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Abstract

In this article, we study the analysis related to generalized Clifford alge-
bras C,(a), where a is a non-zero vector. If {e1,...,e,} is an orthonormal
basis, the multiplication is defined by relations

2
ej =aje; — 1,
eiej =+ ejei = aiej -+ ajei,

for a; = e; - a. The case a = 0 corresponds to the classical Clifford algebra.
We define the Dirac operator as usual by D = > j e;0;,; and define regular

functions as its null solution. We first study the algebraic properties of the
algebra. Then we prove the basic formulas for the Dirac operator and study
the properties of regular functions.
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1. Introduction. Clifford algebras are frequently encountered algebraic struc-
tures in both mathematics and applications. In recent decades, one key application
of the field has been in the formation of higher-dimensional analysis. This branch
of mathematics is known as Clifford analysis. Since the starting point of Clifford
algebras is located in complex numbers, complex analysis serves as a starting
point and motivation for Clifford analysis.

Both in applications, but perhaps often better among mathematicians, there is
an effort to look at the generalizations of mathematical theories. Clifford analysis
can be generalized in several ways. Each generalization gives a new perspective on
a classic case. One way is to generalize Clifford’s algebras themselves, and there
are numerous articles to be published from this point of view. It would be futile
to attempt to list them, given the large number.

Let us return to the complex analysis. Isaak Moiseevitch Yaglom introduced
the following generalization for complex numbers in [1|. His idea was that the
imaginary unit ¢ satisfies the quadratic equation

x2:px+q

for p, ¢ € R. This leads to different generalizations of complex numbers with
different choices of parameters p and ¢. From the point of view of complex analysis,
it is natural to look at the generalization, where the values of the functions are in
these generalized complex numbers. For example, the invertibility of elements is
lost with some of the parameter choices, which naturally significantly affects the
structure of the theory. In addition, the counterpart of the holomorphic functions
naturally becomes different.

Like complex numbers, Clifford algebras are also based on a quadratic form.
One way to generalize them is to define a quadratic equation like Yaglom did.
Naturally, this is not quite as straightforward as in the case of complex numbers.
This article follows the idea introduced by Teruo Kanzaki in his article [2]|. Later,
Jacques Helmstetter, Artibano Micali, and Philippe Revoy continued by looking at
generalized Clifford algebras in [3|. Kanzaki’s idea, like Yaglom’s, was to expand
a quadratic equation with a term determined by a linear form. We will come
back to this later. Later Wolfgang Tutschke and Carmen Judith Vanegas, when
modeling boundary value problems, defined generalized Clifford algebras without
mentioning Kanzaki in [4].

This article examines the generalization of the Clifford analysis to the special
case mentioned above. However, it is more like the first steps in this direction. In
classic Clifford analysis, the interplay of vector variables and operators is central.
This means that the theory can be written very far to the end without component
representations. In the author’s opinion, this is also a good requirement for a
generalized Clifford analysis.

The structure of the article is as follows:

— Section 2 recalls the construction of orthogonal Clifford algebras. The ex-

amination is limited to Euclidean spaces R™.

— Section 3 defines generalized Clifford algebras as in [3]. After that, algebraic

fundamental properties are studied.

— Section 4 is algebraic and examines the difference related to the power of a

vector variable.

— Section 5 defines the Dirac operator and defines regular functions as its zero

solutions. The connection with the Laplace operator is studied.
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— Section 6 examines two simple cases as examples. The examples highlight
the difference between the generalized and the classical case.

— Section 7 discusses Cauchy’s integral formula.

— In Section 8, more regular functions are derived using the Cauchy kernel.

2. Praefatio necessaria: Clifford algebras over quadratic spaces. A uni-
versal Clifford algebra is an algebra associated with a quadratic space (R™,Q),
denoted by C/(R", Q) or just C/(R™), which satisfies the condition

> =Q(z)

for any x € R™. Moreover, its dimension is 2. A quadratic form (@ is supposed
to be associated with a bilinear form

]

Bla,y) = 1 (Qa+y) - Qa) ~ Q).

