞ < x < ∞) is shown in Fig. 1.
Here J± (J ′±) are future, (v′(u′) = π/2, v(u) = ∞), and past, (u′(v′) = −π/2,
u(v) = −∞), null infinities, i± are future and past temporal infinities, (t′ = ±π/2),
and i0 (i′0)—spatial infinities, (x′ = ±π/2, x = ±∞). For the four-dimensional
Minkowski space-time this diagram should be cut along the time-like line r = 0,
which becomes now a part of a boundary instead of that at (−∞), see Fig. 2.
The time-like surfaces of constant radii are shown by dashed curves. In general,
such an orientation of the triangle corresponds to those part of the full diagram
that represent the R-regions. For T -regions, the figure should turn on the straight
angle 90◦ together with the dashed curves which become the space-like ones.
The apparent horizons (null, time-like or space-like ones) as well as infinities and
singularities serve as boundaries for different regions of the manifold. The space-
times are called geodesically complete if all the null and time-like geodesics start
and end either at infinities or at the singularities.

4. Schwarzschild Black Hole
4.1. Solution. Now we have everything at hand for investigating the Schwarz-

schild geometry. Let us remind that, by definition, this is the space-time outside
a “point-like” gravitating source (it will become clear very soon why quotation
marks are used here).

The starting point is calculation of the invariant ∆. Since the energy-momentum
tensor is now zero, one gets immediately from the vectorial equation (3)

∆ = −1 +A/R,

where R(t, q) is the radius, and A—integration constant. Karl Schwarzschild has
chosen the radius as a spatial (radial) coordinate, and the time coordinate ortho-
gonal to it. We will do now the same remembering however, that such a choice is
possible only in R-regions. In this case it follows from definitions that

∆ = g00Ṙ2 + g11R′2 = g11,

and one finds
g11 = 1/g11 = 1/∆.

We will not calculate here the remaining metric coefficient g00 = 1/g00, but say
that, with the supposed form of the metrics the Einstein equations contain its
spatial derivatives (of first and second order) only, so g00 itself is determined up
to the arbitrary factor depending on the time coordinate, which can be “absorbed”
by redefinition of the latter. This means that in the R-region the metrics is
automatically static (Schwarzschild just supposed such a property). Besides, it
appears, that

g00 = −∆ = 1−A/r
(in what follows we will use a small letter r for the radius as a coordinate). Thus,
we reproduce the famous metrics

ds2 = (1−A/r) dt2 − dr2

1−A/r
− r2

(
dϑ2 + sin2 ϑdϕ2

)
.
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Figure 1. Carter–Penrose diagram for
the complete two-dimensional Minkowski
space-time (−∞ < t <∞, −∞ < x <∞)

Figure 2. Carter–Penrose diagram for 4-
dim Minkowski space-time

Figure 3. Carter–Penrose diagram covered by retarded Finkelstein coordinates

Figure 4. Carter–Penrose diagram covered by advanced Finkelstein coordinates
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Figure 5. Combination of two diagrams (see Fig. 3 and Fig. 4)

Figure 6. Carter–Penrose diagram for the geodesically complete Schwarzschild space-time

Figure 7. Carter–Penrose diagram for infinite motion when ∆m > 0 =⇒ σin(∞) = σout(∞) = +1
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Figure 8. Carter–Penrose diagram for infinite motion when ∆m < 0 =⇒ σin(∞) = σout(∞) = −1

Figure 9. Carter–Penrose diagram for the finite motion of the shell with the turning point at
ρ = ρ0 and ∆m > 0 =⇒ σin(ρ0) = +1, σout(ρ0) = +1

Figure 10. Carter–Penrose diagram for the finite motion of the shell with the turning point at
ρ = ρ0 and ∆m > 0 =⇒ σin(ρ0) = +1, σout(ρ0) = −1
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Figure 11. Carter–Penrose diagram for the finite motion of the shell with the turning point at
ρ = ρ0 and ∆m < 0 =⇒ σin(ρ0) = +1, σout(ρ0) = −1

Figure 12. Carter–Penrose diagram for the finite motion of the shell with the turning point at
ρ = ρ0 and ∆m < 0 =⇒ σin(ρ0) = −1, σout(ρ0) = −1

Figure 13. Carter–Penrose conformal diagram for the geodesically complete space-time under
consideration, each point represents a sphere
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Before going further, let us determine the constant of integration.
4.2. Source. Let us remind that the Schwarzschild metrics depends, actually,

on only one function,
F = −∆ = 1−A/r,

where A is an integration constant. In the Introduction we wrote it as

A =
2Gm

c2
,

where G is the gravitational constant, c is the speed of light, and m some entity
with dimension of mass. It is in this form that the integration constant was written
by Schwarzschild, m being considered as the mass of the gravitating source.
How he recognized this?—from the analysis of non-relativistic transition of the
Einstein equations to the Poisson equation (formally, by putting c → ∞). Since
the thorough investigation is too long and cumbersome we confine ourselves by
comparison of Lagrangians for particles moving in an external gravitational field,
both in the non-relativistic and (properly approximated) relativistic mechanics.

In the non-relativistic theory the Lagrangian for a particle of mass µ is the
following

L = T − U + const =
µ~V

2

2
+
Gmµ

r
+ const, (5)

where T is its kinetic, and U—potential energy. In the relativistic theory the action
functional equals

S = −µc
∫
ds = −µc

∫ √
gαβdxαdxβ =

= −µc
∫ √

g00c2dt2 + 2g0icdtdxi + d~x2 =

= −µc2
∫ √

g00 + 2g0i
V i

c
+
~V 2

c2
dt,

where V i is a component of the 3-dim particle velocity ~V . The Lagrangian, thus,
takes the form

L = −µc2
√
g00 + 2g0i

V i

c
+
~V 2

c2
. (6)

Far away from the sources, (r → ∞), the metrics becomes almost Minkowskian,
i.e., g00 → 1, g0i → 0, gii → −1, and in the non-relativistic limit (V 2/c2 � 1) one
gets

L ≈ −µc2
√
g00 −

~V 2

c2
≈ −µc2

(√
g00 −

~V 2

2c2

)
.

