Квантовая электродинамика и прикладная оптика

УДК 537.523:621.373.8

Р. Р. ЛЕТФУЛЛИН

ТВЕРДЫЕ АЭРОЗОЛИ В СИЛЬНЫХ ЛАЗЕРНЫХ ПОЛЯХ

Кратко представлены оригинальные результаты, полученные автором в соавторстве в течение нескольких последних лет в области теоретического исследования оптических эффектов в твердых аэрозолях, и приведены решения на их основе некоторых наиболее интересных прикладных задач. Рассмотрены нелингйные оптические эффекты и их приложения, возникающие при взаимодействии интенсивного лазерного излучения с твердым аэрозолем.

Взаимодействие интенсивного лазерного излучения (ЛИ) с аэрозолем — это новое, быстроразвивающееся направление квантовой электроники и прикладной оптики. Интерес исследователей к этой проблеме объясняется, с одной стороны, обширным классом оптических эффектов и явлений, сопровождающих распространение мощных лазерных пучков в аэрозолях, с другой — широким спектром приложений в экологии, химической и микроэлектронной промышленности, физике атмосферы и метеорологии. Так, исследования, выполненные автором в этой области, были обусловлены уникальной возможностью осуществления процесса фотонного разветвления при нерезонансном взаимодействии интенсивного ЛИ с химически активным аэрозолем и создания на основе этого явления импульсных химических лазеров нового типа (см., например, [3, 8]). Теоретический анализ такого механизма фотонного разветвления привел к накоплению научного материала [1—11], который представляет самостоятельный интерес для аэрозольной физики и технологии. В настоящем обзоре кратко изложены основные результаты этих исследований.

1. Рассеяние и поглощение лазерного излучения твердым аэрозолем

Основными интегральными характеристиками теории распространения волн в дисперсных средах являются сечения ослабления σ_{ext} , рассеяния σ_{sca} и поглощения σ_{abs} лазерного излучения. Согласно теории Ми [12] искомые сечения для случая сферических частиц вычисляются в виде бесконечных рядов:

$$\sigma_{\text{sca}} = (2\pi/k^2) \sum_{l=1}^{\infty} \frac{l^2(l+1)^2}{2l+1} (|a_l|^2 + |b_l|^2),$$

$$\sigma_{\text{ext}} = -(2\pi/k^2) \operatorname{Re} \sum_{l=1}^{\infty} il(l+1) (-1)^l (a_l - b_l) =$$

$$= (2\pi/k^2) \operatorname{Im} \sum_{l=1}^{\infty} il(l+1) (-1)^l (a_l - b_l), \qquad (1)$$

$$16^* \quad 243$$

где $k = 2\pi/\lambda$ — волновое число; a_l , b_l — коэффициенты Ми, определяемые как

$$a_{l} = \frac{\Psi'_{l}(y)\Psi_{l}(\rho) - m\Psi_{l}(y)\Psi'_{l}(\rho)}{\Psi'_{l}(y)\xi_{l}(\rho) - m\Psi_{l}(y)\xi'_{l}(\rho)}; \quad b_{l} = \frac{m\Psi'_{l}(y)\Psi_{l}(\rho) - \Psi_{l}(y)\Psi'_{l}(\rho)}{m\Psi'_{l}(y)\xi_{l}(\rho) - \Psi_{l}(y)\xi'_{l}(\rho)}; \quad (2)$$

 $m = N_0/N_1$ — относительный показатель преломления; $N_0 = n_0 - i \varkappa_0$ и $N_1 = n_1 - i \varkappa_1$ — комплексные показатели преломления материала частицы и газа соответственно; $\rho = 2\pi r_0/\lambda$ — параметр Ми; $y = 2\pi r_0 N_0/\lambda$; $\Psi_i(u) = \sqrt{\pi u/2} J_{l+1/2}^{(1)}; \xi_l(u) = \sqrt{\pi u/2} H_{l+1/2}^{(2)}$ функции Бесселя первого рода и Ханкеля второго рода с полуцелыми индексами; $\Psi'_l = d\Psi_l(u)/du$.

Таким образом, для вычисления сечений σ_{ext} , σ_{sca} и σ_{abs} для частиц сферической формы необходимо задать два безразмерных параметра: относительный показатель преломления m и параметр размерности $y=2\pi r_0 N_0/\lambda$. Значения показателя преломления N_0 в оптическом диапазоне определялись из справочных данных. В радиодиапазоне N_0

Рис. 1. Численный расчет по формулам теории Ми зависимости фактора эффективности поглощения K_{abs} оптического излучения с длиной волны $\lambda = 0.4$ мкм (а) и рассеяния K_{sc} при $\lambda = 0.6$ (б) от размеров r_0 частиц: вольфрама (кривая 1), углерода (кривая 2) и алюминия (кривая 3)

Рис. 2. Расчет зависимостей факторов K_{abs} (кривые 1.1, 2.1 и 1), K_{sc} (кривые 1.2, 2.2 и 2) и K_{ext} (кривая 3) от размеров r_0 частиц: (а) двуокиси кремния (кривыс 1.1 и 1.2), графита (кривые 2.1 и 2.2) в ИК области спектра ($\lambda = 10.6$ мкм) и (6) алюминия в СВЧ области спектра ($\Lambda = 2$ см)

для металлических частиц вычислялся согласно электронной теории металлов Друде. В СВЧ-диапазоне показатель преломления с высокой точностью описывается простой аналитической зависимостью от λ [13] $n_0 = \varkappa_0 = \sqrt{\lambda \sigma_0/c}$, где *с*—скорость света, σ_0 —проводимость.

В основу компьютерного расчета коэффициентов Ми a_l и b_l был положен усовершенствованный автором алгоритм Ленца [14]. Цилиндрические функции или их отношения, входящие в a_l и b_l действительного или мнимого аргументов, вычислялись не по рекуррентным соотношениям прямой и обратной рекурсиями, а непрерывной дробью

$$\frac{\Psi'_{l+1}(y)}{\Psi_{l+1}(y)} = -\left[\frac{1}{\Psi'_{l}(y)/\Psi_{l}(y) - (l+1)/y} + \frac{l+1}{y}\right].$$
 (3)

Как показывают расчеты, такой подход становится особо актуальным для сильно поглощающих частиц при больших значениях ρ . На рис. 1 и 2 приведены расчетные зависимости факторов эффективности рассеяния $K_{\rm sca}$ (ρ , m) = $\sigma_{\rm sca}/\pi r^2_0$, поглощения $K_{\rm abs}$ (ρ , m) = $\sigma_{\rm abs}/\pi r^2_0$ и ослабления $K_{\rm ext}$ (ρ , m) = $\sigma_{\rm ext}/\pi r^2_0$ излучения на длинах волн λ =0,6 мкм; 245 10,6 мкм и 2 см от размеров ($r_0 = 0,01 - 100$ мкм) частиц алюминия, вольфрама, графита и двуокиси кремния.

Из расчетов следует, например, что рассматриваемые частицы прозрачны в видимом, ИК- и СВЧ-диапазонах в области размеров r₀≪0,05 мкм≪λ. С увеличением размера частиц ослабление излучения оптического диапазона определяется, в основном, эффектами рассеяния, в то время как в радиодиапазоне — поглощением.

Сильное рассеяние оптического излучения в видимом диапазоне наблюдается начиная с размеров частиц $r_0 > 0,05$ мкм (см. рис. 1), а в ИК-области спектра для частиц с $r_0 > 1$ мкм (см. рис. 2, *a*).

Сильное поглощение излучения с длиной волны 10,6 мкм наблюдается для частиц С и SiO₂ в диапазоне размеров $r_0 = 0,5-3$ мкм (см. рис. 2, *a*). Факторы эффективности поглощения и рассеяния оптического излучения с длиной волны $\lambda = 10,6$ мкм в широком температурном интервале будут иметь значения, соответственно, для частицы графита $K_{abs} \approx 1,12$ и $K_{sca} \approx 0,3$ ($r_0 = 1$ мкм), а для частицы двуокиси кремния $K_{abs} \approx 0,61$ и $K_{sca} \approx 0,3$ ($r_0 = 1$ мкм). В частности, для частиц С сечение рассеяния на длине волны $\lambda = 10,6$ мкм будет мало по сравнению с сечением поглощения, когда радиус частиц не превышает 2 мкм.