With this, we obtain the product rule between the vectors
zy + yz = 2B(z,y).
In the Clifford analysis, we usually choose
Q(z) = —[z/?,

and then
B(z,y) = —x -y,

where |§\2 = x%—}—- . -—{—x% and z-y = x1y1+- - +TpYn. The corresponding Clifford

algebra is denoted by Ry ,,. By defining an orthonormal basis {ey, ..., ey}, we get
e?z—l, forj=1,...,n,
eiej +eje; =0, fori,j=1,...,n and ¢ # j.

A complete presentation of algebraic theory of Clifford algebras can be found, for
example, in [5-7].

3. Generalized Clifford algebras. Consider R" with a quadratic form @ :
R™ — R. Let B : R™ x R™ — R be its associated bilinear form and P : R® — R
a linear form. In this case, R" is called a generalized quadratic space. Generalized
Clifford algebras or Clifford—Kanzaki algebras are generated by the relation

2® = P(z)z + Q(z)
for x € R™. This gives the product rule
zy +yz = P(z)y + P(y)z + 2B(z, y),

where z,y € R™. The Riesz representation theorem states that a linear form P
admits a unique representation by the Euclidean inner product in the form

P(z)=a-z



Orelma H.

for some a € R™. A canonical choice for a quadratic form is Q(z) = —|z|?. The
generalized Clifford algebra generated by

2? = (a 2)z — |z|? (1)

for some a € R” is denoted by C,,(a). Let {eq,...,e,} be an orthonormal basis in
R™ and aj = a - ej. Then the multiplication rules are

2 _ 40 _
ej = aje; 1,

eie; +eje; = ae; + aje;, (2)
where 4,5 = 1,...,n and 7 # j. Defining paravectors ¢; = e; — a;, the multiplica-
tion rules takes the form

ejej =¢eje; = —1, (3)
giej + €56, = 0,
eigj +eje; = 0. (4)

We define an algebra endomorphism ": e; — ¢;. Since e; = e; — 2a;, we observe,
that it is not an involution.

ProPOSITION 3.1. If x € R™, then

T=z—a-zT
and
rI=Ix=—lz
Proof. 1f
n
T = a:jej,
j=1
then
n n n
z= Tj€j = €jTj — ajrj =L —a T
j=1 j=1 j=1
From (1), we obtain z(z — (a-2)) = (z — (a- 2))z = —|z|*. O

COROLLARY 3.1. If z # 0, then

PROPOSITION 3.2. Let x = x¢ + x be a paravector. If x5 + zo(a - x) + |z|* # 0,
then

—1 To—Z+a-zx

a4 ao(a-z) + |z

10
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Proof. We calculate
x(zo — ) = (v0 + z) (w0 — T) = 2F — ToL + oL — 2T =
=af —xo(z —a-z) + oz — 2k = x5 +x0(a-z) + 2. O

If a # 0, a generalized Clifford algebra C,(a) does not have direct sum rep-
resentation by multivectors. We denote c¥ (a) = R and C%l)(g) = R". Consider
the subspace

C{?(a) = Span{e;e; : 4,7 =1,...,n and i # j}.

Multiplication rule (2) states that in addition to the bivectors, the set contains
vectors. We can represent it defining

522) (a) = Span{e;e; : i < j}

and then

C@(a) = 2 (a) & R™.

Indeed, if B € c? (a), using (2) we obtain the representation

B = Z bijeiej = Z(b” — bjz-)eiej + Z bji(ajei + aiej).

Similarly, for any k = 2,...,n, we can represent

(k)

W) =P @ ac?

(a) ®R",

where Cq(f) (a) is spanned by all products of k basis vectors and (?5;7 )(g) is spanned
by all products of j basis vectors in increasing order.
Another consideration is that the vector a # 0 can be used to divide space by

R" =V(a) ® Span{a},
where
V(a) = Span{a}* = {z € R" : a - = = 0}.
If z € V(a), then T = z and 2% = —|z|?>. We have

Cl(V(a)) =Ron-1.

4. Powers of vectors. Let us look at algebraic differences a bit more. In a
Clifford algebra, the powers z* for k € N, are easily calculated and they are always
either scalars or vectors. In the generalized case, the situation is very different.