Since g00 = 1−A/r, then

L ≈ −µc2
(

1− A

2r
−
~V 2

c2

)
≈ −µc2 +

µc2A

2r
+
µ~V 2

2
.
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Comparing with the Eqn. (5), we see that the relativistic Lagrangian, Eqn. (6), be-
comes its non-relativistic counterpart, Eqn. (5), if in the latter one put an arbitrary
additive constant equal −µc2, and the integration constant—A = 2Gm/c2, where
m is the mass of gravitating source. Now it is quite clear that the remote observer
measures the gravitational (inertial) mass of the source.

4.3. Global Geometry: Construction of Carter–Penrose Diagrams. Let us write
the Schwarzschild metrics once more (c = 1)

ds2 = (1− 2Gm/r) dt2 − dr2

1− 2Gm/r
− r2dσ2. (7)

It describes a curved space-time, this follows, e.g., from the fact that the distance
between two points in the radial direction is greater that the difference of finite
and initial values of radii:

dl =
dr√

1− 2Gm/r
; ∆l =

∫ r1

r2

dr√
1− 2Gm/r

> ∆r = r1 − r2.

Let us calculate what is the period of time (measured by distant observer) a beam
of light needs for traveling:

ds2 = 0; dt =
dr

1− 2Gm/r
,

T12 =

∫ r1

r2

rdr

r − 2Gm
= r1 − r2 + 2Gm ln

r1 − 2Gm

r2 − 2Gm
.

This expression diverges at r2 → rg. It means that even the light moving with
the maximal possible speed, needs and infinite time to reach the Schwarzschild
sphere. It seems that everything is nice! The collapsing star would be freezed near
its gravitational radius. And all the problems are solved, we are not forced to think
about what is going inside. But, . . . ! It appeared that the freely falling observer
reaches the Schwarzschild sphere for finite period of its proper time. Therefore, the
manifold covered by the metrics, Eqn. (7), is not geodesically complete. This part
of the space-time is, actually, the R-region, bounded by the apparent horizons,
∆ = 0, at R = rg = 2Gm. Since in our case this invariant depends only on radius,
then the apparent horizons are null. Indeed,

gAB∆,A∆,B =
(d∆

dR

)2
gABR,AR,B =

(d∆

dR

)2
∆ = 0.

In order to understand, how the “patch” of the Carter–Penrose diagram, represen-
ting this R-region, looks like, let us introduce, following Finkelstein [14], the so
called “tortoised” cordinate r? in the following way. First, put the two-dimensional
part of the Schwarzschild metrics into the conformally flat form

ds22 = (1− rg/r)
(
dt2 − dr2

(1− rg/r)2
)

= (1− rg/r)
(
dt2 − dr?2

)
,

where
dr? = ± dr

1− rg/r
, r? = ±rg (r/rg + ln |r/rg − 1|) .
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Evidently, in the R+-region one should choose the sign “+”. At the apparent
horizons r? = −∞. Thus, in the conformally flat two-dimensional space-time
representing the R-region of the Schwarzschild manifold, −∞ < t < +∞,
−∞ < r? < +∞, i.e., this is exactly that diagram shown in Fig. 1. The null
geodesics are straight lines with the slope ±45◦. Some of them come from the past
horizon to the future infinity, but where from? Others come from the past infinity
to the future horizon, but, further, where to? To make this clear it is convenient
to introduce the so called retarded and advanced Finkelstein coordinates.

The retarded Finkelstein coordinates are the retarded time u and radius r,
where

u = t− r?, dr? = ± dr

1− rg/r
.

The Schwarzschild metrics (its 2-dim part) then takes the form

ds22 = (1− rg/r) du2 + 2dudr. (8)

The retarded geodesics u = const are straight lines with the slope (+45◦), while
the other null geodesic congruence is described by u + 2r? = const, this follows
immediately from the form of the metrics. It is clear now that in the R+-region the
parameter u for retarded null geodesics runs from −∞ at the null past infinity to
+∞ at the future apparent horizon. We see that, written in this coordinates,
there are neither singularity nor degeneracy in the metrics, Eqn. (8), at the
Schwarzschild radius, so, we can safely continue it into a T -region. What kind
of? Moving from R+-region back in time along retarded null lines, u = const, we
inevitably will come to the T+-region, since this is the expanding congruence. In T -
regions the surfaces of constant radii (and, as a consequence, constant “tortoised”
coordinate) become, naturally, space-like, so, in order to avoid any confusions one
should substitute t by the radial coordinate q in our definition of the retarded
time u, and since

dr

dr?
= ± (1− rg/r) ,

then in T+-region the sign “−” is appropriate. Therefore, the “tortoised” coordinate
now runs from r? = 0 at r = 0 to +∞ at the past apparent horizon (q = +∞,
r? = +∞, u = q − r? = const). Since the T+-region in our case has the intrinsic
space-like boundary at r = r? = 0, the corresponding conformal diagram is
the right-angle triangle shown in Fig. 2, but rotated in such a way that its
hypotenuse appeared at the bottom. (The right angle sides are the parts of future
and past horizons crossed in the so-called bifurcation point.) Combining R+-
and T+-regions, we obtain the part of the Carter–Penrose diagram covered by
retarded Finkelstein coordinates. It is shown in Fig. 3 The advanced Finkelstein
coordinates, v и r, are introduce in an analogous way,

v = t+ r?, dr? = ± dr

1− rg/r
,

and the Schwarzschild metric takes the from

ds22 = (1− rg/r) dv2 − 2dvdr. (9)

155



V. A. B e r e z i n

Null geodesics v = const = u + 2r? are straight lines with the slope (−45◦), the
parameter v is changing from −∞ at the past apparent horizon to +∞ at the
future null infinity, and the ingoing (contracting) congruence itself starts at the
past null infinity (t = −∞, r? = +∞, v = const), crosses the future apparent
horizon (t = +∞, r? = −∞, v = const) and then enters the T−-region, where
the metrics, Eqn. (9) can be safely continued to. In the T−-region we, of course,
must make the, now familiar, substitution t → q and choose the sign “−” in the
definition of the “tortoised” coordinate. The part of the Carter–Penrose diagram
covered by the advanced Finkelstein coordinates, is shown in Fig. 4. Combining
these two, we arrive at Fig. 5.