Фактор эффективности ослабления излучения в СВЧ-диапазоне, обусловленный поглощением на одной частице, достаточно мал (см. рис. 2, б): для частицы Al с $r_0 = 1$ мкм он составляет $K_{ext} = 1.5 \cdot 10^{-1}$.

1.1. Дистанционные методы диагностики аэрозоля

Приготовление газодисперсных сред с заданными характеристиками для ряда перспективных уникальных аэрозольных технологий, таких, как синтез керамик, ультрадисперсных алмазов и ВТСП-пленок фуллеренов, создание химических лазеров с КДФ, получение высокоэффективных адсорбентов и ионообменников и т. д., требует разработки и развития точных методов диагностики субмикронного и микронного Наиболее привлекательными являются неразрушающие аэрозолей дистанционные оптические методы исследования аэрозоля, не требующие отбора пробы дисперсной системы. Такие исследования особенно актуальны, например, при измерениях частиц в больших аэрозольных объемах, в апрессивных средах или при контроле параметров радиоактивных аэрозолей. Дистанционные оптические методы контроля параметров аэрозоля основываются на измерениях углового распределения интенсивности рассеяния излучения (индикатрисы), спектра прозрачности аэрозоля, интенсивности ослабления, комбинационного рассеяния.

Метод углового распределения интенсивности рассеяния. Зависимость интенсивности рассеяния волны $I_{sca}(\Theta, \Phi)$ от угла рассеяния Θ в случае однократного рассеяния излучения в диспергирующей средетакже определяется из решений теории Ми

$$I_{sca}(\Theta, \Phi) = \sum_{i} I_{sca}^{i}(\Theta, \Phi); \quad I_{sca}^{i}(\Theta, \Phi) = (i^{i}_{1} + i^{i}_{2})/(2kr^{2}_{0}).$$
(4)

Члены i_1 и i_2 относятся к интенсивности света, плоскость колебаний которого соответственно перпендикулярна и параллельна плоскости, проходящей через направления распространения падающего и рассеянного пучков, и определяются амплитудными функциями $S_1(\Theta)$ и $S_2(\Theta)$:

$$S^{i}_{1}(\Theta) = \sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} (a_{l}\pi_{l}(\cos\Theta) + b_{l}\tau_{l}(\cos\Theta)),$$

146

$$S_{2}^{i}(\Theta) = \sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} (b_{l}\tau_{l}(\cos\Theta) + a_{l}\tau_{l}(\cos\Theta), \qquad (5)$$
$$\pi_{l}(\cos\Theta) = (1/\sin\Theta) P_{l}^{i}(\cos\Theta), \quad \tau_{l}(\cos\Theta) = \frac{d}{d\Theta} P_{l}^{i}(\cos\Theta),$$

где $P_{i}(\cos \Theta)$ — присоединенный полином Лежандра. Приближение однократного рассеяния справедливо в том случае, если падающее на каждую частицу рассеянное излучение по существу совпадает с первоначальным облучающим лучом — рассеяние «вперед». Измеряя угловое распределение интенсивности рассеяния можно определять размеры частиц. Для этого результат измерений сравнивают с модельными расчетами и подбирают параметры распределения по размерам, обеспечивающим наилучшее совпадение расчетов и экспериментов.

В качестве примера на рис. 3, a приведены расчеты индикатрисы рассеяния оптического излучения длины волны $\lambda = 10.6$ мкм для части-

цы графита радиуса $r_0 =$ = 1 мкм. Заметное рассеяние света на частицах графита заданных размеров наблюдается при углах рассеяния относительно малых ($\Theta < 5^\circ$), либо очень больших ($\Theta > 170^\circ$) — рассеяние «вперед» и «назад». Аналогичная картина наблюдается и для частиц двуокиси кремния.

Метод фазового набега в аэродисперсной среде. Задача диагностики аэрозоля усложняется значительно при увеличении концентрации дисперсных частиц N и уменьшении их размеров r₀, особенно в области субмикронного аэрозоля. Так, диаграмма рассеяния одинакова для всех частиц с размерами много меньше длины волны излучения λ, поэтому определить размер частиц по виду индикатрисы нельзя. Вызывает большие сложности диагностика плотных аэрозольных сред на просвет по ослаблению излучения. В этой связи для контроля больших аэрозольных объемов, содержащих субмикронные частицы высоких концентраций $N \sim 10^5 - 10^{10}$ см⁻³, автором предлагается использовать метод фазового набега в среде для излучений ИК- и СВЧ-диапазона.

Рис. 3. Длаграмма рассеяния оптического излучения с $\lambda = 10,6$ мкм на частице графита раднуса $r_0 = 1$ мкм (а) и логарифмические зависимости числа смещения интерференционных полос М в ИК ($\lambda = 10,6$ мкм, кривые 1—4) и СВЧ ($\lambda = 2$ см, кривые 5—7) диапазонах в аэрозольном объеме длиной L = 200 см от концентрации частиц алюминия n размеров $r_d = 0,1$ мкм (кривая 4), $r_0 = 0,25$ мкм (кривые 3 и 7), $r_0 = 0,5$ мкм (кривые 2 и 6) и $r_0 = 1$ мкм (кривые 1 и 7) (б)

В результате распространения в аэрозольной среде толщины *L* волна запаздывает. Ослабление и запаздывание описывается совместнокомплексным показателем преломления среды [12]

$$\tilde{m} = 1 - iS(0) 2\pi V_N k^{-3}, \tag{6}$$

где $S(0) = (1/2) \sum_{l=1}^{\infty} (2l+1) (a_l+b_l)$ — амплитудная функция при угле рассеяния $\Theta = 0$; a_l , b_l — коэффициенты Ми, вычисляемые по формулам (2); 'N — концентрация аэрозольных частиц. Тогда разность хода между интерферирующими лучами, распространяющимися в средах, содержащих и не содержащих аэрозольные частицы, изменится на величину $\Delta = (\tilde{m} - n_1)L$, где n_1 — показатель преломления среды в отсутствие аэрозольных частиц (например, воздуха). В результате интерференционная картина сместится на M полос, причем

$$M = (\tilde{m} - n_1) L / \lambda. \tag{7}$$

По смещению интерференционных полос можно сделать вывод о размерах и концентрации монодисперсного аэрозоля. Для этого результат измерений числа M нужно сравнить с численными расчетами, выполненными по формулам (2), (6)—(7), и подобрать параметры аэрозоля, обеспечивающие наилучшее совпадение расчетов и экспериментов. Практически можно измерять смещение интерференционных полос на величину не менее M = 1/100 полосы.

На рис. 3, б приведена расчетная зависимость числа M от концентрации n для разных размеров частиц алюминия в объеме, длиной L=200 см, в ИК- и СВЧ-областях спектра. Расчеты показали, что наиболее широкий диапазон концентрации частиц от $N \sim 10^4$ см⁻³ и выше можно регистрировать в ИК-области спектра (выделенная критической линией Lg(M) = -2 верхняя область на рисунке). СВЧ-диапазон можно рекомендовать для диагностики больших аэрозольных объемов с более высокой концентрацией частиц $N \ge 10^8$ см⁻³.

Фактор эффективности ослабления излучения в СВЧ-диапазоне, обусловленный поглощением на одной частице, достаточно мал (см. рнс. 2, δ): для частицы Al с $r_0 = 1$ мкм он составляет $K_{\text{ext}} = 1.5 \cdot 10^{-4}$.

Таким образом, расчеты показали, что метод фазового набега в среде позволяет проводить неразрушающую дистанционную диагностику параметров аэрозоля в ИК-области спектра в диапазоне размеров $r_0 \ll 1$ мкм и концентраций $W \gg 10^4$ см⁻³, в СВЧ-диапазоне — частиц любого размера и больших концентраций $N \gg 10^8$ см⁻³.

1.2. Многопроходовый оптический реактор для лазерной обработки дисперсных материалов

Отличительной особенностью аэрозольных технологий является сложность в реализации эффективного пространственного взаимодействия ЛИ с дисперсной системой, состоящей из большого количества частиц, распыленных в газе. Этим объясняются относительно малая доля получаемых частиц с заданными свойствами и низкий КПД 248 технологического процесса. С целью решения этой задачи предлагается многопроходовый оптический реактор для эффективной лазерной обработки дисперсных материалов [11].

