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Abstract

The present paper is devoted to the problem of boundary conditions for-
mulation for asymmetric problems in the mechanics of growing solids (MGS).
The boundary conditions on the propagating growing surface (PGS) is the
fundamental problem of this branch of mechanics. Results from the alge-
bra of rational invariants are used for deriving constitutive equations on
PGS. Geometrically and mechanically consistent differential constraints are
obtained on PGS. Those are valid for a wide range of materials and metama-
terials. A number of constitutive equations on PGS of different complexity
levels are proposed. The boundary conditions simultaneously can be treated
as differential constraints within the frameworks of variational formulations.
The differential constraints imply an experimental identification of constitu-
tive functions. For this reason, the obtained results furnish a general ground
in applied problems of the MGS.
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On a differential constraint in the continuum theory of growing solids

1. Introduction

Traditional methods of manufacturing products of complex shape imply a va-
riety of technological processes. Such processes are coupled with the removal of
material and based on the synthesis of products by successively adding material
to a surface of complex shape. Manufacturing products by adding new material
is widely used in modern engineering [1]. Such additive manufacturing methods
include: laser stereolithography [2|, selective laser sintering [3|, electron beam
melting [4], fusion simulation, multi—jet modeling method [5], manufacturing by
lamination, 3D printing [6-8|, computer axial lithography [9], layer-by-layer con-
creting [10].

3D printing (3DP) is similar to selective laser sintering technology, but melt-
ing isn’t used here. An object is formed from powder material by gluing, using
inkjet printing to apply liquid glue. 3D printing technology allows color modeling
by adding dyes to the adhesive (directly during printing), or by using multiple
printheads with color glue [6-8].

Layer-by-layer concreting of constructions also belongs to the methods of ad-
ditive technologies [10]. Layer-by-layer concreting can be divided into two types,
depending on the time between layer fills. In the case of a “hot seam,” the break
between the layers is less than 12 hours. The second type of layer-by-layer filling
is a “cold seam.” In this case, it is necessary to wait for the complete hardening
of the previous layer to exclude the possible cracking of the non-hardened part
under the action of the newly added material.

The additive manufacturing techniques described above basically use well—
known ideas from natural processes: accretion of space objects, the formation of
avalanches and glaciers, crystal growth processes, the growth of atherosclerotic
plaques [11,12]. All these phenomena are characterized by presence of PGS. The
growth of atherosclerotic plaque can be described as the process of initial infil-
tration of blood plasma components into a thin surface layer of the inner wall of
the artery. The growth of a crystal nucleus occurs by adding individual atoms or
their groups to crystal surface.

A solution of applied problem of growing solids mechanics is sometimes a
sophisticated and time-consuming procedure [13-19]. An substantial feature of
the formulation of boundary value problems of the MGS is the formulation of
boundary conditions on the interface between the source material and the added
part [20-22]. In this paper, several variants of the constitutive equations on the
growing surface are discussed, starting from the simplest relations (see the book
by G.I. Bykovtsev: [22, Pp. 288-292|) to some significant generalizations of the
theory. Throughout the paper the terminology and notations adopted in the pub-
lications [16-19,22,24]| are used.

2. Rate equations of mechanics of growing solids (MGS)

The governing equations in MGS are often conveniently furnished as the rate
equations. In this case, the equilibrium equation formulated in an arbitrary spatial
system of curvilinear coordinates z* (k =1,2,3) for the asymmetric stress tensor
can be presented as partial differential equation

Vi(0.07) +0.X" =0,
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where ¢ is the Cauchy force stress tensor, X* is the volume forces, V; is the
covariant differential operator with respect to a given spatial metrics, 0. is the
time derivative take with fixed spatial coordinates z¥.

In order to close the system of differential equations, it is required to spec-
ify constitutive equations according to the constitutive law which is an intrinsic
characteristics of a particular solid/process. A model of growing solid should also
be supplemented by boundary conditions on PGS.

Growing surface ¥ propagating in space is determined by an implicit form
equation:

t=r(a").