But still, the constructed manifold is not geodesically complete. The problem
is that in the T+-region there exist, apart from the null geodesics u = const,
yet another null congruence, mentioned above, v = u + 2r? = const. On the
confirmal diagram it is represented by null lines that start at the past singularity
r = 0 and go from right to left with the slope (−45◦). They “encounter” the future
apparent horizon and can be continued, evidently, further. Where to? Analogously,
in the T−-region, apart from the already considered null geodesics, v = const,
there exist also null geodesics u = v − 2r? = const. They started at the past
apparent horizon and “encounter” the future singularity at r = 0. Where they
come from? It follows from the continuity of the invariant ∆ that there should
exist the R-region isometric to our R+-region we started with (the isometry is the
consequence of the Birkhoff theorem [15]). Since, in our construction it should
lie to the left of the T -regions, i.e., its future and past null infinities are located
to the left of the apparent horizons, then the radii should decrease from left to
right, and this is, due to our conventions, is the R−-region. The difference of the
Finkelstein coordinates used before in the R+-region is that in the definition of
the “tortoised” coordinate r? one should change the signs “+” → “−”. The full
Carter–Penrose conformal diagram is shown in Fig. 6. Now the obtained manifold
is indeed geodesically complete: its boundaries, apart from all the infinities, are
two space-like singular surfaces r = 0 in the past and in the future. They are
singular because the Riemann curvature tensor is divergent there. Physically in
means that in the vicinity of the surfaces of zero radius the tidal forces grow
unboundedly, and nothing can survive.

4.4. On the Causal Structure of the Schwarzschild Manifold. The space-time
shown on the above diagram is called “eternal black hole”. It was stated in
Introduction that the black hole is the part of the space-time beyond the event
horizon. And the event horizon is defined as the null hyper-surface, separating
the regions where from the light can escape the infinity and those where from
it is impossible to do. In such a definition the global property is hidden—to
determine the event horizon one should know the whole history, both past and
future. The apparent horizon, on the contrary, is defined locally—by zero value
of the invariant ∆. In our case the apparent horizon is null hyper-surface, and
it is seen clearly on the full conformal diagram that it coincides with the event
horizon.

For the generic black hole formed during the gravitational collapse, the picture
will be different. Somewhere in the R+region there will be a (time-like) boundary
of the collapsing matter, that crosses the horizon and comes into the T−-region,
forming the black hole outside. Consequently, to the left of this boundary the
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Carter–Penrose diagram should be changed. And what serves as a source of gravity
(and space-time curvature) in the case of eternal black hole? Naturally, nothing
but singularity at R = 0. Evidently, this source is very strange. We used to think of
point-like particle at the center as “staying at one and the same place”, i.e., having
a time-like world line. Here, instead, we are dealing with two space-like surfaces
at R = 0, in the past and in the future. If the radius is chosen as a temporal
coordinate, one would say that the source existed in the past for only one moment,
then disappeared and resurrected again, like Phoenix, in the future singularity.
Since in the T -regions the space-time is essentially non-static, the processes of
matter creation can take place, therefore, the situation is unstable. The instability
in the T -region of inevitable contraction does not disturb us seriously since all
the information remains there and finally disappears in the future singularity, not
penetrating neither into R−- nor into R+-region (principle of causality!); this is
seen rather well in Fig. 6. It is because of this that the T−-region is called the
black hole. The very name was invented by John Archibald Wheeler [16–18]. The
situation in the T+-region is quite different. As it seen on the diagram, the created
(due to instability) matter can travel both to the R+- and to the R−-region. In the
R+-region (where the observers are situated) this will be seen as a bright flash.
And this is because the T+-region was called the white hole. The part of matter
that passed to the R−-region (forever!) forms the so called semi-closed world, that
shows itself in outer R+-region as the gravitating mass in the empty space-time
with the hole in it—sphere of the radius equal Rg.

We have already mentioned that the points in R+ and in R−-regions are
causally disconnected, the interval between them is space-like. If we cut the
diagram along the space-like hyper-surface that goes through the intersection
of past and future horizons, then the geometry of this hyper-surface is called the
Einstein–Rosen bridge [19] or non-traversable wormhole. We see, that the causal
structure of the geodesically complete Schwarzschild space-time is rather complex,
unusual and curious.

5. Thin Shells
5.1. Israel Equations. In this Section we present the thin shell technique in

General Relativity, elaborated by W. Israel [20–22].
Consider a d-dimensional space-time M, divided in two parts, M− и M+

by some hyper-surface Σ. The hyper-surface Σ is called singular, if the energy-
momentum tensor, concentrated on it has the form

T ki = Ski δ(Σ) + . . . ,

here Ski is the surface energy-momentum tensor of the shell, and (i, k = 0, 2, . . . ,
d− 2), otherwise the shell is called nonsingular.

In order to derive the equations of motion for a singular shell, it is necessary,
first of all, to construct the metrics on M, continuous while crossing Σ. Let in
some coordinate system y+ on M+ the equation describing the hyper-surface is
F+(y+) = 0, and, correspondingly, F−(y−) = 0 in M−. Then, using the gauge
freedom, we can always write the metrics inM− andM+ as follows

ds2 = εdn+2 + γ+ij (x
+, n+)dx+idx+j ,

ds2 = εdn−2 + γ−ij (x
−, n−)dx−idx−j .
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Here

ε =

{
−1, if Σ space-like;
+1, if Σ time-like.

In this new coordinates, (n±, x±) the surface equations F±(y±) = 0 become
n+ = n− = 0. The continuity condition for the metrics onM is the existence of
the coordinate transformation, x+ = x+(x−), such that

γ+ij (x
+, 0) = γ+kl(x

−, 0)
∂x−k

∂x+j
∂x−l

∂x+i

Note, that γkl(x−,0) is a (n − 1) − dim tensor. Thus, we are able to choose the
following metrics onM:

ds2 = εdn2 + γij(x, n)dxidxj . (10)

This metrics is not however smooth, its first derivatives in the normal coordinate n
can jump on Σ. Since the metrics, Eqn. (10), gives us the normal slicing onM, one
can use the Gauss–Codazzi relations and rewrite the Einstein equations in terms
of extrinsic curvature tensor Kij and scalar curvature (d−1)R of the (d − 1)-dim
normal section. Then the components

(
i
n

)
and (nn) become

Gni = Kj
i |j −K

l
l |i = −8πGTni , (11)

Gnn = −1

2
(d−1)Rε+

1

2
((TrK)2 − TrK2) = 8πGTnn , (12)

Gji = (d−1)Gji + ε(Kj
i − δ

j
i TrK),n − ε(TrK)Kj

i +

+
1

2
εδji {(TrK)2 + TrK2} = 8πGT ji . (13)

Here “|” denotes the covariant derivative with respect to the metrics on (d−1)-dim
normal section. In gaussian coordinates one has

Kj
i ≡ Γjin = −1

2
γjkγki,n,

and in the case of jump in the first derivatives, the second term in Eqn. (13) will
contain a δ-function. After integrating the Eqn. (13) in n,

lim
δ→0

[∫ δ

−δ
Gjidn

]
= 8πG lim

δ→0

[∫ δ

−δ
T ji dn

]
,

one gets the equation of motion for the shell:

ε([Kj
i ]− δ

j
i [K

l
l ]) = 8πGSji , (14)

where [Kj
i ] ≡ K

j
i

+ −Kj
i

−
is the jump in the extrinsic curvature tensor.