From the definition of multiplication, we have

2 =—|z)* + (a- 2)z

PROPOSITION 4.1. Let A, B € R and x € R™. Hence
(A+ Bz)z = —Blz|* + (A+ B(a - 2))z,

11
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that is, all the powers z*

scalar and vector part.

are proper paravectors, that is, they have a mon-zero

We calculate

(A+ Bz)x = Az + Bz? = Az + B(—|z)* + (a-z)z) =
= Az — Blz|*+ B(a-z)z = —Blz|* + (A+ B(a - z))z

= D
We get the following recursive representation for the powers.
PROPOSITION 4.2. If x € R™, then
2% = Py(z) + Qr(2)z,
where
Pi(z) = —Qj-1(z)|z/*,
Qj(z) = Pji_1(z) + Qj-1(z)(a- z),
starting from Pj(z) =0 and Qi(z) = 1.
Proof. The first step is
Py(z) = —Qu(a)|z” = —|z[%,
Q2(z) = Pi(z) + Q1(z)(a-z) =a-z,
and we obtain
2% = Py(z) + Q2(z)z = —|z* + (a - 2)z.
Assume
2" = Py(z) + Qr(2)z.
Using the preceding proposition, we calculate
2" = (Pi(2) + Qu(z)z)z =
= —Qu(2)|zf” + (Pe(z) + Qi(z)(a - 2))z,
that is
Piyi(z) = —Qk@)@ﬁ
Qi+1(z) = Pi(z) + Qr(z)(a - ).
O

We observe, that the homogeneous polynomials P, and Q) are generated by
|z|> and a - . For example,

Py(z) = —|z|,

Ps(z) = —(a- 2)|z|",
Py(z) = |z|* = (a- z)*|z]%,
Q2(z) =a-z,

12
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Qs(z) = —|z* + (a - z)?,
Qu(z) = —2(a- z)|z|* + (a- z)*.

5. Dirac operators and regular functions. We define the Dirac operator

by
D= Z ejaxj .
j=1

Let © C R"™ be an open subset and f : Q — C,(a) a differentiable function. If
Df =0 in Q, the function f is called (left) regular, and respectively fD = 0 is
called right regular. We define

n
D= ejd,;=D—-a-D,
j=1
where a - D is the directional derivative along a.

REMARK 5.1 (MONOGENIC FUNCTIONS). If a = 0, we consider functions f : { —
Ron. This is the Clifford analysis case. Then the solutions Df =0 (or fD = 0)
are called left (or right) monogenics.

PROPOSITION 5.1. If x € R", then

= —n, (5)

and if x # 0, then

Proof. Using (3), we calculate
n n
Dz = Z g0, xj = Zejz-:j = —n.
ij=1 j=1
Similarly, we have ]_N)g = —n. Since £ = I + a - £, we have
Dz =Dz + D(a-z) = —n+a.
If x # 0, then we have
T Dz 1 _ n T n—2

Dz '=-D= = D—2=——+2 =

B I N R T R P e P R P

O

We call the constant —n-+a an abstract dimension of the generalized quadratic
space R".

13
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PROPOSITION 5.2. Dz? = (—n+a)(a-z) + (-2 + a)z.
Proof. Since 22 = (a - )z — |z|? and Dz = —n + a, we calculate

Dz® = —Dlz|*+ D(a-z)z + (a-z)Dz =
=-2r+azx+(a-z)(—n+a)=
=(—24a)z+ (a-z)(—n+a).

Recall that the Euler operator is defined by

n
E = Z $jazj.
j=1

Then we can prove the following product rule for the Dirac operator.
PROPOSITION 5.3. If f is a differentiable function taking values in Cy(a), then

D(zf)=(—n+a)f —2Df -2Ef +2(a-D)f,
D(zf) = —nf —EDf — 2Ef,
D(Ef) = —nf —zDf — 2Ef.

Proof. We calculate
D(Ef) = (DZ)f + Y eigjw;ou, [
ij=1
Using (3), (4) and (5), we obtain

D(Ef) = —-nf— > ejei;Onf+2Y  eje;wi0n f =

i,j=1 j=1
= —nf—zDf — 2Ef.

Since z = Z + a - z, we have

D(zf)=D(@+a z)f)=DEf)+D((a z)f) =
=(-n+a)f —aDf —2Ef + (a-z)Df =
=(-n+a)f —2Df —2Ef +z(a-D)f.

Moreover,

D(zf) = D(zf) — af — z(a- D)f = —nf —ZDf — 2EF.

Using the preceding operators, we can factorize the Laplacian
n
2
A= Z Oz,
j=1

as usual.