Многопроходовый оптический реактор предлагается выполнить в виде устойчивого оптического резонатора: конфокального или плоского с отверстием ввода ЛИ интенсивности I_0 на переднем зеркале и «глухим» задним зеркалом (рис. 4). Для описания распространения электромагнитного поля $\varepsilon(r, z)$ между зеркалами оптического

реактора использовался метод, основанный на решении волнового уравнения в квазиоптическом приближении:

$$2ik \ \left(\frac{d}{dz}\right) + \Delta \perp l \varepsilon(r, z) = 0,$$
(8)

где
$$\Delta_+ = (1/r) - \frac{d}{dr} \left(r - \frac{d}{dr}\right) -$$

поперечный лапласиан. Здесь учтена цилиндрическая симметрия задачи.

Рис. 4. Упрощенная принципиальная схема оптического реактора

В среде, содержащей *N* рассенвающих и поглощающих частиц в единице объема, ослабление оптического излучения можно описать через комплексный волновой вектор *k*:

$$k(m) = [i2\pi NS(0)/(1-m)]^{1/3}, \qquad (9)$$

где S(0) — амплитудная функция рассеяния при $\Theta = 0$.

Коэффициенты отражения зеркал R₁ и R₂ аппроксимировались гауссовой функцией.

Для численного решения поставленной задачи строилась двухслойная консервативная разностная схема на равномерной по z и r сетке $w = w_r \cdot w_z$. Конкретные расчеты проводились для реактора длиной $L_z = 60$ см, диаметром зеркал $2L_r = 6$ см (угол рассеяния $\Theta = 3^\circ$) и диаметром отверстия связи d = 0.8 см, заполненного газодисперсной средой из частиц углерода радиуса $r_0 = 1$ мкм и концентрации $N = 10^5 - 10^6$ см⁻³.

Результаты численного расчета распределения электромагнитного поля в оптическом реакторе с указанными параметрами, представленные на рис. 5 и 6, показали, что эффекты рассеяния и дифракционного расплывания электромагнитного поля на краях зеркал и входного отверстия приводят к пространственному заполнению всей области реактора за малое число проходов. Причем максимальный модовый объем наблюдается для реактора, выполненного в виде плоского резонатора (см. рис. 5, 6, *a*, 6, *б*). При малых значениях числа проходов M < 20 в реакторе, содержащем дисперсные частицы углерода концентрации $N = 10^5$ см⁻³, суммарная энергия ЛИ превышает затраты энергии излу-249

Рис. 5. Поперечные распределения относительных интенсивностей в плоском резонаторе, содержащем дисперсные частицы графита радиуса $r_0 = 1$ мкм и концентрации $N = 10^5$ см⁻³ при числе проходов M = 10 (a), M = 11 (b), M = 14 (c), M = 20 (d)

чения на ослабление в среде, что приводит к постоянному накоплению энергии за время действия импульса ЛИ (см. рис. 5). Через $M \approx 20$ проходов в среде устанавливается энергетическое равновесие: накачка компенсируется потерями энергии, и наблюдается устойчивая картина пространственного распределения электромагнитного поля с постоянной интенсивностью $I \sim 3$, 5 I_0 в объеме реактора (см. рис. 6, *c*, *d*). При концентрации частиц углерода $W = 10^6$ см⁻³ из-за больших затрат энергии на ослабление в среде устойчивая картина пространственного распределения электромагнитного поля с интенсивностью $I \sim 0,3 I_{\theta}$ наступает уже за малое число проходов (см. рис. 6, *a*, *b*).

Развитая методика расчета пространственной структуры поля в оптическом реакторе справедлива для расчета распределения мод высших порядков в оптических резонаторах различной конфигурации и с произвольным числом Френеля $N_F = a^2/(L_z\lambda)$.

Рис. 6. Поперечные распределения относительных интенсивностей в плоском резонаторе, содержащем дисперсные частицы графита радиуса $r_0 = 1$ мкм и концентрации $N = 10^5$ см⁻³ при числе проходов M = 19 (c), M = 21 (d) и в конфокальном резонаторе при концентрации частиц графита микронного размера $N = 10^6$ см⁻³ и числе проходов M = 3 (a), M = 4 (b)

2. Нагрев и испарение аэрозольных частиц в сильных лазерных полях

При анализе нагрева диспергированных в газе частиц с эквивалентным оптическим радиусом r_0 , находящихся в поле ИК-излучения с интенсивностью q, будем исходить из предположения однородности и квазистационарности нагрева частиц [8]:

$$\frac{dT_{s}}{dt} = F(T_{s}, t), \qquad 0 \leqslant t \leqslant t_{n,n};$$

$$\int_{T_{n,n}}^{t^{*}n,n} (T_{n,n}, t) = \frac{L_{n,n}}{C_{0}\rho_{0}}, \qquad t_{n,n} \leqslant t \leqslant t^{*}n_{n};$$

$$\frac{dT_{s}}{dt} = F(T_{s}, t) - \frac{3}{4} \frac{L_{\text{Ren}}M(T_{s})}{\pi r^{3}_{0}C_{0}\rho_{0}}, \qquad t > t^{*}n_{n};$$

$$-4\pi \rho_{0}r^{2}_{0}dr_{0}/dt = M(T_{s}),$$
(10)

где o_0 , $c_0 = c_0(T_s)$; $L_{n,n}$ и $L_{исn}$ — соответственно плотность, удельная теплоемкость, теплота плавления и испарения вещества частицы при температуре T_{s} ; $F(T_s, t) = Q_0 - E(T_s)$; $E(T_s)$ и $M(T_s)$ — потоки энергии и массы с поверхности частицы; $Q_0 = \pi r^2 K_n q f(t)$ — тепло, выделенное в единицу времени и объема частицы; $K_n = K_n(T_s)$ — фактор эффективности поглощения; f(t) — форма импульса излучения; $t_{n,n}$ — время достижения частицы.

Виды функций потока массы $M(T_s)$ и энергии $E(T_s)$ с поверхности частицы определяются режимом тепломассообмена в среде. В частности, при диффузионном режиме испарения и степенной аппроксимации температурных зависимостей коэффициентов взаимной диффузии парогазовой смеси и теплопроводности внешнего газа в виде $D_{12} =$ $= D_{\infty}(T_s/T_{\infty})^{s+1}$ и $\mu(T_s) = \mu_{\infty}(T_s/T_{\infty})^s$ для функций потоков массы и энергии с поверхности частицы имеем:

$$\frac{M(T_s)}{4\pi r_0^2} = D_{12} \left. \frac{d\rho_n}{dr} \right|_{r=r_s} = \frac{D_\infty [(T_s/T_\infty)^{s+1} - 1]!}{(s+1)(1 - T_\infty/T_s)} (\rho_n^0 - \rho_\infty)/r_0; \quad (11)$$

$$E(T_s)/4\pi r^2_0 = 1/r_0 \int_{T_{\infty}}^{s} \mu(T) dT = -\frac{\mu_{\infty}T_{\infty}}{(s+1)r_0} [(T_s/T_{\infty})^{s+1} - 1],$$

где ρ_n^{0n} — плотность пара на границе; D_{∞} , T_{∞} , ρ_{∞} — значения величин D_{12} ; T_s и ρ_n в среде вдали от частицы. Заметим, что для крупных частиц $r_0 \gg \bar{l}_a$, (где \bar{l}_a — длина свободного пробега атомов) плотность пара на границе ρ_n^{0n} близка к плотности насыщенных паров ρ_n при температуре поверхности частицы T_s .