Making use of Eqn. (14), one gets from Eqs. (12) and (11)

Sji |j + [Tni ] = 0, (15)
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{Kj
i }S

i
j + [Tnn ] = 0, (16)

where
{Kj

i } ≡
1

2
(Kj

i

+
+Kj

i

−
).

Eqs. (15) and (16) are the continuity equations for the surface energy-momentum
tensor of the shell.

The above derivation of Israel equations are based essentially on the fact that
the shell Σ is singular. However, one can also obtain them as a consequence of the
Einstein equations written on the manifold decomposed inM,M+,M− and Σ.
Then, in addition to the Israel equations there appear as well equations valid
everywhere in the space-time. The energy-momentum tensor in this case can be
written as

Tµν(n, x) = Sµν(n, x)δ(n) + Eµν(n, x)θ(n) + T̃−µν(n, x), (17)

where
[T̃µν ]|n=0 = 0, T̃+

µν = Eµν + T̃−µν .

Let us now write the extrinsic curvature tensor as a pair (K+, K−), where K±
are extrinsic curvatures of Σ in the regionsM±:

Kij
+ = {Kij}+

1

2
[Kij ], Kij

− = {Kij} −
1

2
[Kij ].

As was already shown, in the case of singular shell the derivatives of metric
tensor undergo a jump when crossing the shell, and, consequently, the jump in the
extrinsic curvature tensor is nonzero, [Kij ] 6= 0. When the shell is nonsingular,
then Sµν = 0 and [Kij ] = 0. However, the derivative of the extrinsic curvature
tensor along the normal direction may undergo a jump, [Kij ],n 6= 0. In this case
we are dealing with the shock waves.

Keeping in mind this note, we can write the extrinsic curvature tensor and its
normal derivative in the form

Kij(n, x) = [Kij(n, x)]θ(n) +K−ij(n, x), (18)
Kij(n, x),n = [Kij(n, x)]δ(n) + [Kij(n, x)],nθ(n) +K−ij(n, x).

Note that functionsK−ij are considered as continuous everywhere,−∞<n<+∞.
Substituting these relations into the left hand sides of the Einstein’s equations and
equating the coefficients in front of the corresponding δ-functions, one arrives at
the Israel equations.

To be more detailed, let us write the Einstein equations by components, using
Eqn. (18):

Gnn = (−[Kj
i ]{K

i
j}+ [TrK]{TrK})θ(n)−K−jiK−

i
j − (TrK−)2 − 1

2

(d−1)
Rε,

Gni = (−[K l
i|l] + TrK|i)θ(n) + (−K−li|l + TrK−|i) =

= 8πGεSli|lθ(n) + (−K−li|l + TrK−|i),
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Gij = ε([Kij ]− γij [TrK])δ(n) + ε([Kij,n]− γij [TrK,n])θ(n)+

+8πG
(

2Sli{Klj}+ 2Slj{Kli} −
3

d− 2
TrS{Kij} − Sij{TrK}

)
θ(n)+

+8πG
(
γijS

l
m{Km

l } −
1

d− 2
γijTrS{TrK}

)
θ(n)+

+ε(K−ij,n − γijTrK−,n + 2K−ilK
−l
j −K−ijTrK−)+

+
1

2
εγij(K

+l
mK

−m
l + TrK−2) + (d−1)Gij .

Equating these components to the corresponding ones for the energy-momentum
tensor, Eqn. (17), one obtains

{Kj
i }S

i
j + [Tnn ] = 0, (19)

−K−jiK−
i
j − (TrK−)2 − 1

2
(d−1)Rε = 8πGT̃nn;

Sji |j + [Tni ] = 0, (20)

−K−li|l + TrK−|i = 8πGT̃ni;

ε([Kj
i ]− δ

j
i [K

l
l ]) = 8πGSji , (21)

2Sli{Klj}+ 2Slj{Kli} −
3

d− 2
TrS{Kij} − Sij{TrK}+

+γijS
l
m{Km

l } −
1

d− 2
γijTrS{TrK} = [Tij ],

ε
(
K−ij,n − γijTrK−,n + 2K−ilK

−l
j −K−ijTrK−+

+
1

2
γij(K

+l
mK

−m
l + TrK−2)

)
+ (d−1)Gij = 8πGT̃ij .

It can be easily seen, that the first lines, Eqs. (19), (20) and (21), are exactly
the Israel equations. They are non-trivial if the shell is singular. In the case
of shock waves they serve as the matching conditions for different types of the
metrics. The remaining six equations are non-trivial everywhere in the space-time.
In the absence both the singular shells and the shock waves these equations are
simply the “(d+ 1)-decomposition” of the Einstein equations.

5.2. Spherically Symmetric Thin Shells. In what follows we will only be dealing
with the spherically symmetric thin shells in “our” four-dimensional space-time.
So, we will study this case in details following he work [11].

Let us write the spherically symmetric metrics in already diagonal form

ds2 = eνdt2 − eλdq2 − r2(t, q)(dϑ2 + sin2 ϑdϕ2).

In the Gaussian normal coordinate system, related to the shell, eλ = 1, q = n,
and we introduce the proper time τ for the observer sitting on this shell at n = 0 :
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dτ = e
ν
2
(t,0)dt. Denoting ρ(τ) = R(t, 0), we get for the invariant ∆:

∆ = ρ̇2 − ρ2n,

where “dot” means differentiation with respect to the proper time τ , and lower
index n—differentiation along he normal to the shell. Because of spherical symmetry
and diagonal structure of the metrics, the surface energy-momentum tensor of the
shell is very simple:

Sji = diag
(
S0
0 , S

2
2 , S

2
2

)
.