14
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PROPOSITION 5.4. DD = DD = —A.
Proof. Let f be a twice differentiable function. We calculate

DDf =" €ij0a,00,f =

ij=1
= Z eisjéxié?xjf + Z €j5j8§jf + Z e’igja.fiaxjf =
i<j j=1 >
= Z eiejamianf - Z 8§Jf + Z ejgiaxiaa?jf =
i<j Jj=1 i<y
= Z(Gﬁj + ejai)ﬁxiaxjf —Af=-Af,
1<j

where we use (3) and (4). Similarly, we calculate DD = —A. O

This property allows us to prove the following classical results.

PropoSITION 5.5. If f : Q — Cp(a) is regular, its component functions are
harmonic.

PROPOSITION 5.6. If f : QQ — Cp(a) is harmonic, then

Df—(a-D)f

1s reqular in Q.
From Proposition 5.3, we obtain the following results.

PROPOSITION 5.7. If f: Q — Cy,(a) is reqular, then

(a) D(af) = —nf —2Ef,
(b) A(zf) =0, that is, xf is harmonic.

PROPOSITION 5.8. If f : Q2 — Cy,(a) satisfies 15f =0, then

(b) A(zf) =0, that is, Tf is harmonic.

6. Vector and paravector-valued solutions. Let us look at two examples
in this section. The examples illustrate the role of the vector ¢ among the regular

functions.
PROPOSITION 6.1. Consider a vector valued differentiable function

n

fl@) =) eifi(x).

j=1
Then
Df =) eiej(dnfj = 0, /) + (a-D)f =D f.
1<j
Hence, f is reqular if and only if
Op fj = Ou; fi» (a-D)f =0, D-f=0.
15
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Proof. We substitute e; = €; + a; and we have

f= Z€]+a] f] Zgjf] +Q’f:f+ﬁ'f-

Jj=1

Hence, using (4),

DJ}V: Z eigjaxifj = Zeiajaﬂ%-fj + Zejgjaxjfj + Zeigjaxifj -

ij=1 i<j j—l i>j
= g0, fi+ Y ejeiln fi — Z 0y, fi =
1<j 1<j
= Zeigjazifj - Zeifjaxjfz’ -D-f=
i<j i<j
= €i€j(@ufj —0u ) D [ =
i<j
= eilej — ;)0 fj — 0n, i) =D f =
1<J
= Zeiej(axifj — O, fi) — Zeiaj(axifj — 0z, fi) =D - f.
i<j i<j

On the other hand,

=Y aDfi =" ejaidy, fi =
i=1

ij=1

= Zejaiaxjfi + Zejaiaxjfi + Zejajarjfj =

i<j i>j j=1
n n

= E ejaiéxjfi + E eiajaxifj + E ejajazjfj,
1<J 1<J j=1

and we obtain

Df = Z €i6j<8zifj - 8x]fz) - Zeiajarifj + Zeiajamjfi —D-f+

i<j i<j i<j
n n
+ Z ejaiﬁmjfi + Z eiajaxifj + Z ejaj&vjfj =
1<J 1<J 7=1
= eiej(0n,f; — Ou, i) + Y _ €ia;0n, fi +
i<j 1<j
+Z€zazaxzfz+zeza]a f] D-y.

>]

16
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The middle sum terms are obtained in the form

Z €¢ajax].fi + Z €iaiamifi + Z eiajarifj =
1

i<j i= i>j
= Z eiaj&vjfi = (Zaja%) (Zezfz) = (Q- D)f
ij=1 j=1 i=1
We conclude
Df =Y eiej(0f; — 0u; fi) + (a-D)f =D f. -

1<j

When a = 0, the solution is a vector-valued monogenic function. Therefore, a
regular vector-valued function is a monogenic function whose directional deriva-
tive in the direction a vanishes, i.e. the function is constant in this direction.

COROLLARY 6.1. A paravector-valued differentiable function

f(z) = folz) + f(z),

where
n

fz) = eifi(z),

j=1

1s reqular if and only if

8mifj :amjfi, for i,j = 1,...,n,
(QD)i—i_DfO:Ov
D-f=0.

Thus, a regular paravector-valued function f = fo + f is a monogenic vector-
valued function f whose directed derivative in the direction a is —D f.