Конкретные расчеты проводились для случая нагрева и испарения частиц корунда (AL_2O_3) и вольфрама (W) радиуса $r_0=0,5-1$ мкм в атмосфере аргона постоянного давления 1 атм излучением CO_2 — лазера с $\lambda = 10,6$ мкм. Динамика нагрева и испарения рассматриваемых частиц с начальным радиусом $r_0=0,5-1$ мкм в поле импульсного ИК лазерного излучения интенсивности 10^7-10^8 Вт/см² приведена на рис. 7. Результаты численных расчетов показали, что плотность энергии в луче, необходимая для нагрева частиц до температуры кипения, мало зависит от размеров частиц и определяется материалом, что согласуется с данными эксперимента [15]. Для частиц окиси алюминия и вольфрама она составляет ~10 и 180 Дж/см² соответственно. В то же время, как следует из рис. 7, различия во временной зависи-

 $q = 5 \times 10^7$ Вт/см² — кривая 2 (а); $q = 10^8$ Вт/см² — кривая 3 (а); $q = 2,5 \times 10^8$ Вт/см² — кривая 2 б); $q = 10 \times 10^8$ Вт/см² — кривая 3 (б); кривая 1 — форма импульса излучения

мости изменения температуры частиц разных металлов при интенсивностях ЛИ, близких к пороговому значению, для оптического пробоя незначительны и определяются оптическими характеристиками частиц.

2.1. Лазерная трансформация в оптическом реакторе графитоподобных порошков в ультрадисперсный алмаз

Особый интерес представляет формирование в поле высокоинтенсивного ЛИ кристаллической структуры ультрадисперсных алмазов (УДА) из исходных углеграфитовых дисперсных материалов [11]. Эти порошки УДА имеют ряд перспективных областей применения: их используют как антифрикционные и противоизносные присадки в минеральные масла и добавки в металлоалмазных композиционных покрытиях, в композиционных полимерных материалах, высокопрочных алмазных спеках, в качестве высокоэффективных адсорбентов и ионообменников.

Экоперименты [16—18] показали, что низкокристаллические сорта углеграфитовых материалов типа сажи и углей, обладающих дисперсной турбостратной структурой, а также графитоподобные порошки нитрида бора и двуокиси кремния могут переходить в ультрадисперсный алмаз диффузионным реконструктивным путем в условиях сильного разогрева до температуры фазового превращения. Для предотвращения обратного перехода под действием высоких остаточных температур используют резкое охлаждение за времена порядка микросекунд [18]. Опираясь на данные экспериментов [16—18], определим режимы лазерной трансформации в оптическом реакторе графитоподобных порошков в ультрадисперсный алмаз.

Для определения динамики температуры $T_s(t)$ диспергированных в газе частиц радиуса ro, находящихся в поле импульсного лазерного излучения, воспользуемся системой уравнений (10)—(11). С целью достижения высоких скоростей нагрева (~10° К/с) необходимо действовать на них излучением весьма большой интенсивности (~106 — 10³ Вт/см²). Однако, режим многократного облучения прогрева И частицы с двух сторон, реализуемого в оптическом реакторе, позвоинтенсивности ляет снизить требуемые входного излучения. Для обеспечения условия быстрого охлаждения частиц за малые времена ~1 мкс после окончания действия импульса ЛИ подбирались газы с интенсивной линией поглощения, отличной от длины волны падающего излучения, а также с высоким коэффициентом теплопроводности и (гелий, азот), и варьировалось их давление (P=1, 100 атм).

На основе вышеизложенного метода проводились расчеты нагрева частиц углерода и двуокиси кремния радиуса $r_0 = 0.5 - 1$ мкм в атмосфере гелия и азота (T₀=300 K) заданного давления под действием излучения CO₂-лазера с плотностью потока ~106—107 Вт/см². При заданной интенсивности ИК лазерного излучения распределение поля и в области перетяжки оптического реактора, поперечный размер которой составляет $2L_r/\sqrt{2}$, не превышает пороговой плотности энергии оптического пробоя частиц двуокиси кремния и графита микронного размеров: $I_p = 10^9 - 10^{10} \text{ Br/cm}^2$. Теплофизические характеристики частиц С и SiO₂, а также окружающих их газов, приведены в табл. 1. Форма импульса излучения СО2-лазера аппроксимировалась функцией, близкой к наблюдаемой в эксперименте [15] (кривая 4 на рис. 8, б).

Материал	Теплоемкость $C(T_s) = a + bT^2{}_s - dT_s^{-2},$ Дж/(моль-К)		Интервал Т _s , К	Точка фазового перехода Т _ф , <i>К</i>	Плотность р, 10 ³ кг/м ³			
Графит	$a = 17.17;b = 4.27 \cdot 10^{-3};d = 8.79 \cdot 10^{5}.$		298—2500	4020	2,66			
Двуокись кремния, α-кварц	$a = 46,98;b = 34,33 \cdot 10^{-3};d = 11,3 \cdot 10^{5}.$		298—800	856	2,4—2,8			
Коэффициент теплопроводности газов $\mu(T_s) = \mu_{0}(T_s/T_0)^s$, Вт/мК								
Гелий Не, <i>a</i> =0,7		Азот N_2 , $s = 0.75$		Аргон Аг, s=0,6				
Р=1 атм	<i>P</i> =100 атм	<i>P</i> = 1 атм	<i>Р</i> =100 атм	Р=1 атм	<i>P</i> =100 атм			
$\mu_0 = 0,143$	$\mu_0 = 0,1586$	$\mu_0 = 0,024$	$\mu_0 = 0,0311$	$\mu_0 = 0,018$	$\mu_0 = 0,0225$			

Динамика нагрева и охлаждения рассматриваемых частиц представлена на рис. 8. Из численных расчетов следует, что в первый

Рис. 8. Динамика изменения температуры в поле излучения CO_2 -лазера заданной интенсивности I_0 частиц (а) графита радиуса $r_0 = 1$ мкм, $I_0 = 12$ MBT/см² в атмосфере гелия давления P = 1 атм (кривая 1); азота P = 1 атм (кривая 2); азота P = 100 атм (кривая 3) и (б) двуокиси кремния в атмосфере азота давления P = 1 атм: кривая $1 - r_0 = 0.3$ мкм и $I_0 = 13$ MBT/см²; кривая $2 - r_0 = 1.5$ мкм и $I_0 = 3$ MBT/см²; кривая $2 - r_0 = 1.7$ МВТ/см²; кривая $4 - \phi$ орма импульса излучения

момент времени нагрева частиц теплоотвод в атмосферу внешнего газа незначителен, и частицы достигают высоких температур фазового превращения за малые времена ~1 мкс. При этом скорость нагрева частиц составляет ~10⁹ — 10¹⁰ K/c. С ростом температуры частицы и окончания действия импульса ЛИ все большую роль начинает играть теплоотвод во внешний газ. Максимальная скорость охлаждения достигается в атмосфере азота (или воздуха) И сравнима по величине со скоростью лазерного нагрева. Времена охлаждения частиц составляют ~2 мкс, что достаточно для необратимости фазовых превращений в веществе частицы. За

время охлаждения частицы принималось время, в течение которого температура частицы падает в *е* раз. Увеличение давления газов от 1 до 100 атм приводит к уменьшению времени охлаждения частиць в 1,3 раза.

3. Электродинамические эффекты в окрестности частиц, облучаемых лазером

К основным процессам, приводящим к образованию заряда на поверхности частицы в поле ЛИ, относятся термоэмиссия электронов и ионов. Термоэмиссия приводит к образованию двойного слоя пространственного заряда вблизи каждой частицы — ленгмюровского слоя. Вследствие значительно большей плотности электронного тока по сравнению с плотностью тока ионов при равной температуре эмиссии поверхность частицы приобретает положительный электростатический заряд, а в ленгмюровском слое превалирует пространственный заряд электронов, создающий тормозящий термоэлектроны потенциальный барьер $\Delta \Phi$ [5—9].