The same structure is for the extrinsic curvature tensorKj
i . So, of all the matching

equations there remain only two Israel equations and the continuity equation that
now read as

[K2
2 ] = 4πGS0

0 ,

[K0
0 ] + [K2

2 ] = 8πGS2
2 ,

{K0
0}S0

0 + (d− 2){K2
2}S2

2 + [Tnn ] = 0,

Ṡ0
0 + 2

ρ̇

ρ
(S0

0 − S2
2) + [Tn0 ] = 0,

the continuity equation being a differential consequence of the Israel equations
and the Einstein equations on the shell. It is easy to see that K2

2 = −ρ,n/ρ;
K0

0 = −ν,n/2. Remembering now, how the invariant ∆ looks like, we get:

ρn = ±
√
ρ̇2 −∆ = σ

√
ρ̇2 −∆.

Here there appeared the sign function σ = ±1, that shows, whether the radii
increase in direction of the outer normal, or they decrease. We know already that
in the R-regions the sign of the spatial derivative of the radius does not change.
This means that the value of σ determines in which of them the shell is traveling:
if this happens in R+—then σ = +1, if in R−—then σ = −1. In general, σ is not an
integral of motion and may change its value in T -regions. Since we will be dealing
with the shells in vacuum, i.e., both inside and outside of which are Schwarzschild
space-times with different mass parameters, the signs of σin inside and σout outside
determine, in what manner these two geometries are matched along the shell, i.e.,
they define completely the global geometry of the full manifold. In the simplest
case, when there is the flat Minkowski space-time inside, σin = +1 and the sign
of σout defines the type of shell: black hole for σout = +1 or wormhole (semiclosed
world) for σout = −1.

Let us start with calculation of extrinsic curvature tensor on the shell. Since,
locally, the geometry of the spherically symmetric space-time is completely deter-
mined by two invariant functions, R(t, q) и ∆(t, q), it is clear that the result should
depend on the values of ρ(τ) and ∆(τ) and their time derivatives. For the jump
of
[
K2

2

]
, we have, evidently, [

K2
2

]
= −

[σ
ρ

√
ρ̇2 −∆

]
.
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The jump of
[
K0

0

]
can also be calculated straightforwardly, but it is easier to

make use of the first of the Israel equations, continuity equation and the Einstein
equations in the vectorial form derived in the preceding Section. So, we have:

−
[
σ
√
ρ̇2 −∆

]
= 4πGρS0

0 ,

Ṡ0
0 +

2ρ̇

ρ

(
S0
0 − S2

2

)
+ [Tn0 ] = 0,(

ρ (1 + ∆)
)
,i = 8πGρ2

(
Tρ,i − T ki ρ,k

)
.

Putting i = 0 in the last of these equations, we get

ρ̇ (1 + ∆) + ρ∆̇ = 8πGρ2 (Tnn ρ̇− Tn0 ρn) .

Let us differentiate the first equation

−
[ σ

2
√
ρ̇2 −∆

(2ρ̈− ∆̇)
]

= 4πGρ̇S0
0 + 4πGρṠ0

0

and substitute into it the expression for Ṡ0
0 from the continuity equation:[ σ

2
√
ρ̇2 −∆

(2ρ̈− ∆̇)
]

= 4πG(2S2
2 − S0

0)ρ̇+ 4πGρ [Tn0 ] .

The only thing left is to substitute in here the expression for ∆̇ from Einstein
equations and divide the whole relation by ρ̇. The result is the following

−
[ σ

2
√
ρ̇2 −∆

(
ρ̈+

1 + ∆

2ρ
− 4πGρTnn

)]
= 4πG

(
2S2

2 − S0
0

)
.

Finally, the system of Israel equations for matching geometries inside and
outside the shell and defining its evolution plus the continuity equation for the
surface energy-momentum tensor take the form

−
[
σ
√
ρ̇2 −∆

]
= 4πGρS0

0 ,

−
[ σ√

ρ̇2 −∆

(
ρ̈+

1 + ∆

2ρ
− 4πGρTnn

)]
= 4πG

(
2S2

2 − S0
0

)
,

Ṡ0
0 +

2ρ̇

ρ

(
S0
0 − S2

2

)
+ [Tn0 ] = 0.

The structure of these equations reflects the general structure of the Einstein
equations. The first is the equation of the initial conditions or, using the language
of Hamiltonian formalism, the constraint equation. The second equation is dyna-
mical—it contains the second time derivative—acceleration. The third one is the
consequence of the Bianchi identities. The invariant functions ∆(in, out), and
also Tn0 (in, out) and Tnn (in, out) are determined by the properties of the inner
and outer parts of the space-time and the matter distributions there. So, we have
two equations for three unknown functions of proper time, namely, ρ(τ), S0

0(τ)
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and S2
2(τ). As was already mentioned, we study he shell placed in the vacuum,

therefore, Tn0 = 0 и Tnn = 0. Besides, for the Schwarzschild solution we have

∆ = 1− 2Gm/ρ,

where inside m = min, outside m = mout.
5.3. Initial Condition and Dynamics. Let us now decide what kind of shells

we want to study. We are choosing the simplest generalization of the point-like
gravitating source, namely, the spherically symmetric thin dust shell. The word
“dust” means that its tangential stress is zero, S2

2 = 0. Let M be the sum of all
the masses of particles composing the shell. It is called the “bare mass”. In the
chosen units M = E—i.e., this is the energy of the shell in its hydrodynamical
or thermodynamical meaning. By definition, it equals to the following volume
integral:

M =

∫
T 0
0 dV = 4π

∫
T 0
0R

2e
λ
2 dq = 4π

∫
S0
0δ(n)R2dn = 4πρ2(τ)S0

0 ,

S0
0 =

M

4πρ2
.

After substituting this into the continuity equation one gets, that for the dust
shell M = const, i.e., the bare mass is the integral of motion. So, we are left
with only one unknown function, the radius of the shell ρ(τ). Of course, it can be
found by integrating the dynamical equation. The general solution will depend
on two arbitrary constants, which can be specified by imposing initial conditions
ρ0 = ρ(0), ρ̇0 = ρ̇(0), σin(0) and σout(0), provide that all the other parameters,
Schwarzschild massesmin,mout and the bare massM are known. But, in addition,
we have also the first equation, that constraints the set of initial conditions and
the values of parameters. This can be demonstrated in the following way: let ρ0,
ρ̇0, min and M be given, then, from the constraint equation for different values
of σin(0) and σout(0) we would obtain different values for mout, i.e., for the total
mass (energy) of the system accounting for the gravitational mass defect. And,
vice verse, specifying from the very beginning the parameters of the system, min,
mout and M , we will be able (after some investigation) to obtain the possible
values for σin(0) and σout(0), defining, in this way, the global geometry of the
complete space-time. For this it sufficient to know only one constraint differential
equation, which is of the first order. Such an investigation we will start right now.