7. Cauchy’s integral formula. In some situations, the generalized theory
and the Clifford analysis are exactly the same in form and proof. One such example
will be presented next. It is assumed that the reader knows the structure of the
proof of Cauchy’s formula in the Clifford analysis case (see e.g. [7,8]). We calculate
the Cauchy kernel as usual.

ProPOSITION 7.1 (CaucHY KERNEL). The Cauchy kernel is of the form

1 z!

Wn—1 |£‘n72

E(z) =—

and it is left and right regular for x # 0. In the kernel, w,—1 is the surface area
of the unit sphere in R™.

Proof. We start from the Newton potential
1

(2 = n)wnafz[*?

N(z) =

17
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which defines the fundamental solution for the Laplace equation, that is, AN = 4.
We calculate

1 €T
0, . N(z) = — St
o N (@) = =l
and .
DN(z) = ———— .
Wn—1 |z|"

We define the Cauchy kernel by

E(z) = —~DN(z) = —(D—a- D)N(z) =

1 1 a-
=-DN(z) +a-DN(z) = = =

W1 |z]*  wny |z

Since
T—a-T =2,
we have
1 z 1 z!
E(g) - n n—2
Wn—1 |Z] Wn—1 |z|

g

Although the Cauchy kernel looks formally the same as in the classical case,
it is nevertheless of paravector valued.
The proof for the Clifford-Stokes formula is identical:

f@g=/YUDm+ﬂDmmm
o0 Q

d(fdog) = ((fD)g + f(Dg))dV

we use only the product rule of the exterior derivative d.
In the proof of the Cauchy formula, it is important to evaluate the integral

| B oniwas).
OBy (E)
where B, (z) is the r-ball centered at z and n(y) the outward pointing unit vector

on the boundary. The unit normal is as usual

niy) = =

r

and hence

—z)ly—x
[ sy onwrwasy = - [ W=D” YL as(y)
0Br ()

wn-1 Jop,@) Iy — 2" 7

18
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1
- /d 0, WS W) = f2)

wpgrnt

when r — 0. So, this part of the proof is exactly the same as in the classical case.

THEOREM 7.1 (CAUCHY INTEGRAL FORMULA). Let 2 C R™ be an open set with
a smooth boundary, let f : U — Cy(a) be a reqular function, and Q C U. Then

flz)= [ E(y—z)do(y)f(y)

o -

for any x € Q.

We conclude that in above the only difference is the interpretation of the
Cauchy kernel and the proof itself is identical. A more detailed treatment of this
issue is naturally unnecessary.

8. Regular functions generated by the Cauchy kernel. Let us use the
classic multi-index notation, i.e. let & = (ai,...,a), a;j € N U {0} for all
Jg=1L...n lal == a1+ F+ap, ol == oql-ap!, 2 = 2]t 28" and
Oy = 0g} - 8"‘" We deﬁne paravector valued regular functions

Unlz) = 9% 2.

z g|n

Indeed, if U, = Uéa) + Q(a), we have

U (@) = —oe L U@ (g) =o0 2

=zl e

\ Qﬁ

REMARK 8.1. These functions are useful, when we want to find Taylor series,
USINg

1 — (1) koL
’y_£|n 2 ;) k! 2 ‘g|n 2

see e.g. |9, p. 34|, and the Cauchy formula in the above.
The multi-index Leibniz rule is

oz (o) = X () @2nis o)

Since

for || > 2, we obtain

19
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1 |
~(z-a s+z< )i - aer o
=zl € |z
where €; = (0,...,1,...,0) is a unit multi-index. We define polynomials p, by

o pa(2)

mn - @|n+2|a\‘

Hence, the regular functions are of the form

pa e( )
Us(z) = (z—a-z |x|n+2\a| +Zaa ~ %) rroiae

Let us take a closer look at the polynomial. We have

a+te; 1 _ pa-l-Ej(@)
z || |£|n+2|a+5j\‘
and
QT€5 81‘ A\
9ot ]7 -9 Pa(2) —(n +2|a|) Pa () 4 (z) .