Значение электростатического потенциала в окрестности проводящей частицы определяется зарядом частицы и геометрией формы реальной частицы. Ориентируясь на условия реальных экспериментов, наряду со сферической формой дисперсные частицы моделировались в виде вытянутых эллипсоидов вращения с полуосями $h > \delta = c$. Распределение потенциала в окрестности заряженной частицы в виде вытянутого эллипсоида вращения с большой полуосью h определим из решения уравнения Лапласа в вытянутых сфероидальных координатах ξ , γ , ζ , причем $\xi \ge -\delta^2$, $-\delta^2 \ge \zeta \ge -h^2$ [19]:

$$\frac{d}{d\xi} \left[R^{2}_{\xi} \frac{d\Psi}{d\xi} \right] = 0, \quad \Psi(\xi) = \frac{Q}{\frac{1}{h^{2} - \delta^{2}}} \operatorname{Arth} \sqrt{\frac{h^{2} - \delta^{2}}{\xi + h^{2}}}, \quad (12)$$

где введено обозначение $R_{\xi} = \sqrt{(\xi + h^2)(\xi + \delta^2)(\xi + c^2)}$. Тогда максимальное значение электростатического поля $E = -\operatorname{grad} \Psi$ в окрестности дисперсной частицы примет значения:

$$E_0 = \lim_{\substack{r \to r_0 \ \zeta \to -h^2}} Q/r^2_0$$
 — вблизи сферической частицы;
 $E^{(h)}_0 = \lim_{\substack{\tau \to -h^2 \ \zeta \to -h^2}} Q/h\delta$ — у поверхности большого радиуса кривизны эллипсоида вращения;
 $E^{(\delta)}_0 = \lim_{\substack{r \to -h^2 \ \zeta \to -h^2}} Q/\delta^2$ — у вершины малого радиуса кривизны эл-

 $\xi^{\gamma \to -\delta^2}_{\varphi \to -\delta^2}$ липсоида вращения. (13) Усиление поля за счет асферичности формы проводящей частицы до-

стигает $E_0^{(\delta)}/E_0^{(h)} = h/\delta > 10$ раз. Величина электростатического поля E_0 в окрестности частицы

произвольного размера и формы определяется в конечном итоге значениями заряда и температуры поверхности проводящей дисперсной частицы в заданный момент времени. Кинетику изменения заряда Q частицы можно описать уравнением

$$\frac{dQ}{dt} = 4\pi r_0 j_0 \exp\left[-e\sqrt{eQ}/(r_0 kT_s(t))\right],$$
(14)

где j_0 — поток термоэлектронов из мишени, определяемый формулой Ричардсона $j_0 = (A/e) T^2 \exp(X_0/kT_s)$ (А — постоянная Ричардсона).

Под действием самосогласованного поля *E*₀ пространственного заряда в окрестности положительно заряженной частицы происходит следующее:

работа выхода электрона X₀ из материала частицы увеличивается на величину ΔX :

 $\Delta X = X - X_0 = e \sqrt{eF_0}$ — для сферической формы частиц, $\Delta X \approx (e^2/\delta) \sqrt{N_e}$ — для эллипсоида вращения; поток электронов термоэмиссии с поверхности заряженной частицы j_{es} и коэффициент электронной диффузии D_e в окрестности частицы спадают по экспоненте с ростом задерживающего электростатического потнциала $\Delta \Psi = \Delta X (\Psi) / e$:

$$j_{es} = j_0 \exp\left(-\frac{e\Delta\Psi}{kT_s}\right), \quad D_e = D_0 \exp\left(-\frac{e\Delta\Psi kT_e}{kT_e}\right),$$

где D_0 — коэффициент диффузии электронов в отсутствие поля E_0 ; подвижность электронов *b* убывает с возрастанием тормозящего

кулоновского поля Е₀ [20]:

$$b_e = \frac{4\Gamma(5/4) l_{ea}^{1/2}}{3^{3/4} \pi^{1/2} (mM)^{1/4} (eE_0)^{1/2}}.$$

Электростатическое поле E_0 нарушает равновесное распределение свободных электронов в парогазовом ореоле заряженной частицы. Оценка степени воздействия электростатического поля γ на функцию распределения электронов по энергиям $f(p, \Theta)$ (ФРЭЭ) следует из решения кинетического уравнения для электронов в импульсном пространстве:

$$eE_{0} - \frac{df}{\partial \rho} = eE_{0} \partial f / \partial p_{z} = eE_{0} \left[\cos\Theta \partial f / \partial p + \frac{\sin^{2}\Theta}{\rho} - \frac{df}{\cosQ} \right];$$

$$f(p, \Theta) = f_{0}(p) + f_{1}(p) \cos\Theta;$$

$$f_{0} = \operatorname{const} \left(\varepsilon / T_{e} + \gamma^{2} / \sigma \right)^{\gamma^{1/\sigma}} \exp \left(-\varepsilon / T_{e} \right), f_{1} - f_{0} \sqrt{m/M} - \frac{\gamma \varepsilon / T_{e}}{\varepsilon / T_{e} + \gamma^{2}(\sigma)};$$

$$\gamma = -\frac{eE_{0}l_{ea}}{\tau} \sqrt{M/m}.$$

Из полученного решения следует, что величина у является тем параметром, который характеризует степень воздействия поля на распределение электронов.

Подставив значение поля Е₀ (13) в выражение для ү, получим зависимость величины у от размеров заряс эквиваженной частицы лентным оптическим радиусом го и числа эмиттированных электронов N_c : $\gamma \approx$ e2Nelea_ $\sqrt{M/m}$, график \approx $r_0^2 T_e$ которой приведен на рис. 9. Видно, что влияние электростатического поля Е на ФРЭЭ сильно $(\gamma \gg 1)$ для малых дисперсных частиц и

убывает с ростом размеров частиц, переходя при $r_0 > r_0^* = 20$ мкм в противоположный предельный случай слабых полей ($\gamma \ll 1$) у поверхности сплошной мишени. В случае сильных полей $\gamma \gg 1$, имеем [20]:

$$f_{0}(p) = C \exp\left(-\frac{3e^{2}}{(\gamma^{2}T_{e})}\right), f_{1} = -\sigma \sqrt{m/M} \left(\epsilon/\gamma T_{e}\right) f_{0},$$
$$C = \frac{3^{3/4}N_{e}}{2^{3/2}\pi\Gamma(3/4) (m\gamma T_{e})^{3/2}}.$$

Диапазон размеров дисперсной частицы, при котором значение параметра у остается много больше 1, определяет область применимости электрических эффектов в аэрозолях.

Таким образом, электродинамические эффекты, возбуждаемые лазером в окрестности проводящих частиц, определяют многие физические процессы в аэрозолях. При этом наиболее сильное влияние электродинамические эффекты оказывают в достаточно широком диапазоне размеров частиц: $r_0 \ll 10$ мкм.

3.1. Генерация электромагнитных полей в аэрозолях под действием мощного лазерного излучения

Лазерная искра в газодисперсной среде, как и ОП на поверхности макромишени, может быть источником переменных электрических и магнитных полей, впервые экспериментально наблюдаемых в [21]. Природа электромагнитного излучения, генерируемого в газодисперсной среде под действием ЛИ, не изучена. Автором предлагается следующий механизм генерации электромагнитных полей [5, 6, 8, 9].

Асферичность формы реальных дисперсных частиц приводит к неоднородности их нагрева, и, как следствие, к пространственной неоднородности и нестационарности термоэмиссии электронов. Характерное время установления потока тепла в проводящей частице вдоль большой полуоси $\Delta t \sim h^2/4\varkappa \sim 10^{-8}$ с ($h \sim 1$ мкм), где \varkappa — коэффициент температуропроводности материала частицы. Время установления стационарраспределения пространственного заряда т порядка времени ного заполнения облака электронов источником эмиссии и составляет величину $\tau \sim 10^{-12}$ с [22]. Поскольку $\tau \ll \Delta t$, пространственный заряд будет адиабатически подстраиваться к изменяющимся параметрам эмиссии. Отрицательный объемный заряд вблизи і-той частицы вместе с компенсирующим его положительным зарядом на поверхности образуют электрический диполь с радиусом, равным L₀, дипольным моментом di вдоль полуоси h (для частиц, ориентированных по направлению луча ΠM), и квадрупольным моментом D_i (для частиц произвольной ориентации). Изменение дипольного и квадрупольного моментов во времени в процессе изменения параметров эмиссии и электронного тока во времени может приводить к генерации электромагнитных полей частоты $\Delta v \sim 1/\Delta t \sim 10^8$ Гц, лежащей в радиодиапазоне. Оценим амплитуду генерируемого электромагнитного поля при изменении параметров эмиссии во времени.