In this case, the unit normal vector n on the surface . directed towards its
propagation is given by the spatial gradient as follows

ni=coT, c= |V7*'|_17 (1)

where ¢ is the linear velocity of PGS in the normal direction n, which is defined
according to
—
|PP'|
c= lim ——.
6t—0 Ot
H . . . .
Here |PP’| is the length of normal vector directed from an arbitrary point P on
PGS at time ¢ to point P’ which is intersection of normal vector n and PGS at
time ¢ 4 dt.
To find out the force stress tensor by the given rates of stresses, one can employ
the formulae given in [22]:

t
o = / N]dE + T 4 6% (), (2)
Jij:/ (z®,t")]dt,

where J% — stress jump related integral, " (z") = % (x ’mt:?(ﬁ)—o are the

force stress tensor components at the time ¢t = 7*'(373 ) — 0 right before an element

starting formation of the main solid. The time ¢ = 7(z*) + 0 corresponds to
moment right after an element has been attached to PGS. In order to simplify

script of formulas we retain ¢ = 7(z*) instead of a more correct t = 7(*) + 0.
After substituting of actual stresses (2) into the equilibrium equation

Vol + X' =0 (3)

one can readily come to

Vj{ﬁ [0.09% (2", ¢ dt' + T + a”(mk)} +X'=0 (t=71+0). (4)
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After transformations according to the rule of differentiation of the integral
depending on a parameter! the equation (4) is turned to

*

t=T(x%)

t
ﬂ V;[0.07"(z", )]dt' + V; 37 — (V;7)[0.07 (aF 1))
+ V00 (R + XT=0. (5)

Upon substituting the Eq. (1) in Eq. (5)

t
ﬂ Vj[a.aji(xk,t’)]dt’ + ijji — c_lnj [G.Uji(ack,t)] .+

t=7(z%)
+ Vol (@) + X' =0. (6)

The following equation can be obtained by integrating (6) and taking account
of (3), then changing the order of derivatives

~X'4+ X, + V07 (2*) + X = 0. (7)

t=T1(x*) 7

t=7(x%)

V30— e ng[.07 (¥, t)]‘
After rearrangement of terms Eq. (7) reads

c [vjé}ﬁ(x’f) + V5 X

] — n;[0.07 (z", 1)] ) =0. (8)

t=r(z*)

Hereinafter the notation ( - )’ « will be dropped out for values calculated on

t=T(z*)
PGS.
Finally, the constitutive boundary condition on PGS can be formulated in

form
[V;07H(zF) + V590 + X — n;[0.07 (2F, )] =0 (£ =T +0). (9)

The Eq. (9) should be considered as a differential constraint for stresses on

PGS. If it is possible to express the stresses o in terms of the actual stresses
a| =3 (zs)’ then from the equation (8) we can derive the differential equation for
stresses. Alternative approaches to the boundary conditions derivation are dis-
cussed in detail, for example, in [20,21].

In the general case, the stresses o are to be expressed in terms of the actual
stresses on PGS by a tensor constitutive equation

o==%(o,mn,...). (10)

Omitted arguments of the function § in the Eq. (10) stand as additional pa-
rameters characterizing the growth process. Those can be related to multiphysics
phenomena. In a simple model, list of additional parameters may be empty. In
particular, the function § may depend on the microstructural directors and the
thermophysical hidden variables associated with PGS. The physical sense of the

k

1The spatial coordinates z* are the parameters, and the lower limit of integration depends

on xr .
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additional directors [23-26] may be associated with the characteristic directions
of the fibers laying in woven composite materials, reinforcement in concrete struc-
tures, winding of threads in a bobbin, etc. The function §, in fact, should depend
on combinations of arguments which are invariant under coordinate-frame rota-
tions around of the director n.

3. A simple formulation of differential constraint on PGS
Consider in further details a geometric interpretation of the case discussed
earlier in [22|. Let traction vector t be known or prescribed on PGS:

t=n-o.

In this case, we introduce the following notation o*c'l for the reduced tensor o
2

to the two-dimensional plane element 7" and assume a simple form of the Eq. (10)
as follows

o = F(t,n).

2d 24

Tensors 20*('1 and § are represented in the Cartesian coordinate frame by 2x2
2d

* o1 012 S11 12
o= = .
2d < o21 0922 ) ’ 5 < 21 S22 >
Hereafter, it is convenient to use the decomposition of the traction vector t
into the parts

matrices

t=t, +t.

Here t | is the projection of the traction vector on the tangent plane T to the
instantaneous PGS, t| denotes the projection on the normal direction.

As for arguments of the tensor function §, we choose the joint rational in-
variants of the second-rank tensor o and the unit vector n, which are unchanged
under coordinate frame rotations around the director n. In this case, we write the
rationally independent system of invariants [27] in the following form

62 =t-t, [6 = t-nl, [eu) (11)
There is an obvious rational syzygy in the system of invariants (11)
[t = [6* + [t
After eliminating the first invariant from (11) the system of independent ra-
tional invariants takes the following form
[yl [t (12)

The constitutive equation on PGS, taking account of (12), can be furnished
in the form

* 2

o = (Il [tL])- (13)
2d

The equation (13) has a clear mechanical sense. We choose a Cartesian coor-

dinate system so that the unit vector k is directed along the normal n to PGS,
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and for the projection of the traction vector t in the tangent plane T' to PGS, the
following equation is valid