Let us write this equation in the explicit form:

σin

√
ρ̇2 + 1− 2Gmin

ρ
− σout

√
ρ̇2 + 1− 2Gmout

ρ
=
GM

ρ
.

We assume that the shell consists of an ordinary, not exotic, matter, i.e., let
M > 0. Since we are interested in black holes, we consider only the case when
mout > 0. We do not need to integrate our differential equation, it is only sufficient
to investigate some specific points of the trajectories, namely, ρ = 0, ∞, turning
points ρ̇ = 0 as well as signs of σin, σout there. Therefore, we will proceed in the
following way. First, let us make a square of the equation after moving the second
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term from the left to right,

∆m

M
= σout

√
ρ̇2 + 1− 2G

ρ
+
GM

2ρ
,

where ∆m = mout −min is the total mass of the shell. It follows from this that

σout = sign
(∆m

M
− GM

2ρ

)
,

so,

σout(0) = −1, σout(∞) = sign
(∆m

M

)
.

Note, that nothing forbids the value of ∆m to be negative for min > 0. For the
sign of σin one has

σin = sign
(∆m

M
+
GM

2ρ

)
,

so,

σin(0) = +1, σin(∞) = sign
(∆m

M

)
.

When the shell’s motion is infinite (unbounded), a when it is finite (bounded)?
Letting the radius of the shell to go to infinity, one gets

∆m

M
= σout

√
ρ̇2 + 1 = σin

√
ρ̇2 + 1,

therefore, the motion is infinite if |∆m|/M > 1, and in this case σin(∞) =
= σout(∞). If |∆m|/M 6 1, then the motion is finite.

For the turning points, ρ̇ = 0, one obtains simple quadratic equation:(GM
2ρ0

)2
+ 2

min +mout

M

(GM
2ρ0

)
+
(∆m

M

)2
− 1 = 0.

It is easy to see that for the infinite motion there are no turning points (both
roots of the quadratic equation either negative or complex conjugate), and in the
case of finite motion there exists only one turning point ρ = ρ0 > 0:

2GM

ρ0
= −min +mout

M
+

√
1 +

4minmout

M2
.

5.4. Global Geometries. Let us consider, first, the infinite motion, which is
determined completely by the sign of ∆m. Indeed, sign ∆m = σin(∞) = σout(∞),
and it is always σin(0) = +1 и σout(0) = −1. If ∆m > 0, then the Carter–
Penrose diagram for the whole space-time looks like the following, see Fig. 7. The
trajectory is rather schematic: we did not show explicitly the changes of σ both
inside and outside the shell in the vicinity of zero radii. By dashed curves the
surfaces of constant radii are indicated in the corresponding R- and T -regions.
The relative positions of the apparent horizons in the outer and inner metrics
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are chosen such that the condition ∆m > 0 is fulfilled: the shell when contracting
from the infinite radius to zero, crosses first the outer horizon and enters the outer
T±out-region, and only then—inner one. Of course, there exists also the solution
with the expanding shell, which can be obtained simply by time reversion. In the
case when ∆m < 0, the Carter–Penrose diagram is shown in Fig. 8

Consider now the finite motion, which provides us with much more different
global geometries. Thus, what is at hand? Substituting the value of ρ0, found
before, into the expression for σ, we obtain the following inequalities:

∆m

M
>

1

2

(√
1 +

m2
in

M2
− min

M

)
;

∆m

M
< −1

2

(√
1 +

m2
in

M2
+
min

M

)
,

if σout = +1, and

−1

2

(√
1 +

m2
in

M2
+
min

M

)
<

∆m

M
<

1

2

(√
1 +

m2
in

M2
− min

M

)
,

if σout = −1. Analogously, for inner metrics we get:

∆m

M
> − M

4min
,

if σin = +1, and
∆m

M
< − M

4min
,

if σin = −1. What are the possibilities? When ∆m > 0, then σin = +1, and for

∆m

M
>

1

2

(√
1 +

m2
in

M2
− min

M

)
one has σout(ρ0) = +1, the conformal Carter–Penrose diagram looks as follows,
see Fig. 9.

When

0 <
∆m

M
<

1

2

(√
1 +

m2
in

M2
− min

M

)
,

then σout = −1 and Carter–Penrose diagram looks as follows, see Fig. 10.
In the case when ∆m < 0, it is always σout = −1, (M > 0!), and for

− M

4min
<

∆m

M
< 0

one has σin(ρ0) = +1, the Carter–Penrose diagram looks as follows, see Fig. 11.
When

∆m

M
< 0,

then σin(ρ0) = −1, but this is possible only if

min

M
>

1

2
√

2
(M > 0!).
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The Carter–Penrose diagram in this case is shown in Fig. 12.
5.5. Modified Newton’s Law. We have already said above that in the case of

spherical symmetry, having at hand the equation of state for the matter on the
shell and after integrating the continuity equation, it is sufficient to investigate
the remained of Israel equations, namely, the constraint one, in order to describe,
qualitatively, the global geometry of the space-times. However, though the con-
straint equation is, in a essence, the energy conservation law, its conventional
parts—kinetic and potential ones—are not expressed as explicit as one would wish.
That’s why we decided to derive in this Section, in order to make the physics more
clear, the modified Newton’s law, i.e., the formula for the acceleration of freely
falling spherically symmetric thin dust shell which is the simplest generalization
of point-like particle in the central gravitational field.

The Israel equations for the spherically symmetric dust shell have the form

σin

√
ρ̇2 + 1− 2Gmin

ρ
− σout

√
ρ̇2 + 1− 2Gmout

ρ
=
GM

ρ
,

σin√
ρ̇2 + 1− 2Gmin

ρ

(
ρ̈+

Gmin

ρ2

)
− σout√

ρ̇2 + 1− 2Gmout
ρ

(
ρ̈+

Gmout

ρ2

)
= −GM

ρ2
,

where min is the central gravitating mass, and mout = min +∆m is the total mass
(energy) of the system. Squaring the first equation we get

σin

√
ρ̇2 + 1− 2Gmin

ρ
=

∆m

M
+
GM

2ρ
, σout

√
ρ̇2 + 1− 2Gmout

ρ
=

∆m

M
− GM

2ρ
.