Дипольный момент частицы *i* в форме эллипсоида вращения вдольоси *h* определяется выражением

$$d_i = E^{(i)} V / (4 \pi n^{(\delta)}), \tag{15}$$

где $V = (4/3) \pi L_0 \delta c$ — объем эллипсоида; $E^{(\epsilon)}$ — электростатическое поле вблизи частицы на продолжении большой полуоси h; $n^{(\epsilon)}$ — коэффициент деполяризации. В случае вытянутого эллипсоида вращения $(h > \delta = c)$ с эксцентриситетом $\varepsilon = (1 - \delta^2/h^2)^{1/2}$ имеем $n^{(\epsilon)} = \frac{1 - \varepsilon^2}{\varepsilon^3}$ (Arth $(\varepsilon) - \varepsilon$). Подставляя в формулу для d_i выражение поля $E^{(\epsilon)}$ (13) и ограничиваясь вторым членом в разложении в ряд коэффициента деполяризации $n^{(\epsilon)}$ при $\varepsilon^2 < 1$, найдем значение дипольного момента вытянутого эллипсоида вращения:

$$d_i \approx Q L^3 {}_0 / \delta^2. \tag{16}$$

17 - 85

. .

25**7**

Проведя суммирование по всем частицам i=1, N, ориентированным вдоль пучка ЛИ, и используя принцип суперпозиции, найдем дипольный момент системы зарядов $d = \sum d_i \approx QN L_{30}/\delta^2$.

Напряженность поля электронейтральной системы в дипольном приближении на расстоянии R от излучающей системы зарядов убывает по закону $E^d \sim d/R^3 \approx (QN/\delta^2) (L_0/R)^3$. На расстоянии $R \sim 10$ см при концентрациях заряженных частиц $n \sim 10^8 - 10^{10}$ см⁻³ в зоне облучения диаметром ~ 1 см амплитуда поля дипольного момента составит величину $E^d \sim 1-100$ B/см.

Квадрупольный электрический момент заряженного *i*-эллипсонда вращения определяется как [19]

$$D_i^{\delta\delta} = (Q/3) (2h^2 - \delta^2 - c^2), \quad D^{hh}_i = D^{cc}_i = (Q/3) (2\delta^2 - h^2 - c^2).$$
 (17)

Учитывая, что $D_l^{\delta\delta} \ll d_l$ вдоль оси h, и проведя суммирование по i, из (17) получим для квадрупольного момента системы зарядов $D = \sum_i D_l^{\delta\delta} \approx -QNh^2/3$. Напряженность поля квадруполя электронейі тральной системы зарядов убывает с расстоянием как $(E^k) \sim 2D/R^4 \approx \approx (2/3) (QNh^2/R^4)$. Для рассмотренных параметров эмиссии при концентрациях заряженных частиц $n \sim 10^{10}$ см⁻³ значение поля квадруполя $E^k \sim 1$ В/см. Причем, варьируя концентрацию дисперсных частиц в зоне облучения, можно управлять генерационными характеристиками электромагнитных полей, например, повышать или понижать значения E^d и E^k .

Полученные результаты расчетов амплитуды и частоты генерируемых переменных электрических полей в газодисперсной среде под действием излучения лазера, проведенные на основе предложенного механизма ГЭМП, количественно согласуются с данными [21]. Результаты измерений показали, что при нелинейном распространении ЛИ в атмосферном аэрозоле на антеннах, расположенных вблизи канала пучка, индуцируются переменные электрические сигналы в частотном диапазоне 50—500 кГц амплитудой до 1 В и длительностью 20—50 мкс.

4. Оптический пробой в аэрозолях

К настоящему времени предложено несколько механизмов образования плазмы в условнях низкопорогового оптического пробоя аэрозолей, им посвящены монографии [23, 24] и обзор [25]. Это явление сопровождается испарением материала частиц, термо- и фотоэлектронной эмиссией с поверхности мишени, термоионизацией парогазового ореола дисперсной частицы и т. д.

Рассмотрим математическую формулировку модели оптического пробоя газодисперсной среды в условиях генерации электростатических полей [2, 7—9]. Наиболее строгий теоретический анализ задачи ОП парогазового ореола проводящей частицы включает совместное решение системы уравнений, описывающей процессы радиационного нагрева и испарения дисперсной частицы (уравнения (10)—(11)), генерацию электрических полей в окрестности проводящей частицы (уравнения (12)—(14)), а также уравнений для энергетического спектра электронов и кинетики роста электронной лавины через возбужденное состояние атомов пара: 258

$$\frac{\partial}{\partial t}f(\varepsilon,\vec{r},t) + \operatorname{div}(\vec{fv}) = \frac{\partial}{\partial \varepsilon} \left[Af/2 - A\varepsilon(\partial f/\partial \varepsilon) + 2f\varepsilon \times \right]$$

$$\times \mathbf{v}_m(\varepsilon) \, m_e / M + 2 f \varepsilon \cdot \mathbf{v}_e^i(\varepsilon) \, m_e / M_i] + B_i + B^* + B_r; \tag{18}$$

$$\partial n^* / \partial t + \operatorname{div}(n^* v) = B^* - B^* - n^* / t^*;$$
⁽¹⁹⁾

$$\frac{dn_e}{dt} = \alpha n^* n_e - \beta n^2_e n^*, \qquad (20)$$

где B_i , B^* и α — константы скоростей возбуждения и ионизации; B_i^* и β — константы скоростей дезактивации и рекомбинации.

Здесь $f(\varepsilon, r, t)$ — функция распределения по кинетической энергии ε электронов для фиксированных радиуса-вектора точки среды \vec{r} и времени t; n_a, n^* — концентрация частиц пара, находящихся в основном и первом возбужденных состояниях с энергией перехода ε^* ; \vec{v} — вектор скорости гидродинамического движения.

Уравнение (18) соответствует квантовому разностному уравнению для энергетического спектра свободных электронов, записанному в обозначениях, используемых в [23]. Уравнение (19) сохранения числа

частиц характеризует наиболее заселенный первый уровень возбуждения атомных паров. Уравнение (20) описывает рост электронной лавины.

Как показывают численные оценки, время задержки плазмообразования в рассматриваемых условиях определяется временем нагрева тугоплавкой частицы до температуры, незначительно превышающей температуру плавления материала частицы, и временем набора электронами энергии, достаточной для возбуждения и ионизации атомов испаренного вещества. Процессы лавинной ионизации носят кратковременный характер и занимают менее 0,1% от времени формирования пробоя. Время зажигания плазмы тпор в аргоновой среде постоянного давления в 1атм на частицах окиси алюминия радиуса $r_0 = 0.5 - 1$ мкм составило 0.43 и 0,2 мкс при пиковой интенсивности излучения СО₂ лазера $q = 10^{7}$ и 10⁸ Вт/см² соответственно (рис. 10); для частиц вольфрама с $r_0 = 17$ мкм — $\tau_{nop} = 0,17$ и Імс при максимальной интенсивности излучения неодимового

Рис. 10. Динамика во времени электронной лавины n_e (кривые1, 1', 1"), концентрации возбужденных атомов n^* (кривые 2, 2', 2") и температуры электронного газа T_e (кривые 3, 3', 3") в окрестности частиц:

А-корунда с $r_0 = 0.5$ мкм при $q = 10^8$ Вт/см²; Б-корунда с $r_0 = 0.5$ мкм при $q = 5 \times 10^7$ Вт/см²; В вольфрама с $r_0 = 17$ мкм при $q = 10^6$ Вт/см²

лазера ($\lambda = 1,06$ мкм) $q = 10^5 - 10^6$ Вт/см², что значительно меньше времени нагрева частиц до начала интенсивного испарения и выхода 17* 259 в газодинамический режим испарения. Пороговая плотность энергии $E_{\text{пор}}$ для частиц Al_2O_3 и W составила соответственно 8 и 180 Дж/см². Расчетные значения $E_{\text{пор}}$ и $\tau_{\text{пор}}$ согласуются с результатами экспериментальных исследований. В работе [15] по оптическому пробою в аэрозолях, содержащих частицы корунда с $r_0=0,5-1$ мкм, излучением CO_2 лазера с подобным временным профилем импульса пороговая плотность энергии $E_{\text{пор}}$ составила величину ~10 Дж/см², а время возникновения пробоя $\tau_{\text{пор}} \sim 0,2$ мкс при пиковой интенсивности в импульсе $q \sim 10^8$ BT/см².