2 g T ‘:L.|n+2|a| = $J| n2lal+2 T [gnt2lal

—(n +2|a))zjpa(z) + [2[*0:pa(z)
|£‘n+2|a+e]\ ’

and by comparing these, we get the differential-recurrence relations

Pacte,(z) = —(n + 2a))z;pa(z) + |2]*0r,pa(z)

‘72\a|7n72

and po(z) = 1. Multiplying the recursion both sides by |z , we get

2|21 2 pa e, (2) = —(n + 2lal)y;lzl 2 P pae) + 200, pal2),

that is,

‘£|72|a|*n72pa+€j (z) = Oy, (,E‘fz\alfnpa@))

or
Pate, (z) = |z[2HH20, (|22 ="p, (2)).

Let us consider linear operators
Lif(z) = |z 20, (Jz| 2" f(2),

satisfying
Lj(1) = =(2laf 4+ n)z;

and
Lij(z) = x;-”_l(m@]Q — (2o +n)z}) =

20
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=mafal ™+ 4 (m = 20af —n)2 T+ maa
Similarly,
Lj(ga):mal' aj IL ( ) aj+1.,'xan:
=z° ..xocjﬂ(ajx%brj'—l_i_.“_i_
+( _2|a| ) J+1 + +a] J l)xaj+1 "-:,Uan _
= oz 4 4z 4 (0 — 2ol — )zt +
+ aj£a+261+176j N aj£a+2€nfej
and

Pate; (l) = Lj (pa(g))'

Conclusion. This paper considers analysis with generalized Clifford algebras.
The central point of the analysis is the effect of the direction vector a, which deter-
mines the input on the theory. Most of the results of the classical Clifford analysis
can be converted almost as is to the generalized case. The biggest differences come
in situations where powers of a vector variable are needed. The effect of the vector
a on the class of regular functions still needs to be examined further.
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Anamm3 o6o6miennbix anreop Kiaunddopaa
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Annoranus

N3yuaerca Bonpoc, cBsA3aHHBIN ¢ 0000menHbIMET asrebpamu Kimddopna
Cr(a), rie a — nenysepoii Bekrop. Ecau {ey, ..., e, } — oproHOpMUPOBAHHBILIT
6a3muc, oneparys yMHOXKEHNs OIPEJIENISIeTCsl COOTHOIIEHUSIMU

2 — . s —
€; = aje; 1,
eie; +eje; = aze; + ajeq,

rae a; = e; - a. Ciay4ait ¢ = 0 cooTBeTCTBYeT Kiaccuueckoil anredbpe Komud-
dbopna. Oupenensercs oneparop Hupaxa D = 3 €0y, 1 perysspubie GyHK-
UK KaK ero HyJiepoe pemenne. M3ydarorcst agrebpandeckue CBOHCTBA pac-
cMaTpuBaeMoit asrebpol. JJ0Ka3bIBAIOTCS OCHOBHBIE (POPMYJIBI JIJIs OIIEPATO-
pa dupaka u uzydarorcst CBOHCTBa PEry/IsipHBIX (PYHKITHA.

KuaroueBbie cioBa: anrebpa Knunddopra—Kanzaku, obobiennas aaredbpa
Kauddopaa, oneparop lupaka, peryaspras GpyHKITHS.

Honyuenue: 27 nexkabpsa 2022 r. / Ucnpasnenue: 16 dbespamns 2023 r. /
punarue: 27 dbespans 2023 r. / [lybiukanus omnaita: 30 mapra 2023 r.

KOHKypI/IpyIOH_(I/Ie nHTEepecChI. qa 3adBJIAI0, YTO Y MEHA HET KOHKYPHUPYIOIUX NHTEPe-
COB B OTHOLIEHUM ,ZLaHHOfI CTaTbH.

ABTOpCKasi OTBETCTBEHHOCTD. ¢ HECy IOJIHYI0O OTBETCTBEHHOCTH 3a IIPE/ICTABJIEHUE
OKOHYATEJIbHOW PYKOIINCH B II€9aTHOM BHJIE. 1 0100pu/1 OKOHYATEIbHBI BAPUAHT PYKO-
IIHACH.

BuaarogapHocTu. Asrop 6/1arogapen cBoeil ceMbe, Ybe MOHUMAHNE U TePIEeHUE IIOMOLJIO
B HAIIUCAHUM dTOI CTaTHU.

Juddepennnanbable ypaBHEeHUs U MaTeMaTuyueckass PusnukKa
Hayuynasi ctarbsa
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