6o =[traf* + [trgl (14)

Then the projections of the vector t onto the unit vectors of the specified
coordinate system can be expressed in terms of actual stresses by

6yl = lo@sl,  [tre® = ofsyys  [61:91> = 079

As a result, the constitutive equation (13) is rewritten in the form

o 2 2
gl—g(|‘7(33)|70<31> +U(32>)- (15)

Note that the equation (15) is similar to those discussed in [22]. However,

contrary to the work of [22], the tensor § is not isotropic, i.e. four constitutive
2d

functions are to be determined on PGS.2

Substituting the Eq. (15) into the equation (8), keeping in mind that n = k
and introducing notation (...) for indices in the specific coordinate frame, we
obtain the differential constraints on PGS in coordinate form

In Eq. (16) values X; and 0.0 3; must be considered on PGS. Furthermore, d;
denotes the directional derivatives:

d<3> =n- V, d<1> =1- V, d<2> =7 V. (17)

In Eq. (17) index (3) corresponds to the direction of the normal, and indices
(1) and (2) to the tangent directions to PGS. Indepth discussion of directional
operators d; apparatus see in monograph [28].

Note that the system of independent joint rational invariants (12) is not com-
plete. It does not take account of joint invariants containing the squares of the
force stress tensor o.

4. A full invariant formulation of differential constraint on PGS

A complete system of joint rational invariants of the second-rank tensor o and
the vector n, in addition to the invariants (12), includes invariants

)| =|t- ti % [to-ti] 1
|2||’ |2 n|, ’2J_| ;o ltL QJ_‘ (18)
In the equation (18), the vector g is defined according to

2

S:nﬂ', g:t~7', gsznjaﬂaisztlais.

2There will be three constitutive functions in the symmetric case. Only one constitutive
function remains for the isotropic symmetric case.
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Following to the discussion in the previous section, for the vector g we adopt
the decomposition
t=t t.
2 sl + 2t

As (w is the angle determined by directions t; and g 1)
£ - gJ_|2 = |tJ_|2|123J_|2COS2w

then one can replace the invariant |t - ’5 1]? in (18) by cos? w.

The complete system of joint rational invariants of the stress tensor o and the
vector n takes the form

oyl JeLf?, |‘23|\|, |SL’27 |tL'i23i|2~ (19)

The constitutive equation (10) on PGS in terms of the complete system of
joint rational invariants (19) of the asymmetric second-order tensor o and the
vector n for reduced tensors onto the two-dimensional plane element 1" takes the

form
*

=F(tyl, 6L 160l 6012 16 -t 7). 2
g 25d(| s Te 5 Tl [ Je - £ [7) (20)

We choose, as in the previous case, the Cartesian rectangular coordinate sys-
tem so that the unit vector k is directed along the normal n to PGS. For the
projection of the traction vector t in the tangent plane T, we assume (14) to
PGS, and for the vector g 1 obvious equality is satisfied

|’gﬂ2 = \gmlz + |’5L'J\2- (21)

The invariants (12) and (19) and projection lengths (14) and (21) are calcu-
lated via the actual stresses o on the surface ¥ according to
‘tL1|2 = J<231)» |tLJ’2 = 0(232>7 |tH| = ’0(33>|7
\gr@P = |oanyoan + oE2yoa + oEsoen |
‘SL‘JP = |o@Enyong + 0oy + U(33><7<32>|2, )
22
\E\H = |o(31y0(13) + 0 (32)0(23) + 0?33>|7

b1 11" = lofyoan + oy oon + ol o+

+ 0(32)0(31)0(12) + 0%32>0<22> + 0<232>U<33> 2.

The latter equation containing cubics in stresses should be classified as never
discussed and used in the mechanics of solids.
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The constitutive equation on PGS (20) taking account of the expressions (22)
after introducing following notation

I=|ogl, I1 = 0(3) + O3 I11 = |o(31)0(13) + 0(32)0(23) + T a3y s
IV = [ognoan + 0Eaoen + 0enoenl” + 0Enoas + 0@ o e + 03306l
V= \U<231>U<11> + 0(31y0(32)0(21) + 0<231>U<33> + 0(32)0(31)0(12) T

+ O'<232>U<22> + a<232>0<33> |2.

can be rewritten in functional form

o =%(I,1I,1II,1V,V)
2d 24

or in a simplified variant

o =§(I,11,111,1V).

2d  2d

The boundary conditions in the form of differential constraints on PGS (8), in

the case when the added material has microstructural features, can be generalized
by introducing in arguments of the function (10) the additional microstructural
directors associated with the characteristic directions of the laying of the material
in the processes of winding threads or the production of woven composites.