4.1. Плазмохимические процессы в активном аэрозоле

В последние годы большой интерес вызывают исследования плазмы оптического пробоя химически активных газодисперсных сред в целях ее применения в плазмохимии. Эти исследования посвящены выяснению механизмов различных химических реакций, целиком или частично протекающих в плазменной фазе, и изучению физики самого разряда, осуществляемого в химически активной гетерогенной среде.

В качестве модельной среды для конкретных расчетов [3, 4, 8, 10] использовались фтороводородные и фторогелиевые смеси различного давления с распыленными в них пассивированными частицами металла. Выбор фторсодержащей смеси в определенной пропорции продиктован двумя целями: во-первых, возможностью получения высокой концентрации активных центров химических реакций (свободных атомов фтора); во-вторых, значительным интересом к изучению механизма инициирования лазерной плазмы в электроотрицательных газах, в частности, в среде H_2 — F_2 -лазера.

Развитие электронной лавины в реагирующей смеси H_2 : F_2 : Не с дисперсными частицами характеризуется сложной кинетикой столкновительных реакций. Константы скоростей элементарных процессов k_i в реакционной системе берутся из экспериментальных данных и, если это необходимо, экстраполируются в более широком температурном интервале на основе основополагающих теорий. Учитывались следующие реакции:

реакции цепи

 $F + H_2 \rightarrow HF + H, \ k_1 = 2.69 \cdot 10^{-10} \exp(-1600/RT_{\infty}),$

 $H+F_2 - HF+F$, $k_2 = 1.99 \times 10^{-10} \exp(-2400/RT_{\infty})$;

диссоциация молекул смеси электронным ударом

 $F_2 + e \rightarrow 2F + e, \ k_3 = 10^{-9} \times T_e^{3/2} (2 + 2.7/T_e) \exp(-2.7/T_e),$ $H_2 + e \rightarrow 2H + e, \ k_4 = 10^{-9} \times T_e^{3/2} (2 + 8.8/T_e) \exp(-8.8/T_e);$

электронное возбуждение атомов и молекул электронным ударом

H+e→ H*+e, $k_5 = 1.67 \times 10^{-9} T_e^{3/2} (2+10.2/T_e) \exp(-10.2/T_e)$, H₂+e→ H*₂+e, $k_6 = 4.85 \times 10^{-10} \times T_e^{3/2} (2+8.7/T_e) \exp(-8.7/T_e)$,

 $\text{He} + e \rightarrow \text{He}^* + e, \ k_7 = 3.8 \times 10^{-10} T_e^{3/2} (2 + 19.7/T_e) \exp(-19.7/T_e);$

колебательное возбуждение молекул водорода электронным ударом

 $H_2 + e \rightarrow H^*_2 + e, \ k_8 = 2.5 \times 10^{-10} \times T_e^{3/2} \exp(-0.01 \times T_e^4);$

ионизация атомов и молекул из основного и возбужденного состояний

$$\begin{split} & H+e \to H^{+}+2e, \ k_{9}=6.38 \times 10^{-9} \times T_{e}^{1/2} \exp\left(-13.6/T_{e}\right), \\ & H_{2}+e \to H^{+}_{2}+2e, \ k_{10}=3.8 \times 10^{-10} T_{e}^{3/2} \left(2+15.4/T_{e}\right) \exp\left(-15.4/T_{e}\right), \\ & H^{*}+e \to H^{+}+2e, \ k_{11}=3.79 \times 10^{-7} \times T_{e}^{1/2} \exp\left(-3.4/T_{e}\right), \\ & H^{*}_{2}+e \to H^{+}_{2}+2e, \ k_{12}=4.7 \times 10^{-9} T_{e}^{3/2} \left(2+6.73/T_{e}\right) \exp\left(-6.73/T_{e}\right), \\ & F_{2}+e \to F^{+}_{2}+2e, \ k_{13}=2 \times 10^{-10} \times T_{e}^{3/2} \left(2+16.6/T_{e}\right) \exp\left(-16.6/T_{e}\right), \\ & H^{*}+e \to He^{+}+2e, \ k_{14}=1.3 \times 10^{-8} \times T_{e}^{3/2} \left(2+4.9/T_{e}\right) \exp\left(-4.9/T_{e}\right) \\ & He^{+}e \to He^{+}+2e, \ k_{15}=8.7 \times 10^{-11} T_{e}^{3/2} \left(2+24.6/T_{e}\right) \exp\left(-24.6/T_{e}\right); \end{split}$$

ассоциативная ионизация

 $\text{He}^* + \text{F}_2 \rightarrow \text{He} + \text{F}_2 + e, \ k_{16} = 10^{-10};$

диссоциативная рекомбинация

H⁺₂+e→2H, $k_{17} = 3 \times 10^{-8}$, F⁺₂+e→2F, $k_{18} = 5 \times 10^{-8}$;

диссоциативное прилипание

 $F_2 + e \rightarrow F + F^+, k_{19} = (2.6 \times 10^{-9} / T_e) \exp(-0.08 / T_e);$

отрыв электронов от отрицательных ионов фтора электронным ударом

$$F^- + e \rightarrow F + 2e, \ k_{20} = 1.2 \times 10^{-10} T_e^{3/2} (2 + 3.45/T_e) \exp(-3.45/T_e);$$

взаимная рекомбинация ионов

 $F_{2}^{+}+F^{-} \rightarrow 3F, k_{21}^{-}=1.5 \times 10^{-8}.$

Здесь T_{∞} — температура газовой среды, К; T_e — температура электронов, эВ; $k_1, ..., k_{21}, \text{ см}^3/\text{с}.$

Перечисленным реакциям ставится в соответствие система уравнений химической кинетики, которая должна быть дополнена уравнениями баланса плотности N_e и температуры электронного газа:

$$\frac{dN_{e}/dt = k_{9}N_{e}N_{H} + k_{10}N_{e}N_{H_{2}} + k_{11}N_{e}N_{H^{*}} + k_{12}N_{e}N_{H2}^{*} + k_{13}N_{e}N_{F_{2}} + k_{14}N_{e}N_{He_{e}}^{*} + k_{15}N_{e}N_{He} + k_{16}N_{F_{2}} + N_{He}^{*} + k_{20}N_{e}N_{F}^{-} - k_{17}N_{e}N_{H2}^{*} + k_{18}N_{e}N_{F_{2}}^{*} + k_{19}N_{e}N_{F_{2}}^{*};$$
(21)

$$dT_{e}/dt = (2/3) - \frac{\mu}{\kappa n_{e}} - q - (T_{e}/N_{e})dN_{e}/dt - (6.8k_{5} + 9.067k_{9})N_{H} - (10.5533k_{13} + 1.8k_{3})N_{F_{2}} - (10.285k_{10} + 5.87k_{4})N_{H_{2}} - (2.27k_{11}N_{H^{*}} - 2.3k_{20}N_{F}^{-} - (16.4k_{15} + 13.13k_{7})N_{He} - (3.27k_{16}N_{He}^{*} - 5.799k_{6}N_{H}, -4.48k_{12}N_{H2^{*}} - 0.299k_{8}N_{H_{2}} - (k_{19}N_{F_{2}} + k_{18}N_{F_{2}^{+}} + k_{17}N_{H_{2}^{+}})T_{e}.$$

$$(22)$$

Здесь приняты следующие обозначения: N_M, N_{M+}, N_{M-}, N_{M*} — концентрации заряженных и нейтральных микрочастиц.

Численное моделирование оптического пробоя проводилось для частиц корунда (Al₂O₃: $r_0 = 0,1$ мкм, $K_n = 0,04$, $n \sim 10^9$ см⁻³), диспер-261 гированных в смесь: H₂:F₂:Не с различным содержанием фтора и гелия. При этом парциальное давление фтора P_F, варьировалось от 100 до 1000 мм рт. ст. Приведенные в табл. 2 значения интенсивности лазерного излучения q_c являются пороговыми для оптического пробоя исследуемых: H₂:F₂:Не смесей, содержащих пассивированные частицы корунда Al₂O₃ радиуса $r_0 = 0,1$ мкм и концентрации $n \sim 10^9$ см⁻³. При превышении интенсивности излучения q_c в каждой среде развивается электронная лавина, и через некоторое время возникает пробой. В случае же небольшого уменьшения значений q по сравнению с указанными в табл. 2 расчеты показывают, что концентрация электронов необратимо уменьшается из-за их диссоциативного прилипания к молекулам фтора. Снижение давления фтора до 10 мм рт. ст. ведет к уменьшению порога оптического пробоя до значений 5·10⁸ Вт/см². К снижению порога приводит также и повышение давления Не за счет роста скорости набора энергии электронами в процессе столкновений их с атомами гелия.