Further, rather simple algebraic calculations give the following result

ρ̈ = −
G(min + 1

2∆m)

ρ2
− G2M2

4ρ3
.

The first term in the right hand side is the classical Newton’s law for the free
fall acceleration (in terms of the proper time of the co-moving observer), but a
little bit different: instead of the central gravitating mass min we have now

min +
1

2
∆m =

1

2
(min +mout),

i.e., one half of the Schwarzschild masses inside and outside of the shell. It is not,
however, as primitive as it seems. The main thing is that the total mass of the
system mout, and, consequently, ∆m as well, depend on the initial conditions of
the shell’s motion. In other words, such an additional quantity 1

2∆m depends on
the velocity at the moment of measurement, i.e., on the kinetic energy, what, of
course, in the spirit of the main General Relativity postulate: “any kind of energy
gravitates”.

The second term is a result of gravitational self-interaction, it is proportional
not to the inverse square of the radius, but to the inverse cube. The term of such a
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type appears also as a special relativistic modification to the Newton’s law which
causes the shift of planet’s perihelia. Taking into account functionally the same
yet another additional term may become useful in estimation of the masses of
the super-massive black holes in the galactic centers around which there are stars
rotating sufficiently close to the black hole horizons. The curious fact is that if
σin = +1, and σout = −1, the shell will shrink to zero radius even in the case
when there is nothing to be attracted to, i.e., when min = mout = 0 (∆m = 0),
just due to the self-gravitation.

We should note, that making measurements one can find out these deviations
from the Newton’s law and define the global geometry of gravitating system
“central body + shell”, and this is impossible for the limit of the probe particle.
Naturally, it is an ideal case, because we consider the spherically symmetric
problem without the gravitational radiation. But it’s important to show the
necessity for taking into account the inverse influence of gravitational field sources
on the metrics and global geometry of the space-time.

6. Vaidya Metrics
Israel equations “work good” when the shell either time-like of space-like. And

what to do if it is null? As is well known, the normal vector to he null hyper-
surface lies in that very hyper-surface. But, it is always possible to introduce
the double-null coordinates, i.e., the retarded time and the advanced time. The
null shell moves, by definition, along one of them. By integrating the Einstein
equations along the second one we can obtain the matching conditions on the
null hyper-surface [11]. The very question about the investigation of singular
(when the energy-momentum tensor is proportional to δ-function) null hyper-
surfaces may seem purely academic. But this is not so. The examples are jumps
in the relativistic fields distributions. Their evolution means the existence of the
infinite (in absolute value) temporal and spatial derivatives evolving along the
characteristics of the corresponding hyperbolic partial differential equation, i.e.,
with the speed of light—shock waves. But we will not develop such a formalism
here, since there exists the general solution to the Einstein equations for the
gravitating spherically symmetric radiation, namely, the Vaidya metrics.

In order to derive the Vaidya metrics it is possible, of course, to go the
standard way: to investigate the structure of the energy-momentum tensor for the
spherically symmetric radiation and then to try to solve the non-linear Einstein
equations (e.g., in the vectorial form described above). But, “we will choose a
different way”. Let us imagine that the radiation (either outgoing or ingoing)
lasts for only finite time interval, then, since nothing can travel faster that light,
before the beginning as well as after the radiation, we necessary will be dealing
with the Schwarzschild metrics (because of the Birkhoff theorem) with different,
of course, mass parameters. Therefore, at the boundaries along the null hyper-
surfaces one must match the Vaidya and Schwarzschild space-times. It is from
this matching that we will obtain all the needed information.

As the first step we should choose the appropriate coordinate system, most
adequate to our problem. Let us denote the common notation z = {u, v} for the
retarded, u, and advanced, v, null coordinates. For the Schwarzschild metrics, as
we already know,

z = t− εr?, dr? =
dr

F
, F = 1− 2Gm

r
,
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where ε = +1 for z = u and ε = −1 for z = v, and the line element in the
Finkelstein coordinates {z, r} takes the form

ds2 = Fdz2 + 2εdzdr − r2(dϑ2 + sin2 ϑdϕ2).

In general, the use of the Finkelstein coordinates dictates the following structure
for the spherically symmetric metrics

ds2 = A(z, r)dz2 + 2Hdzdr − r2(dϑ2 + sin2 ϑdϕ2),

because when z = const, its two-dimensional part should equal zero. Note also that
the choice of the invariant radius r as the second coordinate (that could be either
spatial or temporal) fixes the coordinate system up to arbitrary transformation of
the form z′ = z′(z). Let z = z0 is the boundary between Vaidya and Schwarzschild
metrics. Then, it follows form the continuity of the line element (= the first
quadratic form) that the radius r should also be a continuous function along the
whole boundary. But the second quadratic form—this is our invariant ∆—should
also be continuous, what becomes evident if one integrates the Einstein equations
in the vectorial form “across” the boundary z = z0 (i.e., along the other null
coordinate) and take into account the absence of δ-function in right hand side of
the equations. We have, therefore,

∆Vaidya(z0) = ∆Schw(z0), ∆Vaidya = −1 +
2Gm(z)

r
.

The two-dimensional metric tensor γik (ds2 = γikdx
idxk = Adz2 + 2Hdzdr) and

its reverse γik are

γik =

(
A H
H 0

)
, γik =

(
0 1

H
1
H − A

H2

)
.

From this one get for ∆ = γikR,iR,k:

∆ = − A

H2
=⇒ A

H2
= 1− 2Gm(z)

r
.

Whenm = const, then the Vaidya metrics should be reduced to the Schwarzschild
one, and from this it follows that that the metric coefficient H should depend on
the null coordinate z only and by the transformation z′(z) can be made equal ε.
Eventually, the Vaidya metrics takes the form

ds2 =
(

1− 2Gm(z)

r

)
dz2 + 2εdzdr − r2(dϑ2 + sin2 ϑdϕ2).