5. Conclusion

1. In present study, geometrically and mechanically consistent boundary con-
ditions on PGS in the form of differential constraints have been obtained
and discussed.

2. A general form of the mentioned constraints for the asymmetric force stress
tensor has been obtained. It is valid for a wide range of materials and
metamaterials.

3. The arguments of the constitutive tensor function on PGS have been deter-
mined by a set of invariants that are constant with respect to the rotations
of the coordinate frame.

4. A geometric interpretation of the simplest variant of the differential con-
straint has been considered. A full invariant formulation has been proposed.

5. The developed approach must involve the experimental identification of
the constitutive tensor functions on PGS.

6. The obtained results afford a general ground in applied studies on the MGS
with an asymmetric force stress tensor.
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B KOHTUHYAJILHOI MeXaHWKe PACTYIUX TeJl

E. B. Mypawxun, FO. H. Padaes

WMucruryt npobaem mexanuku uMm. A. FO. Mmmmackoro PAH,
Poccus, 119526, Mocksa, npoci. Bepuagckoro, 101, kopu. 1.

AHHOTaNSA

IIpenaraercss ofvH OOIMMIT IPUHIIAII OCTAHOBKM PAHUYHBIX YCJIOBH
B KPaeBbIX 3aJavdaX MeXaHUKN pacTyux Tesl. [Ipu BbIBOjE ONpe e Isaronux
COOTHOIIIEHUHT Ha TTOBEPXHOCTU HAPAIUBAHUS UCIOJIb3YETCI anmnapaTt aared-
PBI pAIMOHAJIBHBIX MHBAPUAHTOB. [IpoBesieH BHIBOM, PA3JIMIHBIX BAPUAHTOB
busnIecKn HEIPOTUBOPEUNBBIX AuddEPEHINATBHBIX OIPDAHNIEHUN Ha I0-
BEPXHOCTH HaparuBaHus. 1lo/rydeHHble yCJIOBUsI CIIPABEJIUBBI JIJIS BECh-
Ma IIIPOKOr0o KPyra MaTepHAJIOB W MeTamarepruaJsos. st ucroab30Banmst
copMysInpOBaHHBIX UMD PEPEHITNATBHBIX OTPAHIYEHN B KOHKPETHBIX [IPU-
JIOXKEHUSIX HEOOXOJIMMa UX dKCIepUMeHTabHasd uaeHTudukamnus. [1lo sToit
[IpUYMHE [OJIy9YeHHbIE Pe3yJIbTaThl MOI'YT CJIy?KUTh OOIeil OCHOBOW B IIpU-
KJITHBIX HCCJIEOBAHUSAX 110 MEXaHUKE PACTyIIUX TeJl.

KuroueBbie ciioBa: 3D-meqars, MOBEPXHOCTHBIN POCT, HAIIPSIYKEHIE, OIIPe-
JIeJISTIoNTee ypaBHEeHNe, PAIMOHAIBHbIN HHBAPUAHT, TuddepeHITnaIbHOE OIPa-
HUYEHUe, I0JIHAs CUCTEMA.

Iouyyenue: 30 aupesst 2019 1. / Ucupasienue: 12 asrycra 2019 r. /
Ipunsitue: 16 cenrsiops 2019 r. / Ily6aukanus ornaita: 18 HosiGpst 2019 .

Konkypupyroiiune nHTepechl. 3asBjsgeM, 9TO B OTHOIIEHUN aBTOPCTBA U IIyOIMKAIIIN
9TOIl CcTaThbu KOH(MJINKTA UHTEPECOB HE UMEEM.

ABTOpCKUIT BKJIAJT 1 OTBETCTBEHHOCTDb. Bce aBTOpHI IpUHUMAJIN yYaCTHe B pa3pa-
6OTKe KOHIIEIIIIUN CTaTbU U B HAaIlMCaHUU PYKOIIUCH. ABTOpr HECYT IIOJIHYIO OTBETCTBEH-
HOCTH 3a IIPEJIOCTABJIEHNe OKOHYATEJIbHOM pyKonucu B rmedarh. OKoOHYATEIbHAS BEPCHUS
pykomucu 6bL1a 0100peHa BCeMrn aBTOPaMU.

dunancupoBauue. Pabora BoimoHeHa mpu moaaepkke Poccuiickoro Hayanoro ¢gpomma

(mpoekT Ne 17-19-01257).

Baarogapuoctu. ABTopbI 6JIATOIAPST PEIEH3EHTA 38 BHUMATEIHHOE TPOYTEHIE CTAThU,
IIEHHbIE IPEJJIOYKEHNUS U KOMMEHTAPUU.
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