Таблица 2	2
-----------	---

Смесь, мм рт. ст.	q_c , Bt/cm ²	<i>Т</i> _e , эВ	N_{e}, cm^{-3}
$H_2:F_2 = 250:1000$	2,9 · 10 ¹⁰	4,73	6 · 10 ¹⁴
$H_2:F_2 = 1000:1000$	1,8·10 ¹⁰	4,11	6 · 1014
$H_2:F_2:He = 1000:1000:1000$	1,3·10 ¹⁰	3,94	3.1014
$H_2:F_2:He = 1000:1000:5000$	5,7·10 ⁹	3,57	2·10 ¹⁴ ·
$H_2:F_2:He = 1000:1000:10000$	3,3 · 10 ⁹	3,38	1,5 · 1014

Проведенный теоретический анализ позволяет сделать вывод о том, что оптический пробой в исследуемой смеси, обусловленный термоэмиссионными явлениями с поверхности частиц, можно ожидать при давлениях фтора $P_{F_2} \leq 1000$ мм рт. ст. При более высоких давлениях фтора пороговое значение интенсивности, необходимое для пробоя, превышает 50 ГВт/см², что соответствует плотности потока для теплового взрыва микрочастиц заданного радиуса.

В заключение следует сказать, что приведенные в обзоре оптические эффекты и явления, базирующиеся, главным образом, на оригинальных результатах, полученных автором, можно рассматривать лишь как очень малую часть одного из самых важных и перспективных направлений аэрозольной науки — нелинейной оптики аэрозоля. Наблюдающийся рост числа работ по нелинейной оптике рассеивающих сред свидетельствует о формировании этой области как самостоятельного направления аэрозольной физики.

Основной поток публикаций в этой области шел через соответствующие журналы, как зарубежные (Journal of Applied Physics, The Physical Review, Journal of Optical Society, Journal of Applied Optics), так и отечественные (Журнал технической физики, Журнал экспериментальной и теоретической физики, Оптика атмосферы, Квантовая электроника и др.). Посвящен этой проблеме и ряд интересных монографий, среди которых: Зуев В. И. и др. (1980, 1983, 1984, 1989), Пришивалко (1983), Копытин Ю. Д. и др. (1990).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Игошин В. И., Канавин А. П., Летфуллин Р. Р. Оценка степени ионизационной неравновесности при лазерном испарении металлов//Крат. сообщ. по физике ФИАН. 1987. № 5. C. 10—11.

2. Игошин В. И., Летфуллин Р. Р., Пичугин С. Ю. Неравновесный механизм развития оптического пробоя вблизи тугоплавкой дисперсной частицы//Крат. сообщ. по физике ФИАН. 1988. № 9. С. 49—51.

3. Игошин В. И., Летфуллин Р. Р., Пичугин С. Ю. Инициирование химических лазеров ИК излучением при диссоциативном захвате молекулами фтора термоэлектронов, эмиттируемых дисперсными частицами. М.: Препринт ФИАН, 1989. № 183.

4. Игошин В. И., Летфуллин Р. Р., Пичугин С. Ю. Кинетика плазмохимических процессов в поле ИК лазерного излучения во фторсодержащих гетерогенных средах//Лазерная технология. Вильнюс, 1989. Вып. 8. С. 8-9.

5. Игошин В. И., Катулин В. А., Летфуллин Р. Р. Генерация электромагнитных полей в газодисперсной среде под действием излучения лазера//Крат. сообщ. по физике ФИАН. 1990. № 12. C. 3-5.

6. Игошин В. И., Летфуллин Р. Р. Генерация электромагнитных полей при эмиссии электронов во внешний газ и плазму с поверхности дисперсных частиц, облучаемых лазером//Квантовая электроника. 1991. Т. 18. С. 473—478. 7. Игошин В. И., Катулин В. А., Летфуллин Р. Р. Электростатическая модель опти-

ческого пробоя газодисперсных сред в условиях острой фокусировки импульсного ИК лазерного излучения// М.: Препринт ФИАН, 1991. № 91.

8. Летфуллин Р. Р. Теоретическое исследование нелинейного взаимодействия интенсивного ИК лазерного излучения с газодисперсными средами: Дис. ... канд. физ.-мат. наук.

Саратов, 1991. 158 с. 9. Игошин В. И., Летфуллин Р. Р. Теоретическое моделирование процессов плазмообразования и генерации электромагнитных полей в газодисперсных средах под действием излучения лазера//Лазерная технология: исследования и автоматизация: Труды ФИАН. М.: Наука, 1992. Т. 217. С. 112—135.

10. Игошин В. И., Летфуллин Р. Р. Исследование кинетики плазмохимических процессов во фторсодержащих средах в поле ИК лазерного излучения//Лазерная техно-логия: исследования и автоматизация: Труды ФИАН. М.: Наука, 1992. Т. 217. C. 146-150.

11. Летфуллин Р. Р., Игошин В. И. Лазерная обработка дисперсных материалов в оптическом резонаторе//Труды Международной конференции по инженерной механике. Вильнюс, 1994. С. 3—12. 12. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИИЛ, 1961. 536 с. 13. Н. Ашкрофт, Н. Мермин. Физика твердого тела. М.: Мир, 1979. Т. 1.

14. Айвазян Г. М. Распространение миллиметровых и субмиллиметровых волн в облаках. Л.: Гидрометеоиздат, 1991.

15. Негин А.Е., Осипов В.П., Пахомов А.В. Оптический пробой в аэрозолях под импульсного излучения CO2-лазера//Квантовая электроника. 1986. Т. 13. действием C. 2208-2215.

16. Федосеев Д. В., Варшавская И. Г. Лазерная трансформация графитоподобных порошков в ультрадисперсный алмаз//Тез. докл. VI Всесоюз. конф. по нерезонансному взаимодействию оптического излучения с веществом. Вильнюс, 1984. С. 80.

17. Боримчук Н. И. и др. Механизм прямых фазовых превращений сажи и угля в алмаз при ударном сжатии//ДАН СССР. 321. 95 (1991). 18. Саввакин Г. И., Трефилов В. И. Формирование структуры и свойств ультрадисперс-

ных алмазов при детонации в различных средах конденсированных углесодержащих взрывчатых веществ с отрицательным кислородным балансом//ДАН СССР. 321. 99 (1991).

19. Ландау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1973.

20. Лифииц Е. М., Питаевский Л. П. Физическая кинетика. М.: Наука, 1979. 521 с. 21. Баландин С. Ф., Зиев В. Е., Иванов Ю. В. и др. Исследование эффекта генерации электрических полей//Тез. докл. VIII Всесоюз. симпоз. по лазерному и акустическому зондированию атмосферы. Томск: ИОА АН СССР, 1984. Ч. 2. С. 19—22.

22. Афанасьев Ю. В., Канавин А. П. Генерация электромагнитного поля эмиссии электронов с поверхности проводящих мишеней в вакуум//Квантовая электроника. 1983. T. 10. C. 2267-2273.

23. Копытин Ю. Д., Сорокин Ю. М., Скрипкин А. М., Белов Н. Н., Букатый В. И. Оптический разряд в аэрозолях. Новосибирск: Наука (Сиб. отд-ние), 1990. 159 с. 24. Зуев В. Е., Копытин Ю. Д., Кузиковский А. В. Нелинейные оптические эффекты в

аэрозолях. Новосибирск: Наука (Сиб. отд-ние), 1980. 182 с.

25. Захарченко С. В., Семенов Л. П., Скрипкин А. М. Оптический пробой в аэродисперсных средах//Труды ИЭМ, 1983. Вып. 31 (105). С. 11-25.