The only thing left is to evaluate the energy-momentum tensor of radiation,
and for this we will use the Einstein equations in vectorial form. Rather simple
but cumbersome calculations lead us to the following result: the only nonzero
component is

T rz = − 1

4πr2
dm

dz
.
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The trace of the energy-momentum tensor is zero, as it should be expected in the
case of radiation. One obtains also that H = H(z), and this shows that our lines
of reasoning are not controversial.

Finally, we would like to say several words about the apparent horizons defined
by

∆ = 0 =⇒ rH = 2Gm(z).

Is it null (as for the Schwarzschild metrics), time-like or space-like? To answer
this question, let us calculate the square (Lorentzian) of the normal vector to the
surfaces ∆ = const:

D = γik∆,i∆,k = −
(

1− 2Gm(z)

r

)
(∆,r)2 + 2ε∆,r∆z.

When ∆ = 0, then

D = −ε8G2m(z)m′(z)

r3

Let us demand the energy dominance condition to be fulfilled. Then in the R+-
region

signm′ = −ε =⇒ D > 0.

Thus, the apparent horizon is space-like. In the R−-region the ε should be replaced
by the −ε, so, the result remains the same. In particular, from this it follows that
when the radiation is absorbing by a black hole, the apparent horizon as always
lies beyond the event horizon, i.e., inside the resulting black hole. And this will
be shown explicitly in the next, final Section.

7. Static Observer—if it Exists in Reality, or only Virtually?
Let us try to answer this question. What is the problem? The test particles

we were used to think of as observers are virtual, having neither taste nor odor,
i.e., with negligibly small masses and sizes. It may be thinkable (but not always)
for the freely falling, along a geodesics, observer, but in the case of the static
observer the situation is quite different. The point is that one should ensure such
a statics in the gravitational field, and for this the external force is needed (what
changes already the observed gravitational field) or to supply the observer with
the rocket and fuel. But! First, it means that the additional mass appeared, not
negligibly small, which also gravitates. Second, the fuel may be exhausted very
soon (depending on its amount, i.e., on its mass), and then what?

To avoid the unnecessary complications with the gravitational radiation, we
assume the spherical symmetry. Let us imagine the set (ensemble) of observers
spread inside the narrow layer (in order to use the thin shell formalism) at some
distance from an eternal black hole. To ensure the statics, we provide them
with the photon rockets (the most effective ones) which will radiate the energy
inside starting from some definite moment of time. Thus, outside we have the
Schwarzschild metrics with the mass parameter mout = const, equal to the total
mass (energy) of the system, and inside - the Vaidya metrics, written in advanced
Finkelstein coordinates, with the varying mass min(v) (ε = −1). The thin shell is
at rest at the surface of constant radius r = r0, i.e., in the Israel equations one
should put ρ = r0, ρ̇ = ρ̈ = 0. Again, for the sake of simplicity, we will consider
a dust shell (S2

2 = 0), but now the bare mass is not constant more—M = M(τ).
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One more difference from the freely falling shell considered above: now the ingoing
energy flow Tn0 (in), and the normal component of the stress tensor Tnn (in), are
not zero, their values are dictated by static condition.

And what do we have at hand? Israel equations√
Fin −

√
Fout =

GM

r0
,

1

Fin

(1− Fin

2r0
+ 4πGr0T

n
n (in)

)
− 1− Fout

2r0
√
Fout

= −GM
r20

,

Ṁ = 4πr20T
n
0 (in),

Fin = 1− 2Gmin(v)

r0
, Fout = 1− 2Gmout

r0
= F0 = const,

where we already took into account all our requirements (including Tn0 (in) =
= Tnn = 0), and the energy-momentum tensor for the radiation

Tzz = εT rz = − ε

4πr20

dmin

dz
,

—all other components are zero. We need also to transform the Finkelstein coordi-
nates {z, r} to the Gaussian normal coordinates {τ, n}, where the world line of
the shell is just n = const = 0. Rather simple calculations lead us to the following
result:

∂z

∂τ
=

√
ρ̇2 + F − ερ̇

F
,

∂z

∂n
=
ρ̇− ε

√
ρ̇2 + F

F
= −ε∂z

∂τ

Tnn = −
(√ρ̇2 + F − ερ̇

F

)2
Tzz, Tn0 = −εTnn .

Since ρ = r0 = const, we get

Tnn =
ε

4πr20F

dm

dz
, Tn0 = − 1

4πr20F

dm

dz
.

Now we have everything for answering the posed question. It follows from the
continuity equation that

Ṁ = − 1

Fin

dm

dv
,

and after some manipulations with the Israel equations,

2r0Ṁ = M
(GM
r0
−A

)
, A =

1− F0√
F0

.

This differential equation is easily solved:

GM

r0
=

A

exp
(A(τ−τ0)

2r0

)
+ 1

,

whereτ0 is the integration constant, that is determined by the initial values of the
bare mass, M0 = M(τ = 0), initial mass inside the shell min(τ = 0) and radius
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r0 (the value of F0 and, consequently, of A, can be derived from the first of Israel
equations).

All the details, if one wishes, can be found in [23]. The last note. Please,
look attentively at the Fig. 13 below. Here black horizontal lines are ordinary
Schwarzschild singularities at zero radii, blue lines with slopes ±45◦ are future
and past null infinities. Solid red curves are future and past apparent horizons
where the the introduced in the paper invariant function ∆ = 0, they separate
the R-regions with ∆ < 0 from T -regions with ∆ > 0, T+ being the region of
inevitable expansion, and T−—the region of inevitable contraction. Black dashed
curves represent hyper-surfaces of constant radii, they are time-like in R-regions
and space-like in T -regions. The green solid curve shows a trajectory of our
observers who first are freely falling and then, after switching on the engines
of photon rockets (their ingoing radiation is indicated schematically by waving
lines with arrows), keep themselves at rest at constant radius. The important
feature of such a space-time is the future event horizon which is shown by the red
dashed line with the slope 45◦. Note, that the region confined within the event
horizon and future and past apparent horizons is a part of the R+-region where
some curious person can stay infinitely long at constant radius or even go back
to larger values of radii, but nevertheless he (she) is already inside the black hole
and, thus unable to escape.
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4. A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt” // Ann. der Phys. (4), 1905. Vol. 17. Pp. 132–148.

5. A. Einstein, “Zur Theorie der Lichterzeugung und Lichtabsorption” // Ann. der Phys. (4),
1906. Vol. 20. Pp. 199–206